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Central limit theorem for finite and infinite

dimensional diffusions in ergodic environments

By

Lu XU*

Abstract

In this article, we introduce a central limit theorem for the solution to a 1‐dimensional
stochastic heat equation with a random, ergodic non‐linear term. Since it can be viewed as
an infinite dimensional diffusion in random environment, we first summarize the ideas in the
classical central limit theorem for finite dimensional diffusion in random environment, based on

[8, §9]. Afterward, we illustrate the strategy to extend these ideas to stochastic heat equations,
and explain the main differences between finite and infinite dimensional models. Due to our
result, a central limit theorem in  L^{1} sense with respect to the randomness of the environment
holds and the limit distribution is a centered Gaussian law, whose covariance operator is
explicitly described. Moreover, it concentrates only on the space of constant functions.

§1. Diffusion Process in Ergodic Environment

The study on homogenization of diffusion processes in stationary, ergodic random

environments begins from [9] and [14], where central limit theorem for diffusions driven
by random self‐adjoint, divergence‐type operators is established. Later in [11], an in‐
variance principle in a quenched sense is obtained for the case that all the coefficients

are almost surely  C^{2} ‐smooth. The book [8] gives a very good introduction to the finite
dimensional classical results, where the main idea is to decompose the sample path  0

the diffusion into the sum of an additive functional of the “trajectory” of the environ‐

ment, and a martingale with stationary increments. Since the evolution of the moving

environment is a Markov process which satisfies a sector condition, the general strategy

to prove a central limit theorem can be applied. This method is first developed in [7] for
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reversible Markov processes, and is extended to non‐reversible processes with a sector

condition in [12], [13] and [17].
In these works, only diffusions in finite‐dimensional spaces  \mathbb{R}^{d} are considered. The

aim of this paper is to extend the story to infinite dimensional diffusions, namely, the

solutions to stochastic partial differential equations in random environment. Since the

strategy in the infinite dimensional setting is parallel to the finite dimensional case,

we first briefly introduce a general framework under which we can prove the central

limit theorem of  a (finite dimensional) diffusion process in random environment, based
mainly on the contents of [8, §9].

Let  (\Sigma, \mathscr{F}, q) be a probability space. Suppose that  \{\tilde{V}(\sigma, x)\}_{x\in \mathbb{R}^{d}} and  \{ ã(  \sigma ,  x)\}_{x\in \mathbb{R}^{d}}
are real and  d\cross d real matrix valued random fields over  \Sigma , respectively. Assume that

the realizations  \tilde{V}(\sigma, \cdot) and every entries of ã  (\sigma ,  \cdot) belong to  C_{b}^{2} (Rd),  q‐almost surely.
Fix some  \sigma  \in  \Sigma , we consider the diffusion process  X^{\sigma}(t)  \in \mathbb{R}^{d} starting at some vector
 x , formally driven by a divergence‐type operator

(1.1)  L^{\sigma}f(x)=  \frac{1}{2}e^{\tilde{V}(\sigma,x)}\nabla_{x}. (e^{-\tilde{V}
(\sigma,x)}\tilde{a}(\sigma, x)\nabla_{x}f(x)) ,

where  \nabla_{x}=(\partial_{x_{1}}, \ldots, \partial_{x_{d}}) . In this section we prove a central limit theorem for  X^{\sigma}(t)/  t

when the randomness of  \sigma is taken into consideration.

Consider the space of all  C^{2} mappings from  \mathbb{R}^{d} to  \mathbb{R}^{1+d^{2}} , which is the path space

of the joint random field (  \tilde{V} , ã). Notice that on  C^{2}(\mathbb{R}^{d}, \mathbb{R}^{1+d^{2}}) there exists a natural
semigroup of “shifts”  \{\tau_{x};x\in \mathbb{R}^{d}\} defined by

(1.2)  \tau_{x}\circ\phi=\triangle\phi(\cdot+x) , \forall \in C^{2}(\mathbb{R}^{d}, 
\mathbb{R}^{1+d^{2}}) .

Obviously,  \tau_{x}\circ\tau_{y}  =\tau_{x+y} . Denoting by PV∼,ã the distribution determined by (  \tilde{V} , ã) on
its path space, we call the random field to be stationary and ergodic if and only if PV∼,ã
is stationary and ergodic under  \{\tau_{x};x\in \mathbb{R}^{d}\}.

Given a stationary and ergodic field (  \tilde{V} , ã) with  C^{2} paths, by taking  \Sigma to be the

path space  C^{2}(\mathbb{R}^{d}, \mathbb{R}^{1+d^{2}}) and  q to be PV∼,ã, we can observe that (see [8, Remark 9.2, 9.4]
for details) there exist a real random variables  V and a matrix valued random variable
 a , such that

(1.3)  \{(V(\tau_{x}\sigma), a(\tau_{x}\sigma)) ; x\in \mathbb{R}^{d}\}

has the identical distribution with (  \tilde{V} , ã). Since the argument in this article depends
only on the distribution of the diffusion, from now on we shall restrict our discussion to

the random fields of the form (1.3).
In view of the argument above, we are dealing with a probability space  (\Sigma, \mathscr{F}, q)

where a semigroup of transformations  \{\tau_{x};x\in \mathbb{R}^{d}\} are defined, such that  q is stationary

and ergodic under this semigroup.  V and  a are real and  d\cross d real matrix valued random
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variables on  \Sigma such that  \{V(\tau_{x}\sigma), a(\tau_{x}\sigma)\} has  C^{2} realizations. We also need to assume

the positive definiteness of  a in a uniform sense: there exists a positive constant  c_{0} such

that  \langle x,  a(\sigma)\cdot x\rangle_{\mathbb{R}^{d}}  \geq c_{0}|x|^{2} for all  x\in \mathbb{R}^{d} , and  q‐almost every  \sigma\in\Sigma.

We introduce a formal derivative for random variables on  \Sigma . Call a measurable

function  f :  \Sigma  arrow \mathbb{R} belongs to  C_{b}^{1}(\Sigma) if  f^{\sigma}(x)  =\triangle  f(\tau_{x}\sigma) defines a function in  C_{b}^{1}(\mathbb{R}^{d})
for all  \sigma\in\Sigma , and let  D_{i}f(\sigma)  =\partial_{x_{i}}f^{\sigma}(x)|_{x=0} for  i=1 , :::,  d . For  k\geq 2,  C^{k}(\Sigma) can be

defined similarly. By virtue of these notations, the Itô equation of  X^{\sigma}(t) reads

(1.4)  \{\begin{array}{l}
dX^{\sigma}(t)=U(\tau_{X^{\sigma}(t)}\sigma)dt+c(\tau_{X^{\sigma}(t)}\sigma)
dB_{t},
X^{\sigma}(0)=x,
\end{array}
where  B_{t} is a  d‐dimensional standard Brownian motion over some other probability

space  (\Omega, \mathscr{F},p) ,  U=(U_{1}, \ldots, U_{d}) is the random vector on  \Sigma defined by

(1.5)  U_{i}( \sigma)=-\sum_{=1}^{d}a_{ij}(\sigma)D_{j}V(\sigma)+\sum_{=1}^{d}D_{j}
a_{ij}(\sigma) ,

and  c is the square root of the symmetric part  a^{s} of  a.

In view of (1.4), the evolution of  X^{\sigma}(t) depends on shifted environment  \tau_{X^{\sigma}(t)}\sigma,

which is the origin of the following definition. Let  \eta_{t} be a stochastic process tracking
the environment seen from  X^{\sigma}(t) :

(1.6)  \eta_{t}=\tau_{X^{\sigma}(t)}\sigma\in\Sigma, \forall t\geq 0.

It is a  \Sigma‐valued process over  (\Omega, \mathscr{F},p) .

Proposition 1.1 ([8, Proposition 9.7]).  \{\eta_{t}\} is a Markov process. For bounded
measurable functions  f on  \Sigma , its Markov semigroup  P_{t} can be written as

(1.7)  P_{t}f(\sigma)=P_{t}^{\sigma}f^{\sigma}(x)|_{x=0},

where  P_{t}^{\sigma} is the Markov semigroup of  X^{\sigma}(t) for xed  \sigma.

Proof. To specify the initial condition, here we write the solution of (1.4) as
 X^{\sigma,x}(t) . The uniqueness of the solution implies that  X^{\tau_{y}\sigma,x}(t)=X^{\sigma,x+y}(t)-y . Hence

if  P^{\sigma}(t;x, \cdot) stands for the transition probability of  X^{\sigma,x}(t) , then ([8, Lemma 9.6])

(1.8)  P^{\tau_{y}\sigma}(t;x, \cdot)=P^{\sigma}(x+y, \cdot+y) .

To complete the remaining proof, just use (1.8) and the Markov property of  X^{\sigma}(t) for
fixed  \sigma.  \square 

Now consider the probability measure  \pi(d\sigma)  =  Z^{-1}e^{-V(\sigma)}q(d\sigma) on  \Sigma , where  Z

is the normalization constant. Due to a direct calculation based on (1.1) and (1.7)
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(see [8, Proposition 9.8 and §9.7]),  P_{t} extends to a strongly continuous semigroup  0

contractions on  L^{2}(\Sigma, \pi) , and its generator  (D(\mathcal{L}), \mathcal{L}) satisfies that

(1.9)   \mathcal{L}f= \frac{1}{2}e^{V}\nabla. (e^{-V}a\nabla f) , \forall f\in C_{b}
^{2}(\Sigma) ,

where  \nabla  =  (D1, :::, D_{d}) . Due to [4, Proposition 1.3.3],  C_{b}^{2}(\Sigma) forms a core of  \mathcal{L} , i.e.
 \mathcal{L} coincides with the closure of its own restriction on  C_{b}^{2}(\Sigma) . The stationarity and

ergodicity of  q yields that for all  f\in C_{b}^{2}(\Sigma) ,

(1.10)   \Sigma-\mathcal{L}f(\sigma) (\sigma)\pi(d\sigma)= \frac{1}{2} 
\Sigma\langle\nabla f(\sigma) , \nabla g(\sigma)\rangle_{\mathbb{R}^{d}}
\pi(d\sigma) .

Since  C_{b}^{2}(\Sigma) is a core, we know from (1.10) that  \pi is invariant and ergodic. Moreover,
(1.10) also allows us to extend the definition of the gradient operator  \nabla to  D(\mathcal{L}) . Indeed
for  f  \in  D(\mathcal{L}) , we can pick an approximating sequence  f_{k}  \in  C_{b}^{2}(\Sigma) such that  \mathcal{L}f_{k} and

 f_{k} converges in  L^{2}(\Sigma, \pi) to Lf and  f respectively. Due to (1.10),  D_{i}f can be defined
as the  L^{2}(\Sigma, \pi) ‐limit of  D_{i}f_{k} . Let  \nabla f then be (  D_{1}f,  \ldots , Ddf).

Now we can complete the decomposition mentioned at the beginning of this section.

The definition of  \eta_{t} allows us to rewrite the first equation in (1.4) as

 t  t

(1.11)  X^{\sigma}(t)-X^{\sigma}(0)= U(\eta_{s})ds+ c(\eta_{s})dB_{s}.
 0  0

Here   \int_{0}^{t}c(\eta_{s})dB_{s} is a martingale with stationary increments and   \int_{0}^{t}U(\eta_{s})ds is an addi‐

tive functional of the stationary, ergodic Markov process  \eta_{t}.

To complete the proof of the central limit theorem, we need to consider the resolvent

equation for all  \lambda>0 and every component of  U , written as

(1.12)  (\lambda-\mathcal{L})\chi^{i,\lambda}=U_{i}.

Notice that  C_{b}^{2}(\Sigma) is a core of  \mathcal{L} and  \chi^{i,\lambda} belongs to the domain of  \mathcal{L} , we can apply Itô

formula to  \chi^{i,\lambda} to get (see [8, Proposition 9.13])

 t

(1.13)  X_{i}^{\sigma}(t)-X_{i}^{\sigma}(0)=R_{t}^{i,\lambda}+ c(\eta_{s})
(\nabla\chi^{i,\lambda}(\eta_{s})+e_{i})dB_{s},
 0

where  e_{i} is the i‐th orthonormal vector in  \mathbb{R}^{d} , and the reminder  R_{t}^{i,\lambda} is

 t

(1.14)   R_{t}^{i,\lambda}=\chi^{i,\lambda}(\eta_{0})-\chi^{i,\lambda}(\eta_{t})+
\lambda  \chi^{i,\lambda}(\eta_{s})ds,  \lambda>0,  i=1 , :::,  d.
 0

We want to take limit when  \lambda\downarrow 0 and then  tarrow 1 under the time scale  t^{-\frac{1}{2}} . A sector

condition is sufficient to prove the vanishment of the remainder.
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Proposition 1.2 ([8, Corollary 9.10]).
ing only on  V and  a , such that

There exists a finite constant  C depend‐

(1.15)  \langle Lf ,  g\rangle_{\pi}^{2}\leq C\langle-\mathcal{L}f,  f\rangle_{\pi}\langle-\mathcal{L}g,  g\rangle_{\pi},  \forall f,  g\in D(\mathcal{L}) .

We omit the proof for this proposition because the idea is quite different in the

infinite dimensional case. Under the sector condition, the argument in [8, Proposition
2.8] implies that

(1.16)   \lim_{tarrow\infty}\lim_{\lambda\downarrow 0}E_{\pi} [\frac{1}{t} (R_{t}^{i,
\lambda})^{2}] =0.
Finally, applying the central limit theorem for stationary, ergodic martingales (see, e.g.,
[18]), we obtain the following central limit theorem.

Theorem 1.3 ([8, Theorem 9.15]). Under the settings in this section,  X^{\sigma}(t)/  t

satisfies the central limit theorem in  L^{1} sense with respect to the environment,  i.e. , fo

all  f\in C_{b}(\mathbb{R}^{d}) ,

(1.17)   \lim_{tarrow\infty}E_{q}|E_{p} [f(\frac{X^{\sigma}(t)}{t})] - \mathbb{R}^{d}
f(y)\phi_{a}(y)dy| =0,
where  \phi_{a} is the density function of a  d ‐dimensional Gaussian distribution with covari‐

ance matrix a determined by

(1.18)   a_{ij} =\lim_{\lambda\downarrow 0}E_{\pi}\langle a^{s}(e_{i}+\nabla\chi^{i,
\lambda}) , e_{j}+\nabla\chi^{j,\lambda}\rangle_{\mathbb{R}^{d}} :

§2. Stochastic Heat Equation in Ergodic Environment

In this section, we extend the method introduced in §1 to stochastic partial dif‐

ferential equations. Consider a 1‐dimensional stochastic heat equation with a random

nonlinear term. We choose a suitable shift semigroup to describe the ergodicity of the

nonlinear term, with which the general idea of environment process can be applied.

Basic properties of the environment process which holds under this setting are sum‐

marized in Proposition 2.3. After that, the homogenization results of its solution are
studied under an additional assumption that the nonlinear term in the equation can be

decomposed into a gradient and a divergence‐free vector field. For homogenizations  0

finite dimensional diffusion in divergence‐free environment, we refer to [10].
To state our model, we first list some notations here. Denote by  (H, \langle\cdot, \cdot\rangle_{H}) the

Hilbert spacepconsisting of all square integrable real functions on  [0 , 1  ] . Set  \varphi_{0}(x)  \equiv  1

and  \varphi_{i}(x)  =  2\cos(\pi ix) for  i  \geq  1.  \varphi_{i} ’s are smooth and form a complete orthonormal

system of  H . Denote by  E the Banach space of all continuous real functions on  [0 , 1  ]
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equipped with the uniform topology. Let  E_{0} be the subset of  E consisting of all elements
 u such that  u(0)  =0 . The standard 1‐dimensional Brownian motion on  [0 , 1  ] deduces
the classical Winer measure  \mu_{0} on  E_{0}.

Similarly to §1, we pick two complete probability spaces  (\Sigma, \mathscr{A}, q) and  (\Omega, \mathscr{F},p) .

With a little abuse of symbols, let  (W_{t}, F_{t}^{\vee})_{t\geq 0} be a standard cylindrical Brownian
motion defined on  (\Omega, \mathscr{F},p) . Fix  \sigma  \in  \Sigma and let  u^{\sigma}(t)  =u^{\sigma}(t, \cdot) be the solution to the

following st  >chastic partial differential equation

(2.1)  \{\begin{array}{ll}
\partial_{t}u^{\sigma}(t, x)= \frac{1}{2}\partial_{x}^{2}u^{\sigma}(t, x)-
U(\sigma, u^{\sigma}(t))+\dot{W}(t, x) ,   t>0, x\in (0,1) ;
\partial_{x}u^{\sigma}(t, x)|_{x=0}=\partial_{x}u^{\sigma}(t, x)|_{x=1} =0,   
t>0;
u^{\sigma}(0, x)=v(x) ,   x\in [0, 1],
\end{array}
where  U :  \Sigma\cross Harrow H is an  H‐valued random field, acting as the environment in which

the equation lives. To make sure that we can apply the classical theories on stochastic

calculus to define a concrete function‐valued process with (2.1), we need to assume (see
[5] and [6]):

(A1)  U(\sigma, \cdot) is bounded and Lipschitz continuous, uniformly in  q‐almost all  \sigma.

Under (A1), the unique solution to (2.1) is  \alpha‐Hölder continuous in  t with  \alpha<   \frac{1}{4} , and
 \beta‐Hölder continuous in  x with  \beta<   \frac{1}{2},  q‐almost surely. Therefore,

(2.2)  u(t)=\triangle u(t, \cdot)

defines an  E‐valued stochastic process on the product space  (\Sigma\cross\Omega, \mathscr{A}\otimes \mathscr{F}) . To specify

the initial condition, we sometimes write  u^{v}(t) and  u^{v,\sigma}(t, x) instead. Let  \mathscr{C}(E) be the

collection of all linear combinations of functionals on  E with the following forms:

(2.3)  F(v)=\sin(\langle v, \varphi_{j}\rangle_{H}) or  F(v)=\cos(\langle v, \varphi_{j}\rangle_{H}) .

The classical Itô formula implies that the generator corresponding to (2.1) reads

(2.4)  \mathcal{K}^{\sigma}F(u)=   \langle\frac{1}{2}\partial_{x}^{2}DF(u) ,   u\rangle  -\langle DF(u) ,  U( \sigma, u)\rangle_{H}+\frac{1}{2} Tr  [D^{2}F(u)],

for all  F\in \mathscr{C}(E) .

Fix some  \beta  <   \frac{1}{2} and denote by  E^{\beta} the class of  \beta‐Hölder continuous functions on

 [0 , 1  ] . Since  u^{\sigma}(t, \cdot)  \in E^{\beta} , we take  C(E^{\beta}, H) to be the path space of  U , and denote by
 P_{U} the distribution of  U on this path space. The central matter remains to determine

is the group of “shifts”, under which  P_{U} is stationary and ergodic. A natural way is to

proceed along the idea in the finite dimensional case. Consider a set of transformations

acting on  C(E^{\beta}, H) indexed by  v\in E^{\beta} such that:

(2.5)  \tau_{v}\circ\phi(\cdot)=\phi(\cdot+v) , \forall \in C(E^{\beta}, H) ,
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and assume that  P_{U} is invariant and ergodic under  \{\tau_{v};v\in E^{\beta}\} . In analogy with §1,
 U is then generated by some random variable  U on  \Sigma in the form  U(\sigma, u)  =  U(\tau_{u}\sigma) ;

however, when trying to define the environment process, the absence of shift‐invariance

of Laplacian stops us from getting the Markov property. More precisely, with  P^{\sigma}(t;v, \cdot)
standing for the transition probability of  u^{\sigma}(t) , we have

(2.6)  P^{\tau_{u}\sigma}(t;v, \cdot)\neq P^{\sigma}(t;v+u, \cdot+u) ,

so that Proposition 1.1 fails to hold now. Hence we need to adopt fewer shifts here.
Assume that

(A2)  P_{U} is stationary and ergodic under  \{\tau_{c};c\in \mathbb{R}\} , where  \tau_{c} is defined by

(2.7)  \tau_{v}\circ\phi(\cdot)=\phi(\cdot+c1) , \forall\phi\in C(E^{\beta}, H) ,

and 1 is the constant function on  [0 , 1  ] such that  1(x)\equiv 1.

As already observed in §1, with (A1) and (A2), without loss of generality we can work
under the following framework:  \{\tau_{c};c\in \mathbb{R}\} is a group of measurable transformations on

 (\Sigma, \mathscr{F}) , such that for all  c_{1},  c_{2}  \in  \mathbb{R},  \tau_{c_{1}}  \circ\tau_{c_{2}}  =  \tau_{c_{1}+c_{2}} ;  q is a probability measure on

 (\Sigma, \mathscr{F}) which is stationary and ergodic under  \{\tau_{c};c\in \mathbb{R}\}.
Since the  \tau ’s are indexed by  \mathbb{R} , given  \sigma\in\Sigma and  v=v(\cdot)  \in E , to apply the idea  0

“environment seen from  u(\cdot) ” , we have to shift  \sigma at every site  x by  u(x) to get a series

of environments  (\tau_{u(x)}\sigma)_{x\in[0,1]} . Henceforth define

(2.8)  ---=\{\xi=\xi(\cdot)=\tau_{u(\cdot)}\sigma|\sigma\in\Sigma, u\in E\} :

Now the environment process associated with (2.1) can be defined as follows.

Definition 2.1. The environment process of (2.1) is a stochastic process  \xi_{t} de‐
fined on the product space  (\Sigma\cross\Omega, \mathscr{A}\otimes \mathscr{F}) with values in  --- :

(2.9)  \xi_{t}= \{\tau_{u^{\sigma}(t,x)}\sigma;x\in [0, 1]\} \in---, \forall t\geq 0.

The next lemma shows the exact necessity and advantage of adopting (A2). It
plays a central role in proving the Markov property of  \xi_{t}.

Lemma 2.2 (cf. [20, Lemma 2.2]). There exists a subset  --0-  \subseteq  --- such that the
environment process  \xi_{t} never falls  into-0-

(2.10)  P(\exists t>0, \xi_{t} \in--0=0,

and  \tau_{u(\cdot)}\sigma=\tau_{u'(\cdot)}\sigma'\in--\backslash ^{-}--0- implies that  v-v' is a constant on  [0 , 1  ] .
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Proof. Assume that for some  u,  u'  \in  E and  \sigma,  \sigma'  \in  \Sigma we have  \tau_{v(x)}\sigma=\tau_{v'(x)}\sigma'
To prove the lemma, only to notice that  \tau_{\triangle(x,y)}\sigma=\sigma for all  x,  y\in \mathbb{R} , where  \triangle(x, y)  =

 v(x)-v'(x)-v(y)+v'(y) . The fact that  \triangle is continuous and the semigroup property  0

 \tau ’s imply that either  \triangle(x, y)  \equiv 0 , or  \tau_{c}\sigma=\sigma for all  c\in \mathbb{R} . By virtue of the ergodicity

of  q,  ---0=\triangle {  \xi=\tau_{v(\cdot)}\sigma|v\in E,  \tau_{c}\sigma=\sigma , for all  c\in \mathbb{R} } satisfies (2.10).  \square 

From the proof of Lemma 2.2 it is easy to see that  u(\cdot)-u(0)  =u'(\cdot)-u'(0)  \in E_{0}.

Therefore for  \xi  \in  --\backslash ^{-}--0- there is a unique  v_{\xi}  \in  E_{0} such that  \xi  =\tau_{v_{\xi(\cdot)}}[\xi(0)] . By fixing

 v_{\xi}  =0 for  \xi  \in  --0-,  \xi\mapsto  (v_{\xi}, \xi(0)) can be viewed as an isomorphic map between  --- and

 E_{0}  \cross\Sigma . We can thus equip  --- with the natural  \sigma‐field  \mathscr{G}=B(E_{0})\otimes \mathscr{A}.
As seen in §1, the key to prove the Markov property of  \xi_{t} is the invariance  0

transition probabilities under the shifts. Lemma 2.2 implies that for any given random

field  U satisfying (A2), there exists an  H‐valued random variable  U on  (---, \mathscr{G}) , such that
 U(\tau_{u(\cdot)}\sigma) and  U(\sigma, u) have the identical distribution. Since the homogenization result

only relies on the distribution of  u(t) , we assume w.l.o.g. that  U(\sigma, u) is generated by

 U(\tau_{u(\cdot)}\sigma) . Thanks to this observation, recall that  P^{\sigma}(t;v, \cdot) is the transition probability

of  u^{\sigma}(t) , Lemma 2.2 together with the discussion after it show that

(2.11)  P^{\sigma}(t;v, \cdot)=P^{\tau-v(0)[\xi(0)]}(t;v, \cdot)=P^{\xi(0)}(t;v_{\xi}, 
\cdot-v(0)1) .

We summarize the properties of the environment process  \xi_{t} holding under (A1)
and (A2) in next proposition. Denote by  \mathcal{P}_{t}^{\sigma} the Markov semigroup determined by
 u^{\sigma}(t) for fixed  \sigma . For a function  F on  --- , let  F^{\sigma}(u)  =F(\tau_{u(\cdot)}\sigma) for each  \sigma and denote

by  \mathscr{C}(---) the following function class on  --- :

(2.12)  \mathscr{C}(---)=\{F : ---arrow \mathbb{R}|F^{\sigma} \in \mathscr{C}(E), 
\forall\sigma\in\Sigma\}.

For  F  \in  \mathscr{C}(---) , let  \mathcal{D}F(\tau_{u(\cdot)}\sigma)  =\triangle  DF^{\sigma}(u)  =  DF^{\sigma}(u, \cdot)  \in  H , where  D stands for the

Fréchet derivative operator in  u.

Proposition 2.3 (cf. [20, Proposition 2.4, 2.5]). Assume (A1) and (A2 , the
 \{\xi_{t};t\geq 0\} is a Markov process. Its Markov semigroup  \mathcal{P}_{t} satisfies

(2.13)  \mathcal{P}_{t}F(\xi)=\mathcal{P}_{t}^{\xi(0)}F^{\xi(0)}(v_{\xi})

for every bounded measurable function  F on  --- . If we suppose further that  \mathcal{P}_{t} admits

an invariant probability measure  \pi on  (---, \mathscr{G}) , then  \mathcal{P}_{t} extends to a strongly continuous

semigroup on  L^{2}(---, \pi) , with generator  \mathcal{K} satisfying that

(2.14)  \mathcal{K}F(\xi)=   \frac{1}{2}\langle\partial_{x}^{2}[\mathcal{D}F(\xi)],  v_{\xi}\rangle_{H}-\langle \mathcal{D}F(\xi) ,   U(\xi)\rangle_{H}+\frac{1}{2} Tr  [\mathcal{D}^{2}F(\xi)],

for all  F\in \mathscr{C}(---) . Finally,  \mathscr{C}(---) forms a core of  \mathcal{K}.
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Proof. The Markov property can be proved easily with (2.11). The remains can
be proved along the ideas in [1], [2] and [3].  \square 

In §1 we see that the invariant and ergodic probability measure can be identified,

provided that the drift is gradient‐type. Now we apply the same method to  u(t) , for a

slightly wider class of drifts. Assume that  U  =\mathcal{D}V+B , where (V, B) :  ---  arrow \mathbb{R}\cross H

is measurable and  \mathcal{D}V(\tau_{u(\cdot)}\sigma)=DV^{\sigma}(u) . Recalling that  \mu_{0} is the probability measure

on  E_{0} determined by standard Brownian motion, we assume further that

(A3) V is uniformly bounded,  V^{\sigma} is Fréchet differentiable for every  \sigma , and

(2.15)  e^{-2V(\tau_{u}} \sigma)\langle DF(u) , B(\tau_{u(\cdot)}\sigma)\rangle_{H}\mu_
{0}(du)=0, \forall F\in \mathscr{C}(E) .
 E_{0}

From (A3),  U can be divided into a gradient‐type field  \mathcal{D}V which gives the invariant
measure, and a divergence‐free field  B which preserves the stationarity. Indeed we can

obtain the following proposition using the ideas in [5] and [15].

Proposition 2.4 ([20, Proposition 2.5]). Assume (A1)  -(A3) , then  \{\mathcal{P}_{t}\} admit
an invariant probability measure

(2.16)  \pi(d\xi)=Z^{-1}\exp(-2V(\xi))\mu_{0}(dv_{\xi})\otimes q(d\xi(0)) ,

where  Z is the normalization constant. Moreover,  \pi is the unique invariant measure so

that  \xi_{t} is ergodic under  \pi.

Due to Proposition 2.3 and 2.4,  \xi_{t} is a stationary, ergodic Markov process with

infinitesipal generator  \mathcal{K} . As already observed in §1, to prove a central limit theorem
for  u(t)/  t , it is sufficient to check the sector condition of  \mathcal{K}.

Proposition 2.5 ([20, Proposition 2.6]). Assume (A1)  -(A3) . There exists
nite constant  C depending only on V and  B , such that

(2.17)  \langle \mathcal{K}F, G\rangle_{\pi}^{2} \leq C\langle-\mathcal{K}F, F\rangle_{
\pi}\langle-\mathcal{K}G, G\rangle_{\pi}, \forall F, G\in \mathscr{C}(---) .

Proof. Instead of  \mathcal{K} , it is sufficient to consider its anti‐symmetric part  \mathcal{K}_{a} for the

left‐hand side in (2.17). Thanks to (A3), we can recenter it as

 \langle \mathcal{K}_{a}F, G\rangle_{\pi}=E_{\pi}[\langle \mathcal{D}F, 
B\rangle_{H} (G- G0)],

where  G_{0}(\xi)  =  \langle G^{\xi(0)}\rangle_{\mu_{0}} . The inequality (2.17) can be obtained by applying Schwarz
inequality and the Poincaré inequality (see, e.g., [16]) for  \mu_{0}.  \square 

Now we are at the position to proof a central limit theorem for  u^{\sigma}(t) . Pick the test

function  \varphi_{i} and the weak from of (2.1) reads
 t

(2.18)  \langle u^{\sigma}(t) , \varphi_{i}\rangle -\langle u^{\sigma}(0) , \varphi_{i}
\rangle_{H}= U^{i}(\xi_{r})dr+\langle W_{t}, \varphi\rangle_{H},
 0
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where  U^{i}(\xi)  =   \frac{1}{2}\langle v_{\xi},  \partial_{x}^{2}\varphi_{i}\rangle_{H}-  \langle U(\xi) ,  \varphi_{i}\rangle_{H} is the drift in (2.1) in the direction of  \varphi_{i}.

Here we need to consider the resolvent equations associated with  \mathcal{K} , written as

(2.19)  (\lambda-\mathcal{K})\chi^{i,\lambda}=U^{i}, \lambda>0.

Compared with the results in finite dimensional case, Proposition 2.3, 2.5 and (2.18)
allow us to apply the method introduced in §1 and conclude that  \langle u^{\sigma}(t) ,  \varphi_{i}\rangle_{H}/  t

converges weakly to a l‐d central Gaussian measure with covariance

(2.20)  a_{i}^{2}= \lim_{\lambda\downarrow 0}E_{\pi}\Vert\varphi_{i}+\mathcal{D}
\chi^{i,\lambda}\Vert_{H}.
Noticing that for  i  \geq  1,  \chi^{i}(\xi)  =\triangle  -\langle v_{\xi},  \varphi_{i}\rangle_{H} is well‐defined in  L^{2}(---, \pi) and satisfies

 -\mathcal{K}\chi^{i}  =  U^{i} , it is not hard to observe that  a^{i}  =  0 . Hence under the diffusive time

scaling, the limit distribution concentrates only on the direction of constant functions.

In summary, we have the following central limit theorem.

Theorem 2.6 ([20, Theorem 1.1]). Assume that (A1)  -(A3) holds.  u(t)/  t sat‐
isfies the central limit theorem in the following sense: for any  F\in C_{b}(E) we have

(2.21)   \lim_{tarrow\infty}E_{q}|E_{p} [F(\frac{u(t)}{t})] - \mathbb{R}^{F(1\cdot y)
\Phi_{a_{0}}}(y)dy| =0,
where  a_{0} is the constant determined by (2.20) with  i  =  0 , and  \Phi_{a_{0}} is the probability
density function of  a 1‐dimensional central Gaussian law with covariance  a_{0}^{2}.

Remark. Furthermore we can prove that  \Phi_{a_{0}} never degenerate: there exists a

strictly positive constant  C such that  C\leq a^{2}  \leq  1.

In accordance with the finite dimensional model, periodic case are included as a

concrete example of our model.

Example 2.7. Take  (\Sigma, \mathscr{A}, q) to be the finite interval  [0 , 1  ] equipped with the

Lebesgue measure. Pick a measurable function  V on  [0 , 1  ]  \cross \mathbb{R} satisfying that  V(x, \cdot)  \in

 C^{1}(\mathbb{R}) ,  V(x, y)  =  V(x, y+1) for all  x  \in  [0 , 1  ],  y  \in R. Suppose that  u^{\sigma,v+\sigma}(t, x) is the

solution to (2.1) with the initial condition   v+\sigma and the random field

(2.22)  U( \sigma, u)=\triangle \frac{d}{dy}V(\cdot, u(\cdot)+\sigma) .

Easy to see that   u^{\sigma,v+\sigma}-\sigma solves a stochastic heat equation with a periodic nonlinear

term of gradient type, written as

(2.23)  \{
 \partial_{t}u(t, x)=   \frac{1}{2}\partial_{x}^{2}u(t, x)-\frac{d}{dy}V(x, u(t, x))+\dot{W}(t, x) ,  t>0,   x\in  (0,1) ,

 \partial_{x}u(t, 0)=\partial_{x}u(t, 1)=0,  t>0,

 u(0, x)=v(x) ,   x\in  [0 , 1  ].
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If both V and   \frac{d}{d}V are uniformly bounded, then (A1) to (A3) are fulfilled, so that
central limit theorem stated in Theorem 2.6 holds for the solution to (2.23). Indeed,
we can moreover prove an invariance principle. Suppose that  \mu is infinite measure on
 E such that  v(0) follows the Lebesgue measure on  \mathbb{R} and  v(\cdot)-v(0) is a standard l‐d
Brownian motion.

Corollary 2.8 ([19, Theorem 1.2]). Fix some  T  >  0 and suppose  v is a prob‐
ability measure on  E which is absolutely continuous with respect to  \mu . Under initia

distribution  v , the  E ‐valued process  \{\epsilon u(\epsilon^{-2}t), t \in [0, T]\} converges weakly to a Gaus‐

sian process  \{a_{0}B_{t}\cdot 1, t\in [0, T]\} as  \epsilon\downarrow 0 , where  B_{t} is a1‐dimensional Brownian motio

on  [0, T] and  a_{0} is the constant appeared in Theorem 2.6.
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