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On an extension of the Brascamp‐Lieb inequality

By

Yuu HARIYA*

Abstract

In this article, we survey the author’s recent results on an extension of the Brascamp‐Lieb
inequality; revealing its connection with a solution to the Skorokhod embedding problem, we
extend the inequality.

§1. Introduction

The Brascamp‐Lieb moment inequality plays an important role in statistical me‐

chanics, such as in the analysis of so‐called  \nabla interface models; see, e.g., [10, 9, 11]. It
asserts that the centered moments of a Gaussian distribution perturbed by a convex po‐
tential do not exceed those of the Gaussian distribution. The main theme of this article

is to give a link between the Brascamp‐Lieb inequality and Skorokhod embedding.

Given a one‐dimensional Brownian motion  B and a probability measure  \mu on  \mathbb{R},

the Skorokhod embedding problem is to find a stopping time  T of  B such that  B(T)
follows  \mu . The problem was proposed by Skorokhod [20] and more than twenty solutions
have been constructed since then; see the detailed survey [16] by Oblój.

In this article, we give a proof of the Brascamp‐Lieb inequality based on the Sko‐

rokhod embedding of Bass [1]; as a by‐product, error bounds for the inequality in terms
of the variance are provided. The same reasoning also enables us to extend the inequal‐

ity as well as its error bounds to a relatively wide class of nonconvex potentials in the

case of one dimension; our result applies to double‐well potentials. This article is a

survey of [12] and [13, Appendix] with some complementary exposition.
Let  Y be an  n‐dimensional centered Gaussian random variable defined on a prob‐

ability space  (\Omega, \mathcal{F}, P) with law  v . Let  X be an  n‐dimensional random variable on
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 (\Omega, \mathcal{F}, P) , whose law  \mu is given in the form

(1.1)   \mu(dx)= \frac{1}{Z}e^{-V(x)}v(dx)
with  V:\mathbb{R}^{n}arrow \mathbb{R} a convex function, where

 Z := e^{-V(x)}v(dx) \in (0, \infty) .

 \mathbb{R}^{n}

In what follows, we fix  v  \in  \mathbb{R}^{n}  (v \neq 0) arbitrarily. For a one‐dimensional random

variable  \xi with  E[\xi^{2}]  <  1 , we denote its variance by  var(\xi) :  var(\xi)  =E[(\xi-E[\xi])^{2}].
We set a  :=var(v\cdot Y) . Here  a\cdot b denotes the inner product of  a,  b\in \mathbb{R}^{n} . We also set

  p(t;x) := \frac{1}{2\pi t}\exp(-\frac{x^{2}}{2t}) , t>0, x\in \mathbb{R}.
One of the main results of this article is then stated as follows:

Theorem 1.1 (Theorem 1.1 of [12]).
have the following (i) and (ii).:

(i) It holds that

For every convex function  \psi on  \mathbb{R} , we

(1.2)  E[\psi(v\cdot Y)]  \geq E[\psi(v\cdot X-E[v\cdot X])].

More precisely, we have

 E[\psi(v\cdot Y)] \geq E[\psi(v\cdot X-E[v\cdot X])]

(1.3)  a^{-1}(a-var(v\cdot X))^{2}

 + \frac{1}{2} \mathbb{R} 0 p(s;\sqrt{x^{2}+a})ds\psi"(dx) ,

where  \psi"(dx) denotes the second derivative of  \psi in the sense of distribution.

(ii) For every  p>  1 , it holds that

(1.4)  E[\psi(v\cdot Y)]  \leq E[\psi(v\cdot X-E[v\cdot X])]+C(a, \psi, q)(a-var(v\cdot X))^{\frac{1}{2p}
} :

Here  C(a, \psi, q)  \in  [0, \infty] is given by

(1.5)  C(a, \psi, q)=(a(1+q))^{\frac{1}{2q}}   \mathbb{R}^{p}(1;\frac{x}{\sqrt{a(1+q)}})\psi"(dx)
with  q the conjugate of  p :  p^{-1}+q^{-1}  =1 . Note that  a-var(v\cdot X)  \geq 0 by (1.2).

The above inequalities  (1.2)-(1.4) are understood to hold as well in the case that

both sides are infinity, due to Fubini’s theorem utilized in the proof; see Subsection 2.1.
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The inequality (1.2) is called the Brascamp‐Lieb inequality; it was originally proven by
Brascamp and Lieb [4, Theorem 5.1] in the case  \psi(x)=  |x|^{\alpha},  \alpha\geq  1 , and then extended
to general convex  \psi ’s by Caffarelli [5, Corollary 6] based on the optimal transport
between  \mu and  v.

As a corollary to Theorem 1.1 (ii), we have the following estimate, which we think
is of interest itself; note that the right‐hand side is not dependent on  V.

Corollary 1.2. It holds that

  \frac{E[|v\cdot X-E[v\cdot X]|]}{var(v\cdot X)} \geq \frac{1}{2\pi a}.
For the proof, see Subsection 2.2.

Remark 1. Similarly to the Brascamp‐Lieb inequality (1.2) itself not yieldin
any useful bounds on the mean  E[v\cdot X] , the inequalities (1.3) and (1.4) do not ive any
information on the variance other than  var(v\cdot X)  \leq  a . It is known [4, Theorem 4.1]
that if  V\in C^{2} (Rn), then  var(v\cdot X) admits the upper bound

 v. (\Sigma^{-1}+D^{2}V(x))^{-1}v\mu(dx) ,

 \mathbb{R}^{n}

not exceeding  a\equiv v\cdot\Sigma v . Here  \Sigma denotes the covariance matrix of the Gaussian measure
 v and  D^{2}V the Hessian of V. See also (1) of Remark 4 at the end of the next section.

The rest of the article is organized as follows: We explain an idea of the proo

of Theorem 1.1 in Section 2. The proof of (1.2) is detailed in Subsection 2.1 while in
Subsection 2.2, we give an outline of the proof of (1.3) and (1.4); Section 2 is concluded
with a remark on some related results deduced from our argument. In Section 3, we

discuss an extension of the Brascamp‐Lieb inequality and its error bounds to the case

of nonconvex potentials when  n=1.

In the sequel every random variable and every stochastic process are assumed to be

defined on the probability space  (\Omega, \mathcal{F}, P) . For every real‐valued function  f on  \mathbb{R} and for

every  x\in \mathbb{R} , we denote respectively by  f_{+}'(x) and  f_{-}'(x) the right‐ and left‐derivatives

of  f at  x if they exist. For each  x,  y\in \mathbb{R} , we write  x \vee y=\max\{x, y\},  x \wedge y=\min\{x, y\}
and  x^{+}  =x\vee 0.

§2. Proof of Theorem 1.1

In this section we give an idea of the proof of Theorem 1.1. Note that Theorem 4.3

of [4] reduces the proof to the case  n=1 , namely the density of the law  P\circ(v\cdot X)^{-1} with
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respect to the one‐dimensional Gaussian measure  P\circ(v\cdot Y)^{-1} is  \log‐concave. Therefore

in what follows, we take the Gaussian measure  v in (1.1) as

 v(dx)=  \frac{1}{2\pi a}\exp(-\frac{x^{2}}{2a})dx, x\in \mathbb{R},
and  V as a convex function on R. We accordingly write  X and  Y for  v .  X and
 v .  Y , respectively; that is,  X is distributed as  \mu and  Y as  v . We recall that the

above‐mentioned theorem is often referred to as Prékopa’s theorem, which was originally

proven by Prékopa [17] and then independently by Brascamp‐Lieb [4] and Rinott [19].

§2.1. Proof of (1.2)

Because of its intimate connection with Section 3, we detail the proof of (1.2)
following [12]. We define  F to be the distribution function of  \mu :

 \underline{1}
 x

 F_{\mu}(x) := e^{-V(y)}v(dy) , x\in \mathbb{R}.
  Z -\infty

We set

  \Phi(x) := \frac{1}{2\pi} -\infty x\exp(-\frac{1}{2}y^{2})dy, x\in \mathbb{R},
and

(2.1)  :=F_{\mu}^{-1}\circ\Phi.

Here  F_{\mu}^{-1} :  (0,1)  arrow \mathbb{R} is the inverse function of  F_{\mu} . By definition, it is clear that  g is

differentiable and strictly increasing. Moreover, by the convexity of  V we have the

Lemma 2.1. It holds that  g'(x)  \leq a for all  x\in \mathbb{R}.

Once this lemma is shown, the inequality (1.2) is straightforward from the Sko‐
rokhod embedding of Bass [1]. Let  \{W_{t}\}_{t\geq 0} be a standard one‐dimensional Brownian
motion. Notice that  g(W_{1}) follows  \mu by the definition of  g.

Proof of (1.2). Applying Clark’s formula (see, e.g., [15, Appendix  E] ) to  g(W_{1})
yields

 g(W_{1})-E[g(W_{1})] =

where for   0\leq s\leq  1 and  y\in \mathbb{R},

1

 a(s, W_{s})dW_{s} a.s.,
 0

 a(s, y) := \frac{\partial}{\partial y}E[g(y+W_{1-s})](2.2)
 =E[ /(y+W_{1-s})].
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In (2.2), the second line follows from the boundedness of  g . By time change due to
Dambis‐Dubins‐Schwarz (see, e.g., [18, Theorem V.1.6]), there exists a Brownian motion
 \{B(t)\}_{t\geq 0} such that a.s.,

 0^{t_{a(s,W_{s})dW_{s}}}=B  (  0^{t_{a(s,W_{s})^{2}ds)}} for all   0\leq t\leq  1.

Set

1

(2.3)  T:= a(s, W_{s})^{2}ds.
 0

We know from [1] that  T is a stopping time in the natural filtration of  B . Moreover, by
(2.2) and Lemma 2.1, we have  T\leq a a.s. Let  \{L_{t}^{x}\}_{t\geq 0,x\in \mathbb{R}} denote the local time process
of  B . By Tanaka’s formula we have for every  x\in \mathbb{R},

(2.4)  E[(B( a)-x)^{+}] =E[(B(T)-x)^{+}] +\frac{1}{2}E[L_{a}^{x}-L_{T}^{x}],
(2.5)  E[(x-B( a))^{+}] =E[(x-B(T))^{+}] +\frac{1}{2}E[L_{a}^{x}-L_{T}^{x}]_{:}
From (2.4) and (2.5), we obtain for every convex  \psi,

(2.6)  E[ \psi(B(a))] =E[\psi(B(T))]+\frac{1}{2} \mathbb{R}^{E}[L_{a}^{x}-L_{T}^{x}]
\psi"(dx) .

Indeed, by Fubini’s theorem,

 E[(B(a)-x)^{+}]\psi"(dx)+ E[(x-B(a))^{+}]\psi"(dx)
 [0,\infty) (-\infty,0)

 =E[\psi(B(a))-\psi_{-}'(0)B(a)-\psi(0)]
 =E[\psi(B(a))]-\psi(0) ,

which, by (2.4), (2.5) and  E[B(T)]  =0 , equals the right‐hand side of (2.6) with  \psi(0)
subtracted. Hence (2.6) holds. As  \psi" is nonnegative and  T\leq a a.s., it follows immedi‐
ately from (2.6) that

(2.7)  E[\psi(B(a))] \geq E[\psi(B(T))]_{:}

The proof ends by noting identities in law:

(2.8)  B(T)=g(W_{1})-E[g(W_{1})] (d)=X-E[X]

and  B(a)  (d)=Y.
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Remark 2. (1) For any convex  \psi such that the process   \int_{0}^{t}\psi_{-}'(B(s))dB(s) ,   0\leq

 t\leq a , is a martingale, the identity (2.6) is immediate from the Itô‐Tanaka formula.
(2) For any convex  \psi such that  E[|\psi(B(a))|]  <  1  (i.e., E[\psi(B(a))]  <  1 as  \psi is
bounded from below by a linear function), the inequality (2.7) follows readily from the

optional sampling theorem applied to the submartingale  \{\psi(B(t))\}_{0\leq t\leq a}.
We proceed to the proof of Lemma 2.1. Since convex functions remain convex under

scaling, it suffices to show the assertion witp  a=  1 ; however, we give a proof retaining

a for later use. In the sequel we write  \sigma= a for notational simplicity.

Lemma 2.2. It holds that for all  x\in \mathbb{R},

  \sigma F_{\mu}'(x) \geq\Phi'(\frac{x}{\sigma}+\sigma V_{-}'(x))
Proof. Since  V(y)-V(x)  \geq V_{-}'(x)(y-x) for all  x,  y\in \mathbb{R} , we have

  \frac{1}{F_{\mu}'(x)} = \mathbb{R}^{\exp}(-\frac{y^{2}}{2\sigma^{2}}-V(y))
dy\cross\exp(\frac{x^{2}}{2\sigma^{2}}+V(x))
  \leq\exp(\frac{x^{2}}{2\sigma^{2}}) \mathbb{R}^{\exp}\{-\frac{y^{2}}
{2\sigma^{2}}-V_{-}'(x)(y-x)\}dy
 = \exp\{\frac{1}{2} (\frac{x}{\sigma}+\sigma V_{-}'(x))^{2}\} \cross 2\pi\sigma

as claimed.  \square 

The proof of Lemma 2.1 follows readily from the above lemma.

Proof of Lemma 2.1. Since

 /(x)=  \frac{\Phi'(x)}{F_{\mu}'\circ F_{\mu}^{-1}(\Phi(x))}
by the definition (2.1) of  g , the assertion of the lemma is equivalent to

(2.9)  G(\xi)  :=\sigma F_{\mu}'\circ F_{\mu}^{-1}(\xi)-\Phi'\circ\Phi^{-1}(\xi)  \geq 0 for all  \xi\in  (0,1) .

First note that

(2.10)  G(0+)= \lim_{\xiarrow 0+}G(\xi)=0, G(1-)=\lim_{\xiarrow 1-}G(\xi)=0
because both  F_{\mu}'\circ F_{\mu}^{-1} and  \Phi'\circ\Phi^{-1} are zero at  \xi=0+ and  \xi=  1- . Next,  G is both

right‐ and left‐differentiable because  F_{\mu}' is so and  F_{\mu}^{-1} is monotone. Now we suppose
that  G has a local minimum at some  \xi_{0}  \in  (0,1) . Then  G_{-}'(\xi_{0})  \leq 0\leq G_{+}'(\xi_{0}) . Since

 G' ( \xi)=\sigma\frac{(F')'}{F_{\mu}'}\circ F_{\mu}^{-1}(\xi)+\Phi^{-1}(\xi)
 =-( \frac{x}{\sigma}+\sigma V'(x)) |_{x=} \mu-1(\xi)^{+\Phi^{-1}(\xi)} ’
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we have

 ( \frac{x}{\sigma}+\sigma V_{+}'(x)) |_{x=} -1(\xi_{0}) \leq\Phi^{-1}(\xi_{0}) 
\leq (\frac{x}{\sigma}+\sigma V_{-}'(x)) |_{x=} -1(\xi_{0}) ’

which entails that by the convexity of  V,

  \Phi^{-1}(\xi_{0})= (\frac{x}{\sigma}+\sigma V_{-}'(x)) |_{x=F_{\mu}^{-1}(\xi_
{0})}.
Hence by Lemma 2.2,

 G( \xi_{0})=\{\sigma F_{\mu}'(x)-\Phi'(\frac{x}{\sigma}+\sigma V_{-}'(x))\}|_{x
=} \mu-1(\xi 0) \geq 0.
This observation together with (2.10), leads to (2.9) and concludes the proof.  \square 

§2.2. Proofs of (1.3), (1.4) and Corollary 1.2

We start this subsection with an outline of the proof of (1.3) and (1.4) in Theo‐
rem 1.1. These inequalities are immediate from the identity (2.6) and Proposition 2.3  0

[12]. As the proof proceeds in the same way as that of the proposition, we put its state‐
ment in a slightly general setting. Let  \beta  =  \{\beta(t)\}_{t\geq 0} be a standard one‐dimensional

Brownian motion,  \{l_{t}^{x}\}_{t\geq 0,x\in \mathbb{R}} its local time process and  S a stopping time in the natural
filtration of  \beta.

Proposition 2.3. Suppose that there exists a positive real  b such that   S\leq  b  a.s.

Then it holds that for all  x\in \mathbb{R},

 b^{-1}(b-E[S])^{2}

 E[l_{b}^{x}-l_{S}^{x}] \geq 0 p(s;\sqrt{x^{2}+b})ds
and

 E[l_{b}^{x}-l_{S}^{x}]  \leq 2(b(1+q))^{\frac{1}{2q}}p(1;\frac{x}{\sqrt{b(1+q)}
}) (b-E[S])^{\frac{1}{2p}}
for every  p>  1 with  q its  con\cdot u ate.

Upon noting the expression

(2.11)  E[l_{b}^{x}-l_{S}^{x}] =E[E[l_{t}^{z}]|_{(t,z)=(b-S,x-\beta(S))}]
thanks to the strong Markov property of Brownian motion, the proof of the above

proposition makes use of the following expressions for  E[l_{t}^{z}],  t>0,  z\in \mathbb{R} :
 t

(2.12)  E[l_{t}^{z}] = p(s;z)ds
 0

 =2 \int_{0}^{\infty}(y-|z|)^{+}p(t;y)dy
 =2 0^{\infty} ( ty-|z|)^{+}p(1;y)dy,
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and Wald’s identity as well:  E[\beta(S)^{2}]  =E[S] . For more details of the proof, refer to

[12, Subsection 2.2].
We turn to the proof of Corollary 1.2. Note that when  \psi"(\mathbb{R})  <  1 , we may let

 parrow 1 in (1.4) to obtain

(2.13)  E[ \psi(v\cdot Y)] \leq E[\psi(v\cdot X-E[v\cdot X])]+\frac{1}{2\pi}
\psi"(\mathbb{R})(a-var(v\cdot X))^{\frac{1}{2}} :

Proof of Corollary 1.2. Taking  \psi(x)  =  |x| in (2.13) and noting  E[|v\cdot Y|]  =

  2a/\pi , we have

 E[|v \cdot X-E[v\cdot X]|] \geq \frac{2}{\pi}\{ a-\sqrt{a-var(v\cdot X)}\},
from which the assertion follows readily.  \square 

Remark 3. A more direct derivation of the identity (2.13) is possible. By (2.12),
we have for any  t\geq 0 and  z\in \mathbb{R},

 E[l_{t}^{z}]  \leq 0^{t}p(s, 0)ds= \frac{2t}{\pi}.
Therefore under the assumption of Proposition 2.3, we have by (2.11) and Jensen’s
inequality,

 E[l_{b}^{x}-l_{S}^{x}]  \leq \frac{2}{\pi}E[\sqrt{b-}]
  \leq \frac{2}{\pi}\sqrt{b-E[S]}

for all  x\in \mathbb{R} . Combining this estimate with the identity (2.6), we obtai

 E[ \psi(B(a))] \leq E[\psi(B(T))]+\frac{1}{2}\psi"(\mathbb{R}) \cross \frac{2}{
\pi}\sqrt{a-E[T]},
which is nothing but (2.13) because of Wald’s identity and the equivalence (2.8) in law.

We conclude this section with a remark on the stopping time  T.

Remark 4. (1) By (2.2) we may write  a(s, W_{s})  =E[g'(W_{1})|W_{s}]  a.s . Hence by
the definition (2.3) of  T , and by Jensen’s inequality and Fubini’s theorem, we hav

 E[T] \leq E [ 0^{1_{E}}[g'(W_{1})^{2}|W_{s}]ds]
 =E[ /(W_{1})^{2}] ,
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and

 E[T] \geq E [ 0^{1_{E}} [ /(W_{1})|W_{s}]ds]^{2}
 =E[g'(W_{1})]^{2}

Therefore by Wald’s identity and (2.8), we obtain the following upper and lower bounds
on var(X):

 E [ /(W_{1})]^{2} \leq var(X) \leq E [ /(W_{1})^{2}] :

Recalling that  g(W_{1}) is distributed as  \mu , we rewrite the rightmost side as

 \mathbb{R}(g'\circ g^{-1})^{2}(x)\mu (dx):

In view of Remark 1, it is plausible that in the case  V\in C^{2}(\mathbb{R}) ,

 ( /_{o} -1)^{2}(x)  \leq \frac{a}{1+aV"(x)}
for all  x\in \mathbb{R} , however, we have not had a proof yet; we note that both sides agree whe
 V is a quadratic function.

(2) Let  \beta  =  \{\beta(t)\}_{t\geq 0} be a standard one‐dimensional Brownian motion and  \tau_{R} denote
Root’s solution to the Skorokhod embedding problem that embeds the law of  X-E[X]

into  \beta :  \beta(\tau_{R})  (d)=X-E[X] . Since  \tau_{R} is of minimal residual expectation, it follows that
 \tau_{R} is also bounded from above by  a ; indeed, if we let  \tau_{B} be Bass’ solution embedding the

(d)
same law into  \beta , namely  \tau_{B}  =  T , then we have

 E[(\tau_{R}-t)^{+}]  \leq E[(\tau_{B}-t)^{+}] for all  t\geq 0,

and hence  \tau_{R}  \leq a a.s. This fact indicates that the Brascamp‐Lieb inequality (1.2) ca
also be proven based on Root’s solution. For the construction of embedding due to

D.H. Root and the notion of minimal residual expectation, see [14, Section 5. 1] and
references therein. In addition, the boundedness of Root’s solution as noted above in the

Brascamp‐Lieb framework gives an answer to the question raised in [8, Section 7] as to
when Root’s barrier is bounded. If  V is in  C^{2}(\mathbb{R}) , the convexity condition on  V can also

be relaxed; see the next section for details.

§3. Extension of the Brascamp‐Lieb inequality to nonconvex potentials

In this section we take  n=1 and continue our discussion in [12, Appendix] as to an
extension of the Brascamp‐Lieb inequality (1.2) to the case of nonconvex potentials; we
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explore conditions on the potential function  V under which the inequality (1.2) remains
true. Recently  \nabla\phi interface models with nonconvex potentials have been studied with

great interest; see e.g., [2, 7, 3, 6]. Although our exposition here is restricted to one
dimension, we think that it would be beneficial to that study. This section is based on

[13, Appendix].
We retain the notation of the previous section. In what follows we let  V :  \mathbb{R}arrow \mathbb{R}

be in  C^{2}(\mathbb{R}) . We are interested in the case that  \{x\in \mathbb{R}; V"(x) <0\}  \neq  \emptyset . We assume

that  V satisfies

(3.1)  V(x)  \geq ax+b for all  x\in \mathbb{R},

for some reals  a and  b , so that

 Z=E[e^{-V(Y)}] <1.
As in the proof of Lemma 2.1 given in Subsection 2.1, we denote by  \sigma^{2} with  \sigma  >  0,

instead of  a , the variance of the centered Gaussian random variable  Y . We set

 \mathcal{D}_{V} :=\{x\in \mathbb{R}; V"(x) \leq 0\}.

The aim of this section is to give a proof  0

Theorem 3.1. Suppose that

(A)  x \in fin \{\frac{1}{2}\sigma^{2}V'(x)^{2}+xV'(x)-V(x)\} \geq\log Z.
Then it holds that for any convex function  \psi on  \mathbb{R},

(3.2)  E[\psi(Y)] \geq E[\psi(X-E[X])] ;

moreover, it also holds that

 E[\psi(Y)] \geq E[\psi(X-E[X])]

(3.3)

 + \frac{1}{2} \mathbb{R} 0^{p(s;\sqrt{x^{2}+\sigma^{2}})ds\psi"(dx)}\sigma^{-2}
(\sigma^{2}-var(x))^{2},
and for every  p>  1,

(3  \cdot 4)  E[\psi(Y)]  \leq E[\psi(X-E[X])]+C(\sigma^{2}, \psi, q) (  \sigma^{2} —var(X))   \frac{1}{2p},

where  C(\sigma^{2}, \psi, q) is given by (1.5) with  a=\sigma^{2} and  q the  con\cdot u ate of  p . In particular,
these inequalities (3.2)  -(3.4) hold true if

(A)  x \in D2n \{-\frac{x^{2}}{2\sigma^{2}}-V(x)\} \geq\log Z.
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We give two examples.

Example 3.2 (double‐well potentials). Consider the potential  V of the form

 V(x)=  \frac{1}{2}\alpha^{2}x^{4}-\frac{1}{2}\beta x^{2}, x\in \mathbb{R},
for  \alpha,  \beta>0 . Take  \sigma=1 for simplicity. Then the left‐hand side of  (A') is calculated as

(3.5)   \frac{\beta(5\beta-6)}{72\alpha^{2}}\wedge 0,
which tends to  0 as  \alphaarrow 1 . On the other hand, as

(3.6)  Z=  \frac{1}{2\pi\alpha} \mathbb{R}^{\exp}(\frac{\beta-1}{2\alpha}y^{2}-
\frac{1}{2}y^{4})dy
by change of variables, it is clear that the right‐hand side of  (A') diverges to  -1 as  \alphaarrow

 1 . Therefore even if  \beta\gg 1 , the condition  (A') is fulfilled by taking  \alpha sufficiently large,

and hence the inequalities  (3.2)-(3.4) hold for such a pair of  \alpha and  \beta by Theorem 3.1.

We shall see that one of the sufficient conditions is given by

 \alpha\geq (\beta-1)\vee 2,

namely  (A') is satisfied if  \alpha\geq\beta-1 and  \alpha\geq 2 . By  (\beta-1)/\alpha\leq  1 and (3.6),

 Z \leq \frac{2}{2\pi\alpha} 0^{\infty}\exp(\frac{1}{2}y^{2}-\frac{1}{2}y^{4})dy
(3.7)  =  \frac{1}{2\pi\alpha}e^{1/8} -1/2^{\exp}\infty(-\frac{1}{2}z^{2}) \frac{dz}
{\sqrt{z+1/2}}.
Here we changed variables with  y^{2}=z+1/2 for the equality. Noting that   1/\sqrt{z+1}/2\leq

 2/3\cross z for   z\geq  1 , we bound the integral in (3.7) from above by

 -1/21 \frac{dz}{\sqrt{z+1/2}}+ \frac{2}{3} 1^{\infty}z\exp(-\frac{1}{2}z^{2})dz
= 6+ \frac{2}{3e}.
Combining this estimate with (3.7) and noting that  6  <  2.5,  \sqrt{2}/(3e)  <  0.5 and
1/  2\pi<0.4 , we have

 e^{1/8}

 Z< 1.2\cross \overline{\alpha}.

On the other hand, as  \beta(5\beta-6)  \geq  -9/5 for any  \beta>0 , (3.5) is bounded from below by

 - \frac{1}{40\alpha^{2}}.
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Therefore the assumption  (A') is  ful\subset 1ledi

  \alpha\exp(-\frac{1}{40\alpha^{2}}-\frac{1}{8}) \geq 1.2,
which is the case when  \alpha\geq 2 since the left‐hand side is not less than

  2 (1- \frac{1}{40\cross 2^{2}}-\frac{1}{8}) = \frac{139}{160} 2=1.22\cdots :

Example 3.3 (potential with oscillation). We take  \sigma=  1 as well in this exam‐
ple. For a given positive real  \gamma , consider

 V(x)=  \frac{1}{2}x^{2}-\gamma\cos x, x\in \mathbb{R}.
We let  \gamma>  1 so that  \{V"<0\}\neq\emptyset . We shall see that the assumption (A) is fulfilled  i

 \gamma\leq 2 . Observe first that the left‐hand side of (A) is equal to

(3.8)  ( \pi-\sqrt{\gamma^{2}-1}+\arctan\sqrt{\gamma^{2}-1})^{2}-\frac{\gamma^{2}+1}
{2}
if  \gamma is such that  2x+\gamma\sin x>0 for all  x>0 and that  2\pi-\sqrt{\gamma^{2}-1}+\arctan\sqrt{\gamma^{2}-1} is

nonnegative. Note that these two requirements are satisfied when  \gamma\leq 2 . The infimum

of (3.8) over  1  <\gamma\leq 2 , is attained at  \gamma=2 and its value  (4\pi/3- 3)^{2}-5/2 is greater
than 2. On the other hand, as

 Z=  \frac{1}{2\pi} \mathbb{R}^{e^{-x^{2}}\exp}(\gamma\cos x)dx
  \leq \frac{p^{\gamma}}{2},

the right‐hand side of (A) is less than 2. Therefore the assumption (A) is fulfilled, and
hence by Theorem 3.1 we have  (3.2)-(3.4) when  \gamma\leq 2.

Remark 5. (1) As for Example 3.2, the left‐hand side of (A) is equal to

  \frac{\beta^{2}(8\beta-9)}{216\alpha^{2}}\wedge 0,
from which we may draw a sharper condition on  \alpha and  \beta.

(2) In Example 3.3, the upper bound 2 on  \gamma cannot be improved signi cantly. To see
this, we bound the partition function  Z from below in such a way that, as  |\sin x|  \leq  |x|
for any  x\in \mathbb{R},

 Z=  \frac{e^{\gamma}}{2\pi} \mathbb{R}^{e^{-x^{2}}\exp}(-2\gamma\sin^{2}
\frac{x}{2})dx
 e^{\gamma}

 \geq \overline{\sqrt{2+\gamma}} ’
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from which we see that (A) fails even for  \gamma=5/2.
(3) Theorem 3.1 applies to asymmetric potentials as well. For example, take  V(x)  =

 x^{2}/2+\gamma\sin x,  x\in \mathbb{R} , with a real  \gamma such that  |\gamma|  >  1 . Then it can be checked that whe
 \sigma=1 , a su cient condition for (A) is  |\gamma|  \leq 2.

We proceed to the proof of Theorem 3.1. In what follows we denote

 U_{V}(x)=  \frac{1}{2}\sigma^{2}V'(x)^{2}+xV'(x)-V(x) , x\in \mathbb{R}.
As in the previous section, we denote by  F_{\mu} the distribution function of  \mu :

 F_{\mu}(x)= \underline{1} x e^{-V(y)}v(dy) , x\in \mathbb{R},
  Z -\infty

and set  =   F^{-1}\circ\Phi with  F^{-1} the inverse function of  F_{\mu} and  \Phi the standard normal

cumulative distribution function.

Lemma 3.4. Suppose that for all  x\in \mathbb{R},

(3.9)  U_{V}(x) \geq\log Z.

Then the inequalities (3.2)  -(3.4) hold for any convex function  \psi on R.

To prove the lemma, it suffices to show that

(3.10)  /(x)  \leq\sigma for all  x\in \mathbb{R},

in view of the proof of Theorem 1.1. Indeed, if we have (3.10), then we see that Bass’
solution that embeds the law of  X-E[X] into a given Brownian motion is bounded

from above by  \sigma^{2} , from which (3.2) follows readily; as to the validity of (3.3) and (3.4),
observe that the only assumption in Proposition 2.3 is the boundedness of the stopping
time  S.

Proof of Lemma 3.4. The proof of (3.10) proceeds along the same lines as in the
proof of Lemma 2.1. If we define the function  G as in (2.9), then  G(0+)  =G(1-)  =0

because  F_{\mu}'  oF_{\mu}^{-1}(0+)  =  F_{\mu}'  oF_{\mu}^{-1}(1-)  =  0 by (3.1). Provided that  G has a local
minimum at some  \xi_{0}  \in  (0,1) , we have

 G( \xi_{0})= \{\sigma F_{\mu}'(x)-\Phi'(\frac{x}{\sigma}+\sigma V'(x))\}|_{x=} 
\mu-1(\xi 0)
 =  \frac{1}{2\pi}\exp(-\frac{x^{2}}{2\sigma^{2}}-V(x)) \{\frac{1}{Z}-\exp(-
U_{V}(x))\} x= \mu-1(\xi 0) ’

which is nonnegative by the assumption. This shows (3.10) and concludes the proof.  \square 
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Using the above lemma, we prove Theorem 3.1

Proof of Theorem 3.1. Since the assumption  (A') implies (A) due to the fact that

 U_{V}(x)=  \frac{1}{2} (\sigma V'(x)+\frac{x}{\sigma})^{2}-\frac{x^{2}}
{2\sigma^{2}}-V(x)
  \geq-\frac{x^{2}}{2\sigma^{2}}-V(x)

for all  x\in \mathbb{R} , the latter assertion follows as soon as we have proven the former. To this

end, take an arbitrary  x_{0}  \in  \mathbb{R}\backslash \mathcal{D}_{V} , namely let  x_{0} be such that  V"(x_{0})  >  0 . First we

suppose that

 V(x) >V'(x_{0})(x-x_{0})+V(x_{0})

for all  x\in \mathbb{R} but  x_{0} . Then as(seen in the proof of Lemma 2.2,

 Z=  \frac{1}{2\pi\sigma} \mathbb{R}^{\exp}(-\frac{x^{2}}{2\sigma^{2}}-V(x))dx
  \leq \frac{1}{2\pi\sigma}\exp (x_{0}V'(x_{0})-V(x0)) \mathbb{R}^{\exp}(-
\frac{x^{2}}{2\sigma^{2}}-V'(x_{0})x)dx
 =\exp (U_{V}(x0)) ,

hence the inequality (3.9) holds for  x=x_{0} . Next we suppose that

 V(x_{1})=V'(x_{0})(x_{1}-x_{0})+V(x_{0})

for some  x_{1}  \neq x_{0} , say,  x_{1}  >x_{0} . Let  x_{2}  \in  [x_{0}, x_{1}] be a maximal point of the function

 f(x)  :=V(x)-V'(x_{0})(x-x_{0})-V (  x0),  x_{0}\leq x\leq x_{1}.

Then it is clear that  f'(x_{2})  =0 and  f"(x_{2})  \leq 0 ; indeed, if either of them were not the

case, it would contradict the assumption that  x_{2} is a maximal point. Therefore we have

(3.11)  V'(x_{0})=V'(x_{2})

and  x_{2}  \in \mathcal{D}_{V} . Moreover, since

 f(x_{2})=V(x_{2})-V'(x_{0})(x_{2}-x_{0})-V(x_{0}) \geq f(x_{0})=0,

it also holds that by (3.11),

 x_{0}V'(x_{0})-V(x_{0})  \geq x_{2}V'(x_{2})-V (  x2):

Combining this inequality with (3.11) yields

 U_{V}(x_{0}) \geq U_{V}(x_{2})

 \geq\log Z,
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where the second line is due to  x_{2}  \in \mathcal{D}_{V} and the assumption (A). Consequently, (3.9)
holds for all  x\in \mathbb{R}\backslash \mathcal{D}_{V} , and hence for all  x\in \mathbb{R} by (A). Therefore we have the theorem
thanks to Lemma 3.4.  \square 
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