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Invariance Principle for the one‐dimensional dynamic
Random Conductance Model under Moment

Conditions

By

Jean‐DOMINIQUE DEUSCHEL* and Martin SLOWiK**

Abstract

Recent progress in the understanding of quenched invariance principles (QIP) for a continuous‐
time random walk on  \mathbb{Z}^{d} in an environment of dynamical random conductances is reviewed
and extended to the 1‐dimensional case. The law of the conductances is assumed to be ergodic
with respect to time‐space shifts and satisfies certain integrability conditions.

§1. Introduction

§1.1. The model

Consider the  d‐dimensional Euclidean lattice,  (\mathbb{Z}_{d}, E_{d}) , for   d\geq  1 . The vertex set,
 V_{d} , of this graph equals  \mathbb{Z}^{d} and the edge set,  E_{d} , is given by the set of all non‐oriented
nearest neighbour bonds, i.e.  E_{d}  :=  \{\{x, y\} : x, y \in \mathbb{Z}^{d}, |x-y| = 1\} . We also write
 x  \sim  y if  \{x, y\}  \in  E_{d} . The graph  (\mathbb{Z}^{d}, E_{d}) is endowed with a family  \omega  =  \{\omega_{t}(e) :
 e  \in  E_{d},  t  \in  \mathbb{R}\}  \in  \Omega  :=  (0, \infty)^{\mathbb{R}\cross E_{d}} of time‐dependent, positive weights. To simplify
notation, for  x,  y\in \mathbb{Z}^{d} and  t\in \mathbb{R} we set  \omega_{t}(x, y)  =\omega_{t}(y, x)  =\omega_{t}(\{x, y\}) if  \{x, y\}  \in E_{d}

and  \omega_{t}(x, y)  =  0 otherwise. We introduce a time‐space shift  \tau_{s,z} by  (s, z)  \in  \mathbb{R}  \cross  \mathbb{Z}^{d}

through

 (\tau_{s,z}\omega)_{t}(x, y) := \omega_{t+s}(x+z, y+z) , \forall t \in 
\mathbb{R}, \{x, y\} \in E_{d}.
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Further, consider a probability measure,  \mathbb{P} , on the measurable space  (\Omega, \mathcal{F}) where  \mathcal{F} de‐

notes the Borel  -\sigma‐algebra on  \Omega , and we write  E to denote the corresponding expectation

with respect to P.

We impose the following conditions on the probability measure P.

Assumption 1.1. Assume that  \mathbb{P} satisfies the following conditions:

(i)  \mathbb{P} is ergodic and stationary with respect to time‐space shifts, that is Po  t,x-1  =\mathbb{P}

for all  t  \in  \mathbb{R},  x  \in  \mathbb{Z}^{d} and  \mathbb{P}[A]  \in  \{0 , 1  \} for any  A  \in  \mathcal{F} such that  \tau_{t,x}(A)  =A for
all  t\in \mathbb{R},  x\in \mathbb{Z}^{d}.

(ii)  E[\omega_{t}(e)]  <1 and  E[\omega_{t}(e)^{-1}]  <1 for all  e\in E_{d} and  t\in \mathbb{R}.

Remark. Note that time‐space ergodicity assumption is quite general. In partic‐

ular, it includes as a special case the static situation, that is the conductances  \omega are

independent of time and  \mathbb{P} is ergodic with respect to space shifts.

For any fixed  \omega\in\Omega , we introduce the following (time‐dependent) measures  \mu_{t}^{\omega} and
 v_{t}^{\omega} on  \mathbb{Z}^{d} that are defi ned by

(1.1)  \mu_{t}^{\omega}(x)  :=   \sum_{y\sim x}\omega_{t}(x, y) and  v_{t}^{\omega}(x)  :=   \sum_{y\sim x}\frac{1}{\omega_{t}(x,y)},  \forall t\in \mathbb{R}.

In addition, for any compact interval  I\subset \mathbb{R} and any finite  B\subset \mathbb{Z}^{d} let us define a locally

time‐space averaged norm for functions  u:\mathbb{R}\cross \mathbb{Z}^{d}arrow \mathbb{R} by

  \Vert u\Vert_{p,q,I\cross B} := (\frac{1}{|I|} (\frac{1}{|B|} \sum_{x\in B}
|u(t, x)|^{p})^{q/p}dt)^{1/q}, p, q\in (0, \infty) ,

where  |I| and  |B| denotes the Lebesgue measure of the interval and the cardinality  0

the set  B , respectively. Further, we write  B(x, r)  :=\{y\in \mathbb{Z}^{d} : |y-x|_{1} \leq \lfloor r\rfloor\} to denote

the closed ball with respect to the  \ell^{1} ‐norm with center  x\in \mathbb{Z}^{d} and radius  r\geq 0.

For any fixed realization  \omega  \in  \Omega , we consider the time‐inhomogeneous Markov

process,  X=\{X_{t} : t\geq 0\} on  \mathbb{Z}^{d} in the random environment  \omega)generated by

(1.2)  ( \mathcal{L}_{t}^{\omega}f)(x) := \sum_{\sim x}\omega_{t}(x, y)(f(y) - f(x)) .

For any  s\in \mathbb{R} and  x\in \mathbb{Z}^{d} , the measure  P_{s,x}^{\omega} on  \mathcal{D}(\mathbb{R}, \mathbb{Z}^{d}) , the space of  \mathbb{Z}^{d}‐valued càdlàg

functions on  \mathbb{R} , denotes the law of the process  X starting at time  s in  x . In order to

construct this Markov process under the law  P_{s,x}^{\omega} , we specify in the sequel its jump

times  s<J_{1}  <J_{2}  <::: inductively. For this purpose, let  \{Z_{k} : k\geq 1\} be a sequence  0

independent  Exp(1) ‐distributed random variables, and set  J_{0}=s and  X_{s}=x . Suppose
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that for any  k  \geq  1 the process  X has already been constructed on  [s, J_{k}] . Then,  J_{k+1}

is defined by

 J_{k}+t

 J_{k+1}  := in {  t\geq 0 :
 J_{k}

 \mu_{u}^{\omega} (xjk) du  \geq Z_{k+1} },
and at time  t=J_{k} the random walk  X jumps from  z=X_{J_{k}} to any of its neighboring

vertices  y with probability  \omega_{t}(z, y)/\mu_{t}^{\omega}(z) .

Lemma 1.2. For P‐a.  e.  \omega,  P_{0,0}^{\omega} ‐a.  s . the process  \{X_{t} : t\geq 0\} does not explode,

that is there are only finitely many jumps in finite time.

Proof. See [3, Lemma 4.1].  \square 

Note that the counting measure on  \mathbb{Z}^{d} , independent of  t , is an invariant measure
for  X.

§1.2. Main result

We are interested in the long time behaviour of the random walk among time‐

dependent random conductances for  \mathbb{P}‐almost every realization  \omega . In particular, our

aim is to prove a quenched invariance principle for the process  X in the following sense.

Definition 1.3. Set  X_{t}^{(n)}  :=   \frac{1}{n}X_{n^{2}t},  t  \geq  0 . We say that the Quenched Func‐

tional CLT (QFCLT) or quenched invariance principle (QIP) holds for  X , if for every
 T>  0 and every bounded continuous function  F on the Skorohod space  \mathcal{D}([0, T], \mathbb{R}^{d}) ,

it holds that  E_{0,0}^{\omega}[F(X^{(n)})]  arrow E_{0,0}^{BM}[F(\Sigma\cdot W)] as  narrow 1 for P‐a.e.  \omega , where  (W, P_{0,0}^{BM}) is

a Brownian motion on  \mathbb{R}^{d} starting at time  0 in  0 with deterministic covariance matrix
 \Sigma^{2}=\Sigma\cdot\Sigma^{T}.

For  d\geq 2 the following result has been obtained recently in [3].

Theorem 1.4. Suppose that   d\geq  2 and Assumptions 1.1 holds. For  t  \in  \mathbb{R} and
 e  \in  E_{d} assume that  E[\omega_{t}(e)^{p}]  <  1 and  E[\omega_{t}(e)^{-q}]  <  1 for any  p,  q  \in  [d/2, \infty] such
that

(1.3)   \frac{1}{p-1} + \frac{1}{(p-1)q} + \frac{1}{q} < \frac{2}{d}.
Then, the QIP holds for  X with a deterministic, time‐independent, non‐degenerate co‐
variance matrix  \Sigma^{2}.

Remark. For static conductances a QIP holds if  E[\omega(e)^{p}]  <1 and  E[\omega(e)^{-q}]  <

 \infty for any  p,   q\geq  1 such that  1/p+1/q<2/d, see [4].
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Figure 1. Illustration of the area where the condition (1.6) is satisfied

Remark. The assertion of Theorem 1.4 can be extended to the case that the law

of the conductances satisfies different integrability conditions in time and space: For

any  p,  p',  q,   q'\in  [1, \infty] satisfying

(1.4)   \frac{1}{p} .   \frac{p'}{p'-1}   \frac{q'+1}{q}  +   \frac{1}{q}  <   \frac{2}{d}
assume that

(1.5)   \lim_{narrow\infty}\Vert\mu^{\omega}\Vert_{p,p',Q(n)}  <  1 and   \lim_{narrow\infty}\Vert v^{\omega}\Vert_{q,q',Q(n)}  <  1.

Then, the QIP holds for  X . In particular, the integrability condition for the static RCM

can be recovered from (1.4) by choosing  p'=q'=1.

In the present paper, we focus on the one‐dimensional case:

Theorem 1.5. Suppose that  d=  1 and Assumptions 1.1 holds. For  t  \in  \mathbb{R} and

 e\in E_{1} assume that  E[\omega_{t}(e)^{p}]  <1 and  E[\omega_{t}(e)^{-q}]  <1 for any  p,   q\in  [1, \infty ) such that

(1.6)   \frac{1}{p-1} + \frac{1}{(p-1)q} < 1.
Then, the QIP holds for  X with a deterministic, time‐independent variance  \sigma^{2}  >0.
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Remark. Note that for all   p\in  (2, \infty], (1.6) is satisfied provided that  q>  1/(p-2) .

Hence, in view Assumption 1.1, it suffices to choose  q  =  1 for all  p  \in  (3, \infty], see also
Fig. 1. If one sets  d  =  1 in (1.3), we see that (1.6) is equivalent to (1.3) for  q  =  1

only. This fact relies on the special shape of the Sobolev inequality in  d=1 and will be

explained below.

Remark. The assertion of Theorem 1.5 can also be extended to the case that the

law of the conductances satisfies different integrability conditions in time and space:

For any  p,  p',   q'\in  [1, \infty] satisfying

(1.7)   \frac{1}{p} .   \frac{p'}{p'-1}   \frac{q'+1}{q}  <  1

assume that

(1.8)   \lim_{narrow\infty}\Vert\mu^{\omega}\Vert_{p,p',Q(n)}  <  1 and   \lim_{narrow\infty}\Vert v^{\omega}\Vert_{1,q',Q(n)}  <  1,

where  Q(n)  :=  [0, n^{2}]  \cross  B(0, n) . Then, the QIP holds for  X . In particular, for static

conductances, i.e.  p'  =1 and  q'=1 , a QIP holds provided that  p>  1 . Note that in

case  p'  \geq p , the ergodic theorem shows that (1.8) is satisfied whenever  E[\omega_{t}(e)^{p'}]  <  1

and  E[\omega_{t}(e)^{-q'}]  <1.

Remark. Based on personal communication with Marek Biskup, we expect that a

quenched invariance principle under optimal integrability conditions, namely  E[\omega_{t}(e)]  <

 \infty and  E[\omega_{t}(e)^{-1}]  <1 , can be proven by adapting the strategy that has been success‐

fully used in the two‐dimensional static RCM,  cf. [  8 , Theorem 4.2]. In contrast to the
static RCM, the harmonic coordinate—an essential ingredient in the proof‐ can not be

constructed explicitely for time‐dependent conductances in the one‐dimensional model.

The strategy of the proof of the QIP is rather standard and based on harmonic

embedding, see [8] for a detailed exposition of this method in the static situation.  A

key ingredient is to decompose the process  X_{t}  =  \Phi(\omega, t, X_{t})  +\chi(\omega, t, X_{t}) such that

the process  M_{t}  =  \Phi(\omega, t, X_{t}) is a martingale under  P_{0,0}^{\omega} with respect to the filtration

 \mathcal{F}_{t}=\sigma(X_{s}, s\leq t) , where the random function  \Phi:\Omega\cross \mathbb{R}\cross \mathbb{Z}^{d}arrow \mathbb{R}^{d} , also called harmonic

coordinate, solves for P‐a.e.  \omega the following parabolic equation

(1.9)  \partial_{t}\Phi(\omega, t, x) + \mathcal{L}_{t}^{\omega}\Phi(\omega, t, x) = 
0, \Phi(\omega, 0,0) = 0.

The random function  \chi :  \Omega  \cross \mathbb{R}\cross \mathbb{Z}^{d}  arrow \mathbb{R}^{d} is also known as the corrector. A QIP for

the martingale part can be easily obtained by standard methods. In order to obtain a

QIP for the process  X , by Slutsky’s theorem, it suffices to verify that for any  T  >  0

and P‐a.  e.  \omega

(1.10)   \sup_{0\leq t\leq}  | \frac{1}{n}\chi(\omega, tn^{2}, X_{tn^{2}})|  n\vec{arrow\infty}0 in  P_{0,0}^{\omega} ‐probability,
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which can be deduced from the  \ell\infty ‐sublinearity of the corrector:

(1.11)   \lim   \max  | \frac{1}{n}\chi(\omega, t, x)|  =  0 , P‐a.s.
 narrow\infty(t,x)\in Q(n)

The main challenge in the proof of the QIP for random walks among time‐dependent

random conductances is both the construction of the corrector and to prove (1.11). For
static conductances the construction of the corrector is based on a simple projection

argument exploiting the symmetry of the generator of the process as seen from the

particle. However, for time‐dependent environments this strategy fails,bsince the time‐

space process  \{(t, X_{t}) : t\geq 0\} is not reversible and hence the generator,  L, corresponding

to the process  \{\tau_{t,X_{t}}\omega : t\geq 0\} is not symmetric with respect to the invariant measure P.

For this reason, the actual construction of the corrector is more involved, cf. [3, Section 2]
and based on the following argument. First, by adding of suitable regularisation, the

bilinear form associated to  \hat{\mathcal{L}} is coercive and bounded, and the existence of a regularised

version of the corrector is guaranteed by the Lax‐Milgram lemma. The corrector is

obtained in a second step by passing to the limit in a suitable sense.

The  \ell\infty ‐sublinearity of the rescaled corrector   \frac{1}{n}\chi follows from Moser’s iteration

scheme, which allows to bound   \Vert\frac{1}{n}\chi\Vert_{\infty,\infty,Q(n)} from above in terms of   \Vert\frac{1}{n}\chi\Vert_{1,1,Q(2n)}.
Thus, the  \ell\infty ‐sublinearity can be deduced from the  \ell^{1} ‐sublinearity of the corrector.

The proof of the latter is based on Birkhoff’s pointwise ergodic theorem. One purpose

of this note is to present a simplified proof of the  \ell^{1} ‐sublinearity in  d  =  1 which will

greatly ease the corresponding proof in higher dimensions.

Moser’s iteration is based on two main ingredients: a Sobolev inequality which
allows to control for a suitable  r  >  2 the  \ell^{r}(\mathbb{Z}^{d}) ‐norm of a function  f in terms of the

Dirichlet form (cf. Lemma 3.6) and an energy estimate for solutions of a certain class
of Poisson equations. It is well known that Sobolev inequalities can be deduced from

the isoperimetric properties of the underlying space. On  \mathbb{Z}^{d} , there exists a large variety

of Sobolev inequalities. Writing  |\nabla f(x, y)|  =  |f(x)  -f(y)| for  \{x, y\}  \in  E_{d} , the form

of such inequalities is dimension depending. More precisely, for any  f :  \mathbb{Z}^{d}  arrow  \mathbb{R} with

compact support, it holds that for  1  \leq\alpha<d

(1.12)  \Vert f\Vert_{\ell^{\frac{d\alpha}{d-\alpha}}(\mathbb{Z}^{d})} \leq C(d, 
\alpha) \Vert|\nabla f|\Vert_{\ell^{\alpha}(E_{d})},
whereas for  \alpha>d the shape of the inequalities changes:

(1.13)  \Vert f\Vert_{\ell^{1}(\mathbb{Z}^{d})} \leq C(d, \alpha) \Vert 
f\Vert_{\ell^{\alpha}(\mathbb{Z}^{d})}^{1-(d/\alpha)} \Vert|\nabla 
f|\Vert_{\ell^{\alpha}(E_{d})^{:}}^{d/\alpha}
For the RCM with uniform elliptic conductances on  \mathbb{Z}^{d} with  d  \geq  3 , the Sobolev in‐

equality with  r  =  r(d)  =  d/(d-2) is immediate from (1.12). In the case where the
conductances are elliptic, that is  \omega_{t}(e)  \in  (0, \infty) for all  t\in \mathbb{R} and  e\in E_{d} , starting from
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(1.12) with a suitable  \alpha<2\leq d , we obtain by means of Hölder’s inequality a weighted
Sobolev inequality in space with  r=r(d, q)=d/(d-2+d/q) , see [3, Proposition 5.4].
In the case  d  =  1 , by using the Cauchy‐Schwarz inequality, we immediately obtain a

weighted Sobolev inequality from (1.13) with  r=1.

Random motion in random environments has attracted much interest during the

past decades. In particular, the question whether an annealed or quenched invariance

principle holds has been studied intensively. For dynamic random environments, an

annealed invariance principle was first shown in [20] for a one‐dimensional random walk
in a random environment that is i.i.  d . in space and Markovian in time. By using analytic,

probabilistic and ergodic techniques, annealed and quenched invariance principles have

been established by now for various models falling mostly in one of the following two

categories: independent in time [6, 10, 12, 19, 22] or independent in space and Markovia
in time [7, 11, 23, 5, 14]. In all these models a ood mixing behaviour of the environment,
i.e. the polynomial decay of time‐space correlations, remained a major requirement.

For the RCM with time‐space ergodic conductances an annealed and quenched in‐

variance principle has been first proven in [1] in the uniform elliptic, polynomial mixing
case. Recently, the assumptions on the law of the environment has been significantly

relaxed. In [3] a QFLCT has been proven in  d  \geq  2 for the dynamic RCM with el‐
liptic, time‐space ergodic conductances satisfying a certain integrability condition.  A

similar quenched result in the non‐elliptic case for general ergodic environments un‐

der suitable moment conditions has been obtained recently in [13] for random walks in
time‐dependent balanced environments, that is

 \omega_{t}(x, x+e_{i})  =  \omega_{t} (  x , x—ei), 8  i=1 , :::,  d.

The discrete‐time random walk among time‐dependent conductance behaves quite dif‐

ferently even in the uniform elliptic case, in particular anomalous heat kernel behaviour

occurs, cf. [17].

The paper is organized as follows: In Section 2, after recalling the construction

of the corrector for arbitrary   d\geq  1 , we prove the convergence of the martingale part.

Then, in Section 3 we show in dimension  d=1 that the corrector is sublinear.

Throughout this paper we suppose that Assumption 1.1 holds.

§2. Harmonic embedding and the corrector

In the sequel, we discuss for any  d  \geq  1 the construction of a corrector  \chi to the

time‐inhomogeneous process  X such that  M_{t}  =X_{t}-\chi(\omega, t, X_{t}) is a martingale under

 P_{0,0}^{\omega} for P‐a.e.  \omega , and we prove a quenched invariance principle for the martingale part.
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Definition 2.1. A measurable function, also called random field,  \Psi:\Omega\cross \mathbb{Z}^{d}arrow

 \mathbb{R}^{d} satisfies the (space) cocycle property if for P‐a.e.  \omega

 \Psi(\tau_{0,x}\omega, y-x)  =  \Psi(\omega, y)-\Psi(\omega, x) , for  x,  y\in \mathbb{Z}^{d}

We denote by  L_{cov}^{2} the set of functions  \Psi :  \Omega\cross \mathbb{Z}^{d}arrow \mathbb{R}^{d} satisfying the (space) cocycle
property such that

  \Vert\Psi\Vert_{L_{cov}^{2}}^{2} := E[\sum_{x\sim 0}\omega_{0}(0, x)
|\Psi(\omega, x)|^{2}] < 1,
where  |  | denotes the usual Euclidean 2‐norm in  \mathbb{R}^{d}.

The position field  \Pi :  \Omega  \cross  \mathbb{Z}^{d}  arrow  \mathbb{R}^{d} is defined by  \Pi(\omega, x)  :=  x . Observe that  \Pi

is an element of  L_{cov}^{2} , since  \Pi(\omega, x+y)-\Pi(\omega, x)  =\Pi(\tau_{0,x}\omega, y) for all  \omega  \in  \Omega and any

 x,  y\in \mathbb{Z}^{d} and  \Vert\Pi\Vert_{L_{cov}^{2}}  =E[\mu_{0}^{\omega}(0)]^{1/2}  <1.

We associate to  \varphi:\Omegaarrow \mathbb{R}^{d}a (space) gradient  D\varphi:\Omega\cross \mathbb{Z}^{d}arrow \mathbb{R}^{d} defined by

 D\varphi(\omega, x) = \varphi(\tau_{0,x}\omega)-\varphi(\omega) , x\in 
\mathbb{Z}^{d}

Obviously, if the function  \varphi is bounded,  D\varphi is an element of  L_{cov}^{2} . Note that  L_{cov}^{2} is

a Hilbert space. Further, let us introduce an orthogonal decomposition of the space

 L_{cov}^{2}=L_{pot}^{2}\oplus L_{so1}^{2} , where

 L_{pot}^{2}  = cl {  D\varphi|  \varphi:\Omegaarrow \mathbb{R} bounded} in  L_{cov}^{2},

being the closure in  L_{cov}^{2} of the set gradients and  L_{so1}^{2} be the orthogonal complement  0

 L_{pot}^{2} in  L_{cov}^{2} . Further, set   T_{t}\varphi  :=  \varphi\circ\tau_{t,0} for  t  \in  \mathbb{R} and define the following operator,

also called (time) gradient,  D_{0}:dom(D_{0})  \subset L^{2}(\Omega, \mathbb{P})arrow L^{2}(\Omega, \mathbb{P}) by

(2.1)  D_{0} \varphi := \lim_{tarrow 0} \frac{1}{t}(T_{t}\varphi - \varphi)
where  dom(D_{0}) is the set of all  \varphi  \in  L^{2}(\Omega, \mathbb{P}) such that the limit above exists. Notice

that  \{T_{t} : t\in \mathbb{R}\} is a strongly continuous contraction group on  L^{2}(\Omega, \mathbb{P}) , cf. [18, Section
7.1], with infinitesimal generator  D_{0} . In particular,  dom(D_{0}) is dense in  L^{2}(\Omega, \mathbb{P}) . As
a consequence, for any  \varphi\in dom(D_{0}) the function  t\mapsto\varphi(\tau_{t,0}\omega) is weakly differentiable
for P‐a.e.  \omega.

A key ingredient of the proof is the existence of a random coordinate system

 \Phi(\omega, t, x) which is known as harmonic coordinates.

Theorem 2.2. There exists  \Phi_{0}  \in  L_{cov}^{2} which is characterized by the followin

properties:

(i) the function  \chi_{0}  :=\Pi-\Phi_{0}  \in L_{pot}^{2} ;
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(ii) (time‐space) harmonicity of the function  \Phi:\Omega\cross \mathbb{R}\cross \mathbb{Z}^{d}arrow \mathbb{R}^{d},
 t

(2.2)  \Phi(\omega, t, x)  =  \Phi_{0}(\tau_{t,0}\omega, x)  -  (\mathcal{L}_{s}^{\omega}\Phi_{0}(\tau_{s,0}\omega, \cdot))(0)ds
 0

in the sense that  \Phi is  di erentiable for almost every  t\in \mathbb{R} and

(2.3)  \partial_{t}\Phi(\omega, t, x)  +  \mathcal{L}_{t}^{\omega}\Phi(\omega, t, x)  =  0,  \Phi(\omega, 0,0)  =  0.

Proof. The proof, inspired by an argument given in in [15], is based on an appli‐
cation of the Lax‐Milgram Theorem in order to solve in a first step a regularized version

of Equation (2.3). By taking limits in a suitable distribution space, we construct out  0

the solution to the regularized equation the harmonic coordinate.

For a detailed proof we refer to [3, Section 2].  \square 

Definition 2.3. The corrector  \chi:\Omega\cross \mathbb{R}\cross \mathbb{Z}^{d}arrow \mathbb{R}^{d} is defined as

 \chi(\omega, t, x) := \Pi(\omega, x) - \Phi(\omega, t, x) .

In the following corollary we summarize properties of  \chi and  \chi_{0}.

Corollary 2.4. Let  \chi_{0}  \in L_{pot}^{2} be defined as in the previous theorem. Then,

(i)  \chi_{0}\in L^{1}(\mathbb{P}) with  E[\chi_{0}(\omega, \^{e})]  =0 for all ê  \in  \{\pm e_{1}, :::, e_{d}\} ;

(ii) for P‐a.  e.  \omega,  t\in \mathbb{R} and  x\in \mathbb{Z}^{d} , the corrector can be written
 t

(2.4)  \chi(\omega, t, x)  =  \chi_{0}(\tau_{t,0}\omega, x)  +  (\mathcal{L}_{s}^{\omega}\Phi_{0}(\tau_{s,0}\omega, \cdot))(0) ds:
 0

Define  M_{t}  :=  \Phi(\omega, t, X_{t}) for any  t  \geq  0 and  \omega  \in  \Omega . In view of (2.3), it follows
that for P‐a.e.  \omega and any  v  \in \mathbb{R}^{d} the processes  M=  \{M_{t} : t\geq 0\} and  v\cdot M are  \mathbb{P}_{0,0^{-}}^{\omega}
martingales with respect to the filtration  \mathcal{F}_{t}  =  \sigma  (X_{s}, s \leq t) . Moreover, the quadratic

variation process of the latter is given by

(2.5)  \langle v\cdot M\rangle_{t}  =  0^{t} \sum_{y\in \mathbb{Z}^{d}}(\tau_{s,X_{s}}\omega)_{0}(0, y)(v\cdot\Phi_{0}
(\tau_{s,X_{s}}\omega, y))^{2} ds:

In the next proposition we show both the convergence of the martingale part and the

non‐degeneracy of the limiting covariance matrix.

Proposition 2.5 (QIP for the martingale part). For P‐a.  e.  \omega , under  P_{0,0}^{\omega} the
sequence of processes   \{\frac{1}{n}M_{tn^{2}} : t \geq 0\} converges in law to a Brownian motion with

deterministic, time‐independen, non‐degenerate covariance matrix  \Sigma^{2} given by

(2.6)   \Sigma_{i,j}^{2} = E[\sum_{x\sim 0}\omega_{0}(0, x)\Phi_{0}^{i}(\omega, x)
\Phi_{0}^{j}(\omega, x)] :
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Proof. The proof is based on the martingale central limit theorem by Helland (see
Theorem 5.  1a ) in [16]); the proofs in [2] or [21] can be easily transferred into the time
dynamic setting. The argument relies on the convergence of the quadratic variation  0

  \{\frac{1}{n}M_{tn^{2}} : t \geq 0\} . Note that the quadratic variation of  M is written in terms of the

environment process  \{\tau_{t,X_{t}}\omega : t \geq 0\} which is a Markov process taking values in  \Omega

with generator  \hat{\mathcal{L}}:dom(D_{0})arrow L^{2}(\Omega, \mathbb{P}) ,

(2.7)  ( \hat{\mathcal{L}}\varphi)(\omega) = D_{0}\phi(\omega) + \sum_{x\sim 0}\omega_
{0}(0, x)(\varphi(\tau_{0,x}\omega) - \varphi(\omega)) .

Since the measure  \mathbb{P} is invariant and ergodic for the process  \{\tau_{t,X_{t}}\omega : t \geq 0\} , see

[4, Lemma 2.4] and [1, Proposition 2.1] for detailed proofs, the desired convergence  0

the quadratic variation is a consequence of the ergodic theorem. Finally, we refer to

Proposition 4.1 in [8] for a proof that  \Sigma^{2} is nondegenerate.  \square 

§3. Sublinearity of the corrector

The key ingredient in the proof of Theorem 1.5 is the  \ell\infty ‐sublinearity of the correc‐

tor as stated in the proposition below. For simplicity, we focus on the one‐dimensional

case only; the case  d  \geq  2 has been treated in [3]. Recall that  Q(n)  =  [0, n^{2}]  \cross  B(n)
where  B(n)\equiv B(0, n) .

Proposition 3.1  (\ell^{\infty} ‐sublinearity . For any  p,   q\in  [1, \infty] such that

(3.1)   \frac{1}{p-1} + \frac{1}{q(p-1)} < 1.
assume that  E[\omega_{t}(e)^{p}]  <1 and  E[\omega_{t}(e)^{-q}]  <1 for all  t\in \mathbb{R} and  e\in E_{1} . Then,

(3.2)   \lim   \max  | \frac{1}{n}\chi(\omega, t, x)|  =  0,  \mathbb{P} ‐  a .s.
 narrow\infty(t,x)\in Q(n)

The proof is based on both ergodic theory and purely analytic arguments. In a first

step, we show the  \ell^{1} ‐sublinearity of the corrector, that is the convergence of   \frac{1}{n}\chi to zero

in the  \Vert  \Vert_{1,1,Q(n)} ‐norm. This proof uses the ergodic theorem, the cocycle‐property  0

 \chi_{0} and the fact that  \Phi has the particular representation (2.2) and solves the equation
(2.3). By means of the Moser iteration that allows to establish a maximal inequality
for a certain class of Poisson equations, we extend in a second step the  \ell^{1} ‐sublinearity

of the corrector to the  \ell\infty ‐sublinearity.

§3.1.  \ell^{1} ‐sublinearity

Our main goal in this subsection is to proof that the corrector is sublinear in the

following sense:
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Proposition 3.2  (\ell^{1} ‐sublinearity . It holds that

(3.3)   \lim_{n}   \frac{1}{n^{2}}  0^{n^{2}} \frac{1}{|B(n)|}   \sum  | \frac{1}{n}\chi(\omega, t, x)|  dt  =  0 , P‐a.  s.

 x\in B(n)

Our proof of Proposition 3.2 relies on the following three lemmas.

Lemma 3.3. For any ê  \in  \{-1, +1\} we have that

(3.4)   \lim_{n}   \frac{1}{n}\chi_{0} (  \omega ,  nê)  =  0,  \mathbb{P}-a.s.

Proof. By rewriting  \chi_{0} as a telescopic sum and using the cocycle property, we
first obtain that

 n-1 n-1

(3.5)   \frac{1}{n}\chi_{0} (  \omega ,  nê)  =   \frac{1}{n}   \sum (  \chi_{0} (  \omega , ( j+ 1)ê) —  \chi_{0}(\omega ,  j ê))  =   \frac{1}{n}   \sum\chi_{0} (  \tau0,  j ê  \omega , ê):
 j=0 j=0

In view Corollary 2.4(i), the ergodic theorem ensures the existence of the limit

fê  (\omega)  =   \lim_{n}   \frac{1}{n}\chi_{0} (  \omega , nê), P‐a.s. and in  L^{1}(\Omega, \mathbb{P}) .

In particular, E[fê]  =  0 and, by construction, fê  (!  ) is invariant with respect to space
shift. Thus, it remains to show that fê  (!  )=f\^{e}  (\tau_{t,0}\omega) for any  t\in \mathbb{R} . But,

 \chi_{0} (  \tau_{t,0}\omega , nê)  =  \chi (  \omega,  t , nê) —  \chi(\omega, t, 0)
 t

(3.6)  =  \chi_{0} (  \omega ,  nê)  +  (\mathcal{L}_{s}^{\omega}\Phi_{0}(\tau_{s,0}\omega, \cdot)) (  nê) ds —  \chi_{0}(\omega, 0) .
 0

Further, notice that  (\mathcal{L}_{s}^{\omega}\Phi_{0} (\tau_{s,0} !, \cdot))  (n\^{e})=(\mathcal{L}_{0}^{\omega}\Phi_{0}(\omega, \cdot))(0)\circ\tau_{s,n\hat
{e}} and

 E[|(\mathcal{L}_{0}^{\omega}\Phi_{0})(0)|] \leq E[\mu_{0}^{\omega}(0)]^{1/2} 
\Vert\Phi_{0}\Vert_{L_{cov}^{2}} < 1.

Therefore, after dividing both sides of (3.6) by  n , the  L^{1}(\mathbb{P}) ‐limit of the last two terms
vanishes. Thus, we conclude that fê  (\tau t,0 \omega)  = fê  (!  ) for P‐a.e.  \omega , and (3.4) follows.  \square 

Lemma 3.4. It holds that

(3.7)   \lim_{n} \frac{1}{n^{2}} 0^{n^{2}}\max_{x\in B(n)}|\frac{1}{n}\chi_{0}
(\tau_{t,0}\omega, x)|dt = 0, \mathbb{P}-a.s.
Proof. Since  \chi_{0}  \in L_{pot}^{2} , there exists a sequence of bounded functions  \varphi_{k}:\Omegaarrow \mathbb{R}

such that  D\varphi_{k}  arrow  \chi_{0} in  L_{cov}^{2} as  k  arrow  1 . Thus, for any  k  \geq  1 fixed and  x  \in  B(n) we
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obtain

 |\chi_{0}(\tau_{t,0}\omega, x)| \leq 2\Vert\varphi_{k}\Vert_{L^{1}(\Omega,
\mathbb{P})} + |(\chi_{0}-D\varphi_{k})(\tau_{t,0}\omega, x)|
 n-1

 \leq  2\Vert\varphi_{k}\Vert_{L^{1}}(\Omega,\mathbb{P})  +   \sum  |(\chi_{0} - D\varphi k) (  \taut,jê  \omega , ê)  | ,
 j=0

where ê  = sign  x . Note that we used the cocycle property in the last step. Hence, by

means of Birkhoff’s pointwise ergodic theorem, we obtain that for P‐a.e.  \omega

  \lim_{n} \frac{1}{n^{2}} 0^{n^{2}}\max_{x\in B(n)}|\frac{1}{n}\chi_{0}
(\tau_{t,0}\omega, x)| dt
  \leq \sum_{\^{e}\in\{-1,+1\}}E[|(\chi_{0}-D\varphi_{k})(\omega, \^{e})|] \leq 
E[v_{0}^{\omega}(0)]^{1/2} \Vert\chi_{0}-D\varphi_{k}\Vert_{L_{cov}^{2}}

By taking the limit  karrow 1 , the assertion (3.7) follows.  \square 

Lemma 3.5. We have that

(3.8)   \lim_{n}   \frac{1}{n^{2}}  0^{n^{2}}| \frac{1}{n}\chi(\omega, t, 0)|  dt  =  0 , P‐a.  s.

Proof. The proof of (3.8) comprises two steps.
Step 1: For any  \varphi\in  L^{1}(\Omega, \mathbb{P}) and :  \mathbb{R}arrow \mathbb{R} bounded and compactly supported with

  \int_{\mathbb{R}}g(y)dy=0 an extension of Birkhoff’s ergodic theorem, cf. [9], yields

 F^{\omega}(k)  :=   \frac{1}{k^{3}}   0^{k^{2}} \sum_{x\in \mathbb{Z}}g(x/k)\varphi(\tau_{s,y}\omega)
dskarrow\inftyarrow (  \mathbb{R} (y) dy)  E[\varphi]  =  0

P‐a.s. Hence, for every  \epsilon\in  (0,1) there exists  N^{\omega}(\epsilon)  <1 such that  |F^{\omega}(k)|  <\epsilon for all

 k\geq N^{\omega}(\epsilon) . Since

  \sup_{k>0} \frac{1}{k^{3}} 0^{k^{2}}\sum_{x\in \mathbb{Z}} |g(x/k)
||\varphi(\tau_{s,y}\omega)|ds \leq M < 1,
by choosing  n\geq N^{\omega}(\epsilon)   M/\epsilon we get

  \frac{1}{2} n^{2}|F^{\omega}(t)|dt \leq (\frac{N^{\omega}(\epsilon)}{n})^{2}M 
+ \epsilon \leq 2\epsilon. n  0

Thus, we conclude that for P‐a.e.  \omega

(3.9)   \lim_{n} \frac{1}{n^{2}} 0^{n^{2}}|\frac{1}{t^{3/2}} 0^{t}\sum_{x\in 
\mathbb{Z}}g(x/k)\varphi(\tau_{s,y}\omega)ds|dt = 0.
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Step 2: Let us now prove (3.8). First, Corollary 2.4(ii) and (2.3) imply that
 t

 \chi(\omega, t, 0) = \chi_{0}(\omega, y) + \partial_{s}\Phi(\omega, s, y)ds - 
\chi_{0}(\tau_{t,0}\omega, y)
 0

 t

(3.10)  =  \chi_{0}(\omega, y)  -  \chi_{0}(\tau_{t,0}\omega, y)  +  (\mathcal{L}_{s}^{\omega}\Phi_{0}(\tau_{s,0}\omega, \cdot)(y) ds:
 0

for any  y  \in Z. Further, consider the function  f :  \mathbb{R}  arrow  [0 , 1  ],  x  \mapsto  [1- |x|]_{+} anp set

 f_{t}(x)  :=f(x/ t) for any  t>0 . Notice that supp f  \subset B ( t) and   \sum_{z\in \mathbb{Z}}f_{t}(x)  \geq  t/2.
Then, by multiplying both sides of (3.10) with  f_{t} and summing over all  y\in \mathbb{Z} we obtain
that, for any   t\in  (0, n^{2} ],

 | \frac{1}{n}\chi(\omega, t, 0)| \leq \max |\frac{1}{n}\chi_{0}(\omega, x)| + 
\max |\frac{1}{n}\chi_{0}(\tau_{t,0}\omega, x)|
 x\in B(n) x\in B(n)

 +  \frac{2t}{n}\sum_{z\sim 0} |\frac{1}{t^{3/2}} 0^{t}\sum_{y\in \mathbb{Z}}
g_{z} (y/ t) \varphi_{z}(\tau_{s,y}\omega)ds|,
where we introduced for  z  \sim  0 the functions  g_{z}(y)  :=  t(f (y+z/ t) -f(y)) and

 \varphi_{z}(\omega)  :=\omega_{0}(0, z)\Phi_{0}(\omega, z) to lighten notation. Since

 E[\omega_{0}(0, z)\Phi_{0}(\omega, z)] \leq E[\omega_{0}(0, z)]^{1/2} 
\Vert\Phi_{0}\Vert_{L_{cov}^{2}} < 1,
 \varphi_{z}  \in  L^{1}(\Omega, \mathbb{P}) . Moreover, the function  g_{z} is bounded, compactly supported with

  \int_{-1}^{1}g_{z}(y)dy=0 . In particular, supp g  \subset  [-2, 2] for all   t\geq  1 and any  z\sim 0 . Thus, in

view of Lemma 3.3 and 3.4 together with (3.9) the assertion (3.8) follows.  \square 

Proof of Proposition 3.2. Since  \chi_{0}  \in  L_{pot}^{2} , we have that  \chi_{0}(\tau_{t,0}\omega, 0)  =0 for any
 t  \in R. Hence, (2.4) can be rewritten as  \chi(\omega, t, x)  =  \chi_{0}(\tau_{t,0}\omega, x)  +\chi(\omega, t, 0) for any
 t\in \mathbb{R} and  x\in \mathbb{Z} and P‐a.e.  \omega . Thus, (3.3) follows from (3.7) and (3.8).  \square 

§3.2.  \ell\infty ‐sublinearity

The next proposition relies on the application of the Moser iteration scheme that

has been implemented for general graphs in [3, Section 5.2]. A key ingredient in this
approach is the following Sobolev inequality.

Lemma 3.6 (local space‐time Sobolev inequality). Let  Q=I\cross B , where  I\subset \mathbb{R}

is a compact interval and  B\subset \mathbb{Z} is finite and connected. Then, for any   q'\in  [1, \infty] and
 u:\mathbb{R}\cross \mathbb{Z}arrow \mathbb{R} with supp u  \subset B , it holds that

(3.11)   \Vert u^{2}\Vert_{\infty,q/(q+1),Q} \leq |B|^{2} \Vert v^{\omega}\Vert_{1,q',
Q} (\frac{1}{|I|} I \frac{\mathcal{E}_{t}^{\omega}(u_{t})}{|B|}dt) ,

where for any  f:\mathbb{Z}arrow \mathbb{R}

  \mathcal{E}_{t}^{\omega}(f) := \sum_{\{y,y\}\in E_{1}}\omega_{t}(y, y')(f(y)-f
(y'))
.
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Proof. Since supp u  \subset  B , write for any  x  \in  B the function  u_{t}(x) as a telescopic

sum and apply the Cauchy‐Schwarz inequality. This yields

 |u_{t}(x)|^{2}  \leq |B| (\frac{1}{|B|}\sum_{\in B}v_{t}^{\omega}(y))
(\frac{\mathcal{E}_{t}^{\omega}(u_{t})}{|B|}) .

Thus, for any   q'\geq  1 the assertion follows by Hölder’s inequality.  \square 

Proposition 3.7 (maximal inequality). Let  p,  p',   q'\in  [1, \infty] be such that

(3.12)   \frac{1}{p}.\frac{p'}{p'-1} .   \frac{q'+1}{q}  <  1.

Then, for every  \alpha>0 there exist  \kappa,  \gamma'>0 and  c(p,p', q')  <1 such that for P‐a.  e.  \omega

 (3.13)

  \max  | \frac{1}{n}\chi(\omega, t, x)|  \leq  c(1\vee\Vert\mu^{\omega}\Vert_{p,p',Q(2n)} \Vert v^{\omega}\Vert_{1,q',Q(2n)})^
{\kappa'}   \Vert\frac{1}{n}\chi(\omega, \cdot)\Vert_{\alpha,\alpha,Q(2n)} (t,x)\in Q(n)

Proof. From definition of  \chi and (2.3) it follows that the corrector,   \frac{1}{n}\chi , is differ‐
entiable in  t for almost every  t\in \mathbb{R} and satisfies the following Poisson equation

(3.14)  \partial_{t}u + \mathcal{L}_{t}^{\omega}u = \nabla^{*}V_{t}^{\omega}

with  V_{t}^{\omega}(x, y)  :=   \frac{1}{n}\omega_{t}(x, y)(y-x) and   \nabla^{*}V_{t}^{\omega}(x)=\sum_{y\sim x}V_{t}^{\omega}(x, y) . The proof of (3.13)
is based on the Moser iteration scheme, and the assertion for   \frac{1}{n}\chi follows line by line

from the proof of [3, Theorem 5.5] with  \sigma  =  1,  \sigma'  =  1/2,  n replaced by  2n if we use
instead of [3, Proposition 5.4] the Sobolev inequality (3.11). For the convenience  0

reader, we will explain in the sequel the first crucial step of this iteration.

For  \sigma  \in  (0,1) , let  Q(\sigma n)  =  I(\sigma n)  \cross  B(\sigma n) , where  I(\sigma n)  :=  [0, \sigma n^{2}] . Further,

consider a cut‐off function  \eta :  \mathbb{Z}  arrow  [0 , 1  ] with supp  \eta  \subset  B(n) ,  \eta  \equiv  1 on  B(\sigma n) and

  \max_{\{x,y\}\in E_{1}}  |\eta(x)-\eta(y)|  \leq c/n . Further, set  u(t, x)  :=   \frac{1}{n}\chi(\omega, t, x) to lighten notation.

Since  u solves (3.14), by [3, Lemma 5.6], the following energy estimate holds: For
any  \alpha\geq  1 and  p,  p',  \in  [1, \infty] with  p_{*} and  p_{*}' being the corresponding Hölder conjugates
of  p and  p' we have

(3.15)  \Vert|u|^{2\alpha}\Vert_{1,\infty,Q(\sigma n)}  +  \underline{\mathcal{E}_{t}^{\omega}(\eta|u_{t}|^{\alpha})}_{dt}  \leq  C_{\alpha}\Vert\mu^{\omega}\Vert_{p,p',Q(n)}  \Vert|u|^{2\alpha}\Vert_{p_{*},p_{*},Q(n)}^{\gamma/(2\alpha)} I(\sigma n) |B(n)|

where  \gamma  =  1 if  \Vert|u|^{2\alpha}\Vert_{p_{*},p',Q(n)}  \geq  1 and  \gamma  =  1-   1/\alpha otherwise. On the other hand,

by means of Hölder’s and Young’s inequality, cf. [3, Lemma 5.3], we obtain for  \alpha  =

 1/p_{*}+q'/(p_{*}'(q'+1)) that

(3.16)  \Vert|u|^{2\alpha}\Vert_{\alpha p_{*},\alpha p_{*},Q(\sigma n)} \leq 
\Vert|u|^{2\alpha}\Vert_{1,\infty,Q(\sigma n)} + \Vert|u|^{2\alpha}
\Vert_{\infty,q/(q+1),Q(\sigma n)}
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Thus, combining (3.16) with the local space‐time Sobolev inequality (3.11) and using
that  |B(\sigma n)|^{2}/|I(\sigma n)|  \leq 2 yields

 \Vert u^{2}\Vert_{\alpha^{2}p_{*},\alpha^{2}p_{*}',Q(\sigma n)}  \leq  (C_{\alpha}1\vee\Vert\mu^{\omega}\Vert_{p,p',Q(n)} \Vert v^{\omega}\Vert_{1,q',
Q(n)})^{1/\alpha}  \Vert u^{2}\Vert_{\alpha p_{*},\alpha p_{*}',Q(n)}^{\gamma/2}.
Finally, notice that the condition (3.12) implies that  \alpha>  1 . By iterating this estimate
(for details see the proof of [3, Theorem 5.5]) the assertion follows.  \square 

By assumption,  E[\omega_{t}(e)^{p}]  <1 and  E[\omega_{t}(e)^{-q}]  <1 for any  p,   q\in  [1, \infty] satisfying

the condition (1.6). Since  \Vert v^{\omega}\Vert_{1,q',Q(2n)}  \leq  \Vert v^{\omega}\Vert_{q',q',Q(2n)} for any   q'\in  [1, \infty] by Jensen’s
inequality, Birkhoff’s ergodic theorem implies that for P‐a.e.  \omega

  \lim  \Vert\mu^{\omega}\Vert_{p,p,Q(2n)}  < 1 and   \lim  \Vert v^{\omega}\Vert_{q,q,Q(2n)}  < 1.
nim nim

Thus, Proposition 3.1 follows immediately from Proposition 3.7 with the choice  \alpha=1,

 p'=p and  q'=q , combined with Proposition 3.2.

Proof of Theorem 1.5. Proceeding as in the proof of [4], the  \ell\infty ‐sublinearity of the
corrector that we have established in Proposition 3.1 implies that for any  T  >  0 and
P‐a.  e.  \omega

  \sup_{0\leq t\leq}  | \frac{1}{n}\chi(\omega, tn^{2}, X_{tn^{2}})|  n\vec{arrow\infty}0 in  P_{0,0}^{\omega} ‐probability:

Thus, the assertion of Theorem 1.5 now follows from Proposition 2.5.  \square 
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