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Infinite Dimensional Stochastic Differential

Equations for Dyson’s Model

By

Li‐Cheng TSAI *

Abstract

In this article we consider the infinite‐dimensional Stochastic Differential Equation (SDE)
corresponding to the bulk limit of Dyson’s Brownian Motion (DBM), for all  \beta\geq  1 . We ive a
pathwise construction of the strong solution and prove the pathwise uniqueness, for an explicit
and general class of initial conditions, including the lattice configuration  \{x_{i}\}=\mathbb{Z} and the sine
process.

§1. Introduction

Here we study the well‐posedness of the infinite‐dimensional SDE,

 t

(1.1)  X_{i}(t)=X_{i}(0)+B_{i}(t)+\beta \phi_{i}(X(s))ds, i\in \mathbb{Z},
 0

where  X(s)  =  (: :: < X_{0}(s) < X_{1}(s) < :::) describes ordered particles on  \mathbb{R},  B_{i}(t) ,
 i\in \mathbb{Z} , denote independent standard Brownian motions, and the interaction  \phi_{i}(x) takes
the form

(1.2)   \phi_{i}(x) := \frac{1}{2}\lim_{k} \sum \frac{1}{x_{i-X}},
 j:|j-i|\leq k

with  \beta\geq  1 measuring its strength. The interest of such SDE arises from random matrix

theory. Equation (1.1) represents the bulk limit of DBM, which describes the evolution
of the eigenvalues of the symmetric and Hermitian random matrices with independent
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Brownian entries, for  \beta=1 , 2. The results stated in this article are from the paper [7].
Here we omit some of the more technical proofs and refer to [7] for the details.

The difficulty of establishing the well‐posedness of (1.1) lies in the long‐range and
singular nature of  \phi_{i} . Indeed, for a particle configuration  x with a roughly uniform

density, we have   \sum_{:\neq i}\frac{1}{|x_{i}-x_{j}|}  =  1 , so the only way (1.2) converges is by canceling
two divergent series from  <i and  >i . Alternatively, under the framework of [3, 4],
the system (1.1) of SDEs formally has the logarithmic potential  - \beta\sum_{i<j}\log|x_{i}-x_{j}|.
However, due the logarithmic growth as  |x_{i}-x_{j}|  arrow 1 , such a potential is still ill‐defined

even under a limiting procedure as in (1.2).
At  \beta  =  1 , 2, 4, this challenge has been largely overcome thanks to the integrable

structure of DBM. We refer to [2, 5, 6] and the references therein for developments in
this direction. Here we attack the problem, for all  \beta\geq  1 , without referring to the inte‐

grable structure, whereby establishing the strong existence and pathwise uniqueness  0

(1.1); see Theorem 1.1. As our techniques do not refer to a specific equilibrium measure,
Theorem 1.1 holds for an explicit, out‐of‐equilibrium configuration space  \mathcal{X}^{rg}(\alpha, \rho,p) ,

which, loosely speaking, consists of particle configurations with a roughly uniform den‐

sity  \rho^{-1}  >  0 . In particular, the space includes the lattice configuration  \{x_{i}\}  =\mathbb{Z} and

the sine process; see [7, Lemma 8.2].
The approach used here is further adopted to establish certain finite‐to‐infinite‐

dimensional convergences of (1.1). As a corollary, it is shown that the determinantal
point process constructed in [2] coincides with the unique strong solution given by
Theorem 1.1. See [7, Theorem 1.4, Corollary 1.6].

§1.1. Definitions and Statement of the Results

We begin by defining the spaces  \mathcal{X}(\alpha, \rho) and  \mathcal{X}^{rg}(\alpha, \rho,p) . This is done by consid‐

ering their corresponding gap configurations. More explicitly, let  \mathcal{W}  :=  \{x\in \mathbb{R}^{\mathbb{Z}} :  x_{i}  <

 x_{i+1},  \forall i  \in  \mathbb{Z}\} denote the Weyl chamber (of particle configurations), and let  u denote
the map into gap configurations:

(1.3)  u :  \mathcal{W}arrow(0, \infty)^{L},  L:=   \frac{1}{2}+\mathbb{Z},  u(x)  :=(x_{a+1/2}-x_{a-1/2})_{a\in L},

which is made bijective by augmenting the zeroth particle coordinate, as

(1.4)  U :  \cross  (0, \infty)^{L},  U(x)  :=(x_{0}, u(x)) .

For  \alpha\in  (0,1) and  \rho>0 , we consider the following space of gap configurations

(1.5)  \mathcal{Y}(\alpha, \rho) := \{y\in (0, \infty)^{L}: |y|_{\alpha,\rho}<\infty\}
,
(1.6)  | y|_{\alpha,\rho} := \sup \{|\Sigma_{(0,m)}(y)-\rho| |m|^{\alpha}\},

 m\in \mathbb{Z}\backslash \{0\}
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where  \Sigma_{\mathcal{I}}(y) denotes the average over a generic finite set  \mathcal{I} :

(1.7)   \Sigma I(y) := |\mathcal{I}|^{-1}\sum_{a\in}(y_{a})^{p}, \Sigma_{\mathcal{I}}
(y) :=\Sigma_{\mathcal{I}}^{1}(y) ,

with the convention  (i, j] = [j, i) (and similarly for  (i, j) ,  [i,  j] , etc) and  \Sigma_{\emptyset}^{p}(y)  :=  0.

We de ne  \mathcal{X}(\alpha, \rho)  :=  u^{-1}(\mathcal{Y}(\alpha, \rho)) . That is,  \mathcal{X}(\alpha, \rho) consists of particle configura‐

tions whose corresponding gap processes satisfy (1.5). Similarly, for  p  >  1 , we define
 \mathcal{X}^{rg}(\alpha, \rho,p)  :=u^{-1}(\mathcal{Y}(\alpha, \rho)\cap \mathcal{R}(p)) , where

(1.8)   \mathcal{R}(p) := \{y\in (0, \infty)^{L} : \sup_{m\in \mathbb{Z}}\Sigma_{(0,m)
}^{p}(y) <\infty\}.
We proceed to defining the process‐valued analogs of  \mathcal{X}(\alpha, \rho) and  \mathcal{X}^{rg}(\alpha, \rho, p) . To

simply notations, we often use  x and  y , instead of  x(\cdot) and  y(\cdot) , to denote processes.

Let  \mathcal{W}_{T}  :=  \{x \in C([0, \infty))^{\mathbb{Z}} : x(t) \in \mathcal{W}, \forall t \geq 0\} denote the process‐valued analog  0

 \mathcal{W} . By abese of notation, we let  u and  U act on  \mathcal{W}_{T} by  u(x)(t)  :=  u(x(t)) and by

 U(x)(t)  :=U(x(t)) . With  \mathcal{Y}_{T}(\alpha, \rho) and  \mathcal{R}_{T}(p) denoting the analogs of  \mathcal{Y}(\alpha, \rho) and  \mathcal{R}(p)
as follows

(1.9)   \mathcal{Y}_{T}(\alpha, \rho) := \{y\in C_{+}([0, \infty))^{L} : \sup |y(s)|_{
\alpha,\rho}<1, \forall t\geq 0\}, s\in[0,t]

(1.10)   \mathcal{R}_{T}(p) := \{y\in C_{+}([0, \infty))^{L} : \sup \Sigma_{(0,m)}^{p}
(y) <1, \forall t\geq 0\}, s\in[0,t],m\in \mathbb{Z}

(1.11) where  C_{+}([0, \infty))  :=\{y\in C([0, \infty)) : y(t) >0, \forall t\geq 0\},

we define  \mathcal{X}_{T}(\alpha, \rho)  :=u^{-1}(C([0, \infty)) \cross \mathcal{Y}_{T}(\alpha, \rho)) and  \mathcal{X}^{rg}(\alpha, \rho, p)  :=u^{-1}(C([0, \infty))  \cross

 (\mathcal{Y}_{T}(\alpha, \rho)\cap \mathcal{R}(p))) .

Recall from [1, Definition 5.2.1, 5.3.2] the notions of strong solutions and pathwise
uniqueness of SDE, which are readily generalized to infinite dimensions here. Let  B(t)  :=

 (B_{i}(t))_{i\in \mathbb{Z}} denote the driving Brownian motion, with the canonical filtration  F_{t}^{B}\sim  :=

 \sigma  (B(s) : s\in [0, t]) . Hereafter, we fix  \beta\geq  1,  \alpha\in  (0,1) ,  \rho>0 and  p>  1 unless otherwise

stated. The following is our main result.

Theorem 1.1. Given any  x^{in}\in \mathcal{X}(\alpha, \rho) , there exists an  \mathcal{X}_{T}(\alpha, \rho) ‐valued,  \mathscr{F}^{B}-

adapted solution X of (1.1) starting from  x^{in} . If, in addition,  x^{in}  \in  \mathcal{X}^{rg}(\alpha, \rho,p) , this
solution X takes value in  \mathcal{X}^{rg}(\alpha, \rho,p) , and is the unique  \mathcal{X}^{rg}(\alpha, \rho,p) ‐valued solution  i

the pathwise sense.

Remark 1.2. For any  x\in \mathcal{X}_{T}(\alpha, \rho) , one easily verifies that

 ( \lim_{karrow\infty}\sum_{j:|i-j|\leq k}\frac{1}{x_{i}(t)-x_{j}(t)}) converges uniformly in   t\in  [0, t'] , for any fixed  i\in \mathbb{Z} and
 t'  <  1 . Further, the limit  \phi_{i}(x(t)) takes values in  L_{1oc}^{\infty}([0, \infty)) , so in particular the

r.h.  s . of (1.1) is well‐defined for  \mathcal{X}_{T}(\alpha, \rho) ‐valued processes.
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The rest of this paper is outlined as follows. In Section 2 we present a proof  0

Theorem 1.1, which is detailed in Section 3‐6. Among these, Section 3 settles the mono‐

tonicity (2.13) and well‐posedness of certain finite‐dimensional SDE, and Section 4−6
handle the relevant propositions as indicated in their titles.

§2. Proof of Theorem 1.1

Throughout this article we use lower‐case English and Greek letters such as  x,  y,  \alpha,  \gamma,  u

to denote deterministic variables or functions, among which  i , ,  k,  \ell,  m,  n denote inte‐

gers, and  a,  b denote half integers. We use upper‐case English letters such as  X,  Y,  I,  J

to denote random variables, use the calligraphic font (e.g.  \mathcal{A},  \mathcal{I}) to denote deterministic
sets, and use the Fraktur font (e.g.  \mathfrak{A},  II ) to denote random sets. We let  c=c(t, k, \ldots)
denote a generic deterministic positive finite constant that depends only on the desig‐
nated variables.

The first step is to reduce the equation of particles, (1.1), to the equation of the
gaps. To this end, we consider the interaction of the gaps

(2.1)  \eta_{a}(y) :=\eta_{a}(u(x)) :=\phi_{a+1/2}(x)-\phi_{a-1/2}(x) ,

(2.2)  = \frac{1}{y_{a}}-\psi_{a}(y_{a}, y) ,

consisting of the (Bessel‐type) repulsion terms  1/y_{a} and the compression terms  \psi_{a}
defined as

(2.3)

 \psi_{a} :  [0, \infty)  \cross  (0, \infty)^{L}arrow[0, \infty) ,  \psi_{a} (  y , z)  :=  \{\begin{array}{l}
\frac{1}{2}\sum_{i:|i-a|>1}\frac{y}{z_{(a,i)}(y+z_{(a,i)})}, for y>0,
0 , for y=0,
\end{array}
where  z_{\mathcal{I}}  := \sum_{a\in \mathcal{I}}z_{a} and  (a, i)  :=  (i, a) (as mentioned before). We have the following
equation for  (X_{0}, Y)  :=u(X) :

 t

(2.4)  X_{0}(t)=X_{0}(0)+B_{0}(t)+\beta \phi_{0}(Y(s))ds,
 0

 t

(2.5)  Y_{a}(t)=Y_{a}(0)+W_{a}(t)+\beta \eta_{a}(Y(s))ds, a\in L,
 0

where  W(t)  :=u(B(t)) , and, by abuse of notation,

  \phi_{0}(y) :=\phi_{0}(u^{-1}(0, y))=\sum_{i=1}^{\infty}(\frac{1}{2y_{(-i,0)}}
-\frac{1}{2y_{(0,i)}}) .

Clearly, (1.1) is equivalent to  (2.4)-(2.5) through the bijection  U , and one easily obtains
the following
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Proposition 2.1.

(a) If  Y is an  \mathcal{Y}_{T}(\alpha, \rho) ‐valued solution of (2.5), defining  X_{0}  \in  C([0, \infty)) by (2.4),
we have that  U^{-1}(X_{0}, Y) is a  \mathcal{X}_{T}(\alpha, \rho) ‐valued solution of (1.1). Further, if  Y is
 (\mathcal{Y}_{T}(\alpha, \rho) \cap \mathcal{R}_{T}(p)) ‐valued, then  U^{-1}(X_{0}, Y) is  \mathcal{X}^{rg}(\alpha, \rho,p) ‐valued; if  Y is  \mathscr{F}^{W_{-}}

adapted, then  U^{-1}(X_{0}, Y) is  \mathscr{F}^{B} ‐adapted.

(b) Conversely, if X is an  \mathcal{X}_{T}(\alpha, \rho) ‐valued solution of (1.1), then  u(X) is a  \mathcal{Y}_{T}(\alpha, \rho)-
valued solution of(2.5). Further, ifX is  \mathcal{X}_{T}^{rg}(\alpha, \rho,p) ‐valued, then  u(X) is  (\mathcal{Y}_{T}(\alpha, \rho)\cap
 \mathcal{R}_{T}(p)) ‐valued; if X is  \mathscr{F}^{B} ‐adapted, then so is  u(X) .

With this proposition, it now suffices to prove

Proposition 2.2. For any given  y^{in}\in \mathcal{Y}_{T}(\alpha, \rho) , there exists a  \mathcal{Y}_{T}(\alpha, \rho) ‐valued,
 \mathscr{F}^{W} ‐adapted solution  Y of (2.5). Moreover, if  y^{in}\in \mathcal{R}(p) , then  Y\in \mathcal{R}_{T}(p) , and  Y is
the unique  (\mathcal{Y}_{T}(\alpha, \rho)\cap \mathcal{R}_{T}(p)) ‐valued solution in the pathwise sense.

We establish Proposition 2.2 in two steps: the existence, as in Proposition 2.3, and

the uniqueness, as in Proposition 2.4. Defining the partial orders

(2.6)  y\leq y'\in  [0, \infty]^{L} if and only if  y_{a}  \leq y_{a}',  \forall a\in L,

(2.7)  y(\cdot)  \leq y'(\cdot) if and only if  y(t)  \leq y'(t) ,  \forall t\geq 0,

we call  Y the greatest  S‐valued solution of (2.5) if, for any  S‐valued weak solution  Y'

defined on a common probability space with  Y'(0)  \leq y^{in} , we have  Y'(\cdot)  \leq Y(\cdot) almost

surely.

Proposition 2.3 (existence . For any  y^{in}  \in  \mathcal{Y}(\alpha, \rho) , there exists a  \mathcal{Y}_{T}(\alpha, \rho)-
valued,  \mathscr{F}^{W} ‐adapted solution  Y of(2.5) starting form  y^{in} , which is the greatest  \mathcal{Y}_{T}(\alpha, \rho)-
valued solution. Further, if  y^{in}\in \mathcal{R}(p) , then  Y\in \mathcal{R}_{T}(p) .

Proposition 2.4 (uniqueness . Let  Y^{up} and  Y^{lw} be  (\mathcal{Y}_{T}(\alpha, \rho)\cap \mathcal{R}_{T}(p)) ‐valued
weak solutions of (2.5) defined on a common probability space, starting from a commo
initial condition  y^{in} . If  Y^{lw}(\cdot)  \leq  Y^{up}(\cdot) almost surely, we have  Y^{lw}(\cdot)  =  Y^{up}(\cdot)
almost surely.

Indeed, Proposition 2.2 follows by combining Proposition 2.3−2.4. In particular, the

pathwise uniqueness follows by applying Proposition 2.4 for  Y^{up}  =Y and  Y^{lw}  =Y',

where  Y is the greatest solution as in Proposition 2.3, and  Y' is an arbitrary weak
solution with  Y'(0)  =Y(0) .

Proposition 2.3 is established in two steps: by first considering the special case

 y^{in}  \in  [\gamma, \infty)^{L},  \gamma>0 , and then the general case  y^{in}  \in \mathcal{Y}(\alpha, \rho) . For the former case, we
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construct the solution of (2.5) by the following iteration scheme,

(2.8a)  Y_{a}^{(0)}(t)=y_{a}^{in}+W_{a}(t)+ \beta 0^{t}\frac{1}{Y_{a}^{(0)}(s)}ds, a\in
L,
(2.8b)  Y_{a}^{(n)}(t)=y_{a}^{in}+W_{a}(t)

 + \beta 0^{t} (\frac{1}{Y_{a}^{(n)}(s)}-\psi_{a}(Y_{a}^{(n)}(s), Y^{(n-1)}(s)))
ds, a\in L, n\in \mathbb{Z}_{>0}.
That is, we let  Y_{a}^{(0)} be the Bessel process (driven by  W_{a} ), and for  n  \geq  1 , we let  Y_{a}^{(n)}
be the solution of the following one‐dim nsional SDE

(2.9)  Y(t)=Y(0)+W_{a}(t)+ \beta 0^{t} (\frac{1}{Y(s)}-\psi_{a}(Y(s), Z(s)))ds,
for given  Z=Y^{(n-1)} . Letting

(2.10)   \underline{\mathcal{Y}}(\gamma) := \{y\in (0, \infty)^{L} : 
\lim\inf\Sigma_{(0,m)}(y) \geq\gamma\}, |m|arrow\infty

(2.11)  \underline{\mathcal{Y}} (  \gamma )  := {  y(\cdot)  \in C_{+}([0, \infty))^{L} :   \lim inf in  \Sigma_{(0,m)}(y(s))  \geq\gamma,  \forall t\geq 0 }, |m|arrow\infty s\in[0,t]

(2.12)  \underline{\mathcal{Y}}  := \bigcup_{\gamma>0}\underline{\mathcal{Y}}(\gamma) ,  \underline{\mathcal{Y}}  := \bigcup_{\gamma>0}\underline{\mathcal{Y}} (  \gamma ) ,

in Section 5 we prove

Proposition 2.5. Fix  \gamma>0 . For any given  y^{in}\in  [\gamma, \infty)^{L} , there exists a  \mathcal{Y}_{T}(\gamma)-
valued,  \mathscr{F}^{W} ‐adapted sequence  \{Y^{(n)}\}_{n\in \mathbb{Z}_{\geq 0}} satisfying (2.8). Further, such a sequenc
 is decreasing,  i.e.

(2.13)  Y^{(0)}(\cdot) \geq Y^{(1)}(\cdot) \geq Y^{(2)}(\cdot) \geq:::,

almost surely. Defining the  \mathscr{F}^{W} ‐adapted process  Y_{a}^{(\infty)}(t)  := \lim_{narrow\infty}Y_{a}^{(n)}(t) , we have

that  Y^{(\infty)} is the greatest  \underline{\mathcal{Y}} ‐valued solution of (2.5). If  y^{in}  \in  \mathcal{R}(p) , then  Y^{(\infty)}  \in

 \mathcal{R}_{T}(p) .

For the general case  y^{in}\in \mathcal{Y}(\alpha, \rho) , we consider the truncated initial condition  (y^{in}\vee\gamma)  :=

 (y_{a}^{in}\vee\gamma)_{a\in L},  \gamma>0 , and let  Y^{\vee\gamma} be the  \underline{\mathcal{Y}}_{T}‐valued solution starting from  (y^{in}\vee\gamma) given

by Proposition 2.5. As  Y^{\vee\gamma} is the greatest solution, for any decreasing  \{\gamma_{1} >\gamma_{2} > :::\},
the sequence  \{Y^{\vee\gamma_{k}}\}_{k} is decreasing. In Section 6, we prove

Proposition 2.6. Let  y^{in}  \in  \mathcal{Y}(\alpha, \rho) and  Y^{\vee\gamma}  \in  \underline{\mathcal{Y}}_{T}(\gamma) be as in the preceding.

Fix an arbitrary decreasing sequence  1  \geq  \gamma_{1}  >  \gamma_{2}  > :::  arrow  0 . Defining the  \mathscr{F}^{W_{-}}

adapted process  Y_{a}(t)  :=   \lim_{narrow\infty}Y_{a}^{\vee\gamma_{n}}(t) , we have that  Y is the greatest  \mathcal{X}_{T}(\alpha, \rho)-
valued solution of (2.5).
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As for Proposition 2.4, letting

(2.14)  E_{(i_{1},i_{2})}(t) := \sum_{a\in(i_{1},i_{2})}(Y_{a}^{up}(t)-Y_{a}^{1w}(t)) ,

with  Y^{lw}(\cdot)  \leq  Y^{up}(\cdot) , we have  |Y_{a}^{up}(t)-Y_{a}^{1w}(t)|  \leq  E_{(i_{1},i_{2})]}(t)  \leq  E_{(-\infty,\infty)}(t) ,  \forall a  \in

 (i_{1}, i_{2}) . With this, in Section 4 we prove

Proposition 2.7. For any  t>0,   \sup_{s\in[0,t]}E_{(-\infty,\infty)}(s)=0 , almost surely,

from which Proposition 2.4 follows immediately.

§2.1. Outline of the Proof of Proposition 2.5−2.7

The key step of proving Proposition 2.5 is to establish the monotonicity (2.13)  0

 \{Y^{(n)}\}_{n} . This, as well as many other monotonicity results (e.g. that  Y^{(\infty)} as in Propo‐
sition 2.5 is the greatest solution), are consequences of the following simple observation:

(2.15)  \psi_{a}(y, z)  \leq\psi_{a}(y', z) , if  y\leq y',

(2.16)  \psi_{a}(y, z)  \geq\psi_{a}(y, z') , if  z\leq z',

which is clear from (2.3). Equipped with the monotonicity of  \{Y^{(n)}\}_{n} , the next step is
to take the limit  narrow 1 in (2.8b), and show that the r.h.  s . converges to the appropriate
limit. The major challenge here is to control   \int_{0}^{t}\frac{\beta}{Y_{a}^{(\infty)}(s)}ds , which we achieve by showing

 s\in[0,t]inY_{a}^{(\infty)}(s)  >0 , almost surely, for all  t\geq 0.

The main step of proving Proposition 2.6 is to show  Y  \in  \mathcal{Y}_{T}(\alpha, \rho) . To this end,

in Section 6, we partition  L into certain mesoscopic intervals  \mathcal{A}_{b,k},  b  \in  L , (see (6.5))
and simultaneously estimate  \Sigma_{\mathcal{A}_{b,k}}(Y^{\vee\gamma_{n}}(s)) ,  \forall n  \in  \mathbb{Z}_{>0},  b  \in L. This yields that the

mesoscopic average of  Y(s) over  \mathcal{A}_{b,k} is at least   \frac{\rho}{2} (see Proposition 6.3). Using this as
 a ‘seed’, we estimate the global density  \Sigma_{(0,m)}(Y(s)) ,  |m|  \gg 1 to obtain  Y\in \mathcal{Y}_{T}(\alpha, \rho) .

To prove Proposition 2.7, we use the following readily verified identity (see [7,
Section 4] for a proof)

 t

(2.17)   E_{(i_{1},i_{2})}(t)=E_{(i_{1},i_{2})}(t')+\beta  (L_{i_{2}}^{+}(s)-L_{i_{2}}^{-}(s)-L_{i_{1}}^{+}(s)+L_{i_{1}}^{-}(s))ds,  \forall t\geq t',
 t'

that describes  E_{(i_{1},i_{2})}(t) in terms of certain boundary interactions  L_{i}  (s) , defined as

(2.18)  L_{i} (s) := \frac{1}{2}\sum_{j\in(i,\pm\infty)}\frac{Y_{(i,j)}^{up}(s)-Y_{(i,
j)}^{1w}(s)}{Y_{(i,j)}^{up}(s)Y_{(i,j)}^{1w}(s)}.
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With  E_{(i_{1},i_{2})}(0)  =  0 , equipped with (2.17), in Section 4, we prove Proposition 2.7 by
showing   \int_{0}^{t}L_{i_{k}}^{\pm}(s)dsarrow 0 , along some suitable subsequence  i_{k}  arrow\pm\infty.

§3. Comparison and Monotonicity

A basic tool we use to leverage  (2.15)-(2.16) into the monotonicity of  \{Y^{(n)}\}_{n} is

the following comparison principle for deterministic, one‐dimensional integral equations.
Let

 y\leq[t',t"]  y' if and only if  y(t)  \leq y(t) ,  \forall t\in  [t', t"]

denote the restriction of (2.7) onto  [t', t"].

Lemma 3.1. Fixing  t'  \leq  t"  \in  [0, \infty ), we let  w  \in  C([t', t"]) , and let  f^{up},   flw\in

 C  ((0, \infty)\cross [t', t"]) be locally Lipschitz functions in the first variable. That is, given any

compact  \mathcal{K}\subset  (0, \infty) , there exists  c(\mathcal{K})  >0 such that

 |f^{up}(y, t)-f^{up}(y', t)|, |^{flw}(y, t)-f^{lw}(y', t)| \leq c(\mathcal{K})
|y-y'|,

for all  y,  y'  \in  \mathcal{K} and  t  \in  [t', t"] . If  y^{up},  y^{lw}  \in  C_{+}([t', t"]) solve the follows integra
equations

 t

(3.1)  y^{up}(t)=y^{up}(t')+(w(t)-w(t'))+ f^{up}(y^{up}(s), s)ds, \forall t\in [t', 
t"],
 t'

 t

(3.2)  y^{lw}(t)=y^{lw}(t')+(w(t)-w(t'))+ f^{lw}(y^{lw}(s), s)ds, \forall t\in [t', 
t"],
 t'

and if  f^{lw}(y, \cdot)  \leq[t',t"]  f^{up}(y, \cdot) ,  \forall y\in  (0, \infty) , and  y^{lw}(t')  \leq y^{up}(t') , the

 y^{lw}\leq[t',t"] y^{up}.

With  f^{up}(\cdot, s) and flw  (\cdot, s) being locally Lipschitz, Lemma 3.1 is proven by standard
ODE arguments using Gronwall’s inequality. We omit the proof.

Equipped with Lemma 3.1, we establish a backward lower‐semicontinuouity for

a generic process of the form (3.5). To this end, we consider  Q^{t_{1}}  :=  (Q_{a}^{t_{1}})_{a\in L}  \in

 (C([t_{1}, \infty))\cap C_{+}(t_{1}, \infty))^{L},

(3.3)  Q_{a}^{t_{1}}(t)=W_{a}(t)-W_{a}(t_{1})+ t_{1}t \frac{\beta}{Q_{a^{1}}^{t}(s)}
ds, t\geq t_{1},
the Bessel process starting from  0 at  t_{1} , and let  Q_{a}^{t_{1},t_{2}}  := \sup_{t\in[t_{1},t_{2}]}Q_{a}^{t_{1}}(t) . Indeed, for
 L_{1}  :=   \frac{1}{2}+2L and  L_{2}  :=1+L_{1},  \{Q_{a}^{t_{1}}(\cdot)\}_{a\in L_{i}},  i=1 , 2, are i.i.  d . collections of processes.

Hence, by the Law of Large Numbers, we have

(3.4)   \lim \Sigma_{(0,m)}^{p}(Q^{t_{1},t_{2}}) =E((^{Qt_{1},t_{2}}1/2)^{p}) :=
q(t_{2}-t_{1},p) <1. |m|arrow\infty
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Hereafter, for generic processes  Y(\cdot) and  Y(\cdot) , we adopt the notations

 \overline{Y}(t', t")  :=   \sup  Y(s) ,  \underline{Y}(t', t")  := in  Y(s) ,
 s\in[t',t"]  s\in[t',t"]

 \overline{Y}(t', t")  :=(\overline{Y}_{a}(t', t"))_{a\in L} and  Y(t', t")  :=(\underline{Y}_{a}(t', t"))_{a\in L}.

Lemma 3.2. Let  a  \in  L,  Y^{*}  \in  C_{+}([0, \infty)) ,  F  \in  L_{loc}^{1}([0, \infty)) ,  \{\mathscr{G}_{t}\}_{t\geq 0} be

ltration such that  Y^{*},  F and  W are  \mathscr{G} ‐adapted and that  W is a Brownian motion with

respect to G. If  F\geq 0 and if  Y^{*} solves the equatio

(3.5)  Y^{*}(t)=Y^{*}(0)+W_{a}(t)+ \beta 0^{t} (\frac{1}{Y(s)}-F(s))ds, a\in L,
then, for all   t'\leq t"\in  [0, \infty ), we have

(3.6)  Y^{*}(t")- \underline{Y}^{*}(t', t")= \sup (Y^{*}(t")-Y^{*}(s)) \leq Q_{a}
^{t\prime}(t") ,
 s\in[t',t"]

(3.7)   \sup (Y^{*}(t)-Y^{*}(s)) \leq Q_{a}^{t',t"} := \sup Q_{a}^{t'}(t) ,
 s<t\in[t',t"] t\in[t',t"]

almost surely.

Proof. To the end of showing (3.6), fixing  s_{1}  \in  (t', t") , we consider the process
 Y^{s_{1}}  \in C_{+}([s_{1}, \infty)) defined as

(3.8)  Y^{s_{1}}(t)=Y^{*}(s_{1})+W_{a}(t)-W_{a}(s_{1})+ \beta s_{1}t\frac{1}{Y^{s_{1}}
(s)}ds, t\geq s_{1},
which is a Bessel process starting from  Y^{*}(s_{1}) at time  s_{1} . With  Y^{*} and  Y^{s_{1}} satisfying

(3.5) and (3.8), applying Lemma 3.1 (for  [t', t"]  =  [s_{1}, t"],  y^{up}  =  Y^{s_{1}},  y^{1w}  =  Y^{*},

 f^{up}(y, s)  =  \beta/y and flw  (y, s)  =  \beta(1/y-F(s)) ), we obtain  Y^{*}(\cdot)  \leq[s_{1},t"]  Y^{s_{1}}(\cdot) , and
therefore, with  Y^{*}(s_{1})=Y^{s_{1}} (s1),

(3.9)  Y^{*}(t")-Y^{*}(s_{1})  \leq Y^{s_{1}}(t")-Y^{s_{1}} (s1):

We next compare  Y^{s_{1}} and  Q_{a^{1}}^{s} . They solve the same equation, (3.3) and (3.8), with
different initial conditions  Y^{s_{1}}(s_{1})  >  0  =  Q_{a^{1}}^{s} (s1). Hence, applying Lemma 3.1 for
 (t', t")  =  (s_{1} +\epsilon, t") ,  \epsilon  >  0 (so that  Y^{s_{1}},  Q_{a^{1}}^{s}  \in  C_{+}([s_{1} +\epsilon, t"]) ), conditioned on

 \{Y^{s_{1}}(s_{1}+\epsilon) \geq Q_{a^{1}}^{s}(s_{1}+\epsilon)\} , and then sending  \epsilonarrow 0 , we obtain  Q_{a^{1}}^{s}  \leq[s_{1},t"]  Y^{s_{1}} almost

surely, thereby   \int_{s_{1}}^{t}”   \frac{\beta}{Y^{s_{1}}(s)}ds\leq\int_{s_{1}}^{t}”   \frac{\beta}{Q_{a^{1}}^{s}(s)}ds . Plugging this in (3.3) and (3.8), we obtain

(3.10)  Y^{s_{1}}(t")-Y^{s_{1}}(s_{1}) \leq Q_{a}^{s_{1}}(t")-Q_{a}^{s_{1}}(s_{1})=
Q_{a}^{s_{1}}(t") .

Next, as  Q_{a^{1}}^{s} and  Q_{a}^{t'} solve the same equation on  [s_{1}, t"] with the initial conditions

 Q_{a^{1}}^{s}(s_{1})  =  0  <  Q_{a}^{t'}(s_{1}) , by the preceding comparison argument we obtain  Q_{a^{1}}^{s}(t")  \leq
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 Q_{a}^{t'}(t") . Combining this with  (3.9)-(3.10) , we arrive at  Y^{*}(t")-Y^{*}(s_{1})  \leq  Q_{a}^{t'}(t") . As

this holds almost surely for each  s_{1}  \in  (t', t") , taking the infimum over  s_{1}  \in  (t', t")\cap \mathbb{Q},
using the continuity of  Y^{*}(\cdot) , we conclude (3.6).

As for (3.7), taking the supremum over   t"\in  [t', \overline{t"}]\cap \mathbb{Q} in (3.6), using the continuity
of  Y^{*}(\cdot) , we obtain

  \sup_{t\in[t,t]}\overline{},,  (Y^{*}(t")- \inf_{s\in[t,t]}\overline{},,Y^{*}(s))  = \sup_{s<t\in[tt]},\overline{},,(Y^{*}(t)-Y^{*}(s))   \leq\sup_{t\in[t,t]}\overline{},,Q_{a}^{t'}(t")=Q_{a}^{t',t^{\overline{\prime}
\prime}}

In the following we state the well‐posedness and comparison results of certain finite‐

dimensional SDE. We omit the proofs. They are modifications of standard techniques

based on Lemma 3.1 and can be found in [7, Section 3].

Lemma 3.3. Let  t'\geq 0 and  F :  [0, \infty )  \cross  [t', \infty )  arrow \mathbb{R} be random, such that

 s\mapsto F(y, s) is  C([t', \infty), \mathbb{R}) ‐valued and  \mathscr{F}^{W} ‐adapted for all   y\in  [0, \infty ),

 y\mapsto F(y, s) is Lipschitz, uniformly over  (y, s)  \in  [0, \infty )  \cross  [t', t] , for all  t\geq t',

 F(0, t)=0 , for all  t\geq t'

Given any  (0, \infty) ‐valued,  \mathscr{F}_{t}^{W} ‐measurable  Y^{in} , the equatio

(3.11)  Y(t)=Y^{in}+(W_{a}(t)-W_{a}(t'))+ tt ( \frac{\beta}{Y(s)}+F(Y(s), s))ds
has a  C_{+}([t', \infty)) ‐valued,  \mathscr{F}^{W} ‐adapted solution starting from  Y^{in} at  t' , which is the

unique  c_{+}([t', \infty)) ‐valued solution in the pathwise sense.

Next we turn to the well‐posedness and comparison principle of the equation (3.16)
as follows, which is a finite‐dimensional version of (2.5) with external forces. For  \mathcal{A}\subset \mathbb{R},

we let  \psi_{a}(y, z) and  \eta_{a}^{\mathcal{A}}(y) denote the restriction of  \psi_{a}(y, z) and  \eta_{a}(y) onto  [0, \infty )  \cross

 (0, \infty)  \cap L,

(3.12)   \psi_{a}(y, z) := \frac{1}{2}\sum_{i\in \mathcal{A},|i-a|>1}\frac{y}{z_{(a,i)}
(y+z_{(a,i)})},
(3.13)   \eta_{a}^{\mathcal{A}}(y) := \frac{1}{y_{a}}-\psi_{a}(y_{a}, y) ,

which indeed satisfy the following analog of  (2.15)-(2.16) ,

(3.14)  \psi_{a}^{\mathcal{A}}(y, z)  \leq\psi_{a}(y', z) , for  y\leq y',

(3.15)  \psi_{a}^{\mathcal{A}}(y, z)  \geq\psi_{a}(y, z') , for  z\leq z'
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By abuse of notation, we let  u and  U , defined as in  (1.3)-(1.4) , act on the space  \mathcal{W}^{[i_{1},i_{2}]},
whereby  U:\mathcal{W}^{[i_{1},i_{2}]}  arrow(0, \infty)  \cross  (0, \infty)^{(i_{1},i_{2})\cap L} is also a bijection. For  \mathcal{I}\subset L , we let

 y\leq  y' if and only if  y_{a}  \leq y_{a}',  \forall a\in \mathcal{I},

 y\leq_{[t,t]}y' if and only if  y_{a}(t)  \leq y_{a}'(t) ,  \forall a\in \mathcal{I},   t\in  [t', t"]

denote the restriction of  (2.6)-(2.7) onto  \mathcal{I} and  [t', t"].

Lemma 3.4. Let  i_{1}  \leq  i_{2}  \in  \mathbb{Z},  \mathcal{I}  :=  (i_{1}, i_{2})\cap L,  t'  \geq  0,  Z^{*}  \in  C_{+}([t', \infty)) be

 \mathscr{F}^{W} ‐adapted. For any  \mathscr{F}_{t}^{W} ‐measurable  Y^{in}\in  (0, \infty) , the equatio

 Y_{a}(t) =Y_{a}^{in}(t')+(W_{a}(t)-W_{a}(t'))
(3.16)  t

 +\beta (\eta_{a}(Y(s))+Y_{a}(s)Z_{a}^{*}(s))ds, t\geq t', a\in \mathcal{I}
 t'

has a  C_{+}([t', \infty)) ‐valued,  \mathscr{F}^{W} ‐adapted solution starting from  Y^{in} , which is the unique

 C_{+}([t', \infty)) ‐valued solution in the pathwise sense.

Lemma 3.5. Fixing  t'  <  t"  \in  [0, \infty ),  I_{1}  <  I_{2}  \in  \mathbb{Z} (possibly random), we let
I  :=  (I_{1}, I_{2})\cap L,  Z^{up} and  Z^{lw}  \in  C([t', t"])^{I} , and  Y^{up},  Y^{lw} be the  C_{+}([t', t"])^{I} ‐valued

solutions of (3.16) with the respective external forces  Z^{up} and  Z^{lw},  i.e.

 Y_{a}^{up}(t)  =Y_{a}^{up}(t')+(W_{a}(t)-W_{a}(t'))
 t

(3.17)  +\beta (\eta_{a}^{I}(Y^{up}(s))+Y_{a}^{up}(s)Z_{a}^{up}(s))ds, t\in [t', t"], a
\in I,
 t'

 Y_{a}^{lw}(t)=Y_{a}^{lw}(t')+(W_{a}(()-W_{a}(t'))
 t

(3.18)  +\beta (\eta_{a}^{I}(Y^{lw}(s))+Y_{a}^{lw}(s)Z_{a}^{lw}(s))ds, t\in [t', t"], a
\in I.
 t'

If  Z^{lw}\leq_{[t,t]}^{I}  Z^{up} , and  Y^{lw}(t')  \leq^{I}Y^{up}(t') , the

(3.19)  Y^{lw}\leq_{[t,t]}^{I}  Y^{up} , almost surely.

Remark 3.6. Note that here we do not assume  W_{a}(\cdot) conditioned on  (I_{1}, I_{2})
is a Brownian motion or even a martingale.

§4. Uniqueness, Proof of Proposition 2.7

Fix  y^{in}  \in  \mathcal{Y}  ((\alpha, \rho) \cap \mathcal{R}(p)) and  Y^{lw}(\cdot)  \leq  Y^{up}(\cdot)  \in  (\mathcal{Y}_{T}(\alpha, \rho) \cap \mathcal{R}_{T}(p)) as in

Proposition 2.7. Recall that  E_{\mathcal{I}}(s)  := \sum_{a\in \mathcal{I}}(Y_{a}^{up}(s)-Y_{a}^{1w}(s)) and that  L_{i}^{\pm}(t) is defined

as in (2.18).
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With (2.17), proving Proposition 2.7 amounts to controlling   \int_{0}^{t}L_{i}  (s)ds for suitable
 i . Fixing  m  \in  \mathbb{Z}_{>0} (which will be sent to 1 later), for  i  \in  [\pm m, \pm 2m] we decompose
 L_{i}^{\pm}(s) into the long‐ran ge interaction

(4.1)   \overline{L}_{i,m}(s) := \frac{1}{2} .\sum_{\in(\pm 3m\pm\infty)},\frac{Y_{(i,
j)}^{up}(s)-Y_{(i,)}^{1w}(s)}{Y_{(i,)}^{up}(s)Y_{(i,)}^{1w}(s)},
and the short‐range interaction

(4.2)  L_{i,m}^{\pm}(s) :=  \frac{1}{2} .\sum_{\in(i,\pm 3m]}\frac{Y_{(i,)}^{up}(s)-Y_
{(i,j)}^{1w}(s)}{Y_{(i,)}^{up}(s)Y_{(i,)}^{1w}(s)}.
Our goal is to establish certain bounds the long‐ and short‐range interactions, as stated

in Lemma 4.1 in the following. It is not hard to show (see [7, proof of Proposition 2.7])
that Lemma 4.1 implies Proposition 2.7. We omit the proof of this implication and

prove only Lemma 4.1.

Lemma 4.1.

(a) For any  t\geq 0_{e} we have

(4.3)  \overline{L}_{m}  := \sup_{s\in[0,t]}\sup_{i\in[\pm m,\pm 2m]}\{\overline{L}_{i,m}(s)\}  arrow 0 , almost surely.

(b) For any   t'<t"\in  [0, \infty ) such that  q(t"-t', 1)  <   \frac{\rho}{2} , we have

 t"

(4.4) li! in  L_{i,m}(s)ds=0 , almost surely.
 marrow\infty i\in[\pm m,\pm 2m] t'

proof of Part  (a) . With  Y^{up},  Y^{lw}\in \mathcal{Y}_{T}(\alpha, \rho) , we have

(4.5)   \sup \{\Sigma_{(0,j)}(Y^{up}(s)-Y^{lw}(s))|j|^{\alpha}\} =:N<1.
 s\in[0,t],j\in \mathbb{Z}

The desired result follows by using (4.5) and  Y^{lw}  \in  \mathcal{Y}_{T}(\alpha, \rho)  \subset  \underline{\mathcal{Y}} (  \rho ) to control the
numerator and denominator of the expression (4.1), respectively.  \square 

Before proceeding to proving Lemma 4.1(b), we remark that, unlike (4.3), it is
impossible to obtain a bound on the short‐range interaction  L_{i,m}(s) that is uniform in
  i\in  [\pm m, \pm 2m] . This is so because  Y^{lw}\in\underline{\mathcal{Y}}_{T}(\alpha, \rho) does not imply  Y_{(i,j)}^{1w}(s)  >  |j-i|/c
for small  |j-i| , and similarly (4.5) does not imply  Y_{(i,j)}^{up}(s)-Y_{(i,j)}^{1w}(s)  \leq c|i-j|^{1-\alpha} for
small  |j-i|.

To prove Lemma 4.1, we first construct certain ‘good’ index set  \mathfrak{G}_{m,k}  \neq  \emptyset , such

that  L_{i,m}^{\pm}(s) is controlled for  i  \in  \mathfrak{G}_{m,k} . To construct  \mathfrak{G}_{m,k} , letting  p'  \in  (1, \infty) denote
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the Hölder conjugates of  p , i.e.  1/p+1/p'  =  1 , for fixed  s  \in  [0, \infty ) and  m  \in  \mathbb{Z}_{>0} , we
consider the set

(4.6)  \mathfrak{A}_{m}(s) := \{a\in L : |Y_{a}^{up}(s)-Y_{a}^{1w}(s)| \geq |m|^{-
\alpha/(3p')}\}
of ‘bad’ indices, where the corresponding terms in the numerator of (4.2) may be large
at time  s . For  \mathcal{A}\subset L,  i,  i'\in \mathbb{Z} , let

 g_{(i,i')}( \mathcal{A}) := \sup \underline{|(i,j)\cap \mathcal{A}|}
 j\in(i,i'] | -i|

denote the maximal cumulative occurrence frequency of  \mathcal{A} when searching to the right

(when  i'>i ) or left (when  i'<i ) over the interval  (i, i') , starting from  i . Consider the
set

(4.7)  I_{m}(s) := \{i\in [\pm m, \pm 3m]\cap \mathbb{Z} : g_{(i,\pm 3m)}(\mathfrak{A}
_{m}(s)) >m^{-\alpha/3}\}
of bad’ indices, where the occurrence of  \mathfrak{A}_{m}(s) may be large over the interval  (\pm m, \pm 3m) .
The sets  \mathfrak{A}_{m}(s) and  I_{m}(s) are constructed for a fixed  s . We now fix  t'  <  t" as in

Lemma 4.1(b), let  T_{k}  := \{t'+\frac{(t"-t')\ell}{k}\}_{\ell=1}^{k} , and consider the set

(4.8)   N_{m,k} := \{i\in \mathbb{Z} : \frac{1}{k}\sum_{s\in T_{k}}1\{i\in I_{m}(s)\} 
\leq m^{-\alpha/(3p')}\},
consisting of ‘good’ indices  i such that  \{I_{m}^{\pm}(s) \ni i\} occurs rarely alone the discrete

samples  s\in T_{k} of time. The set  N_{m,k} is constructed for bounding the numerator in the

expression (4.2). As for the denominator, we consider

(4.9)  h_{(i,j)}( y) := \inf \Sigma_{(i,i')}(y) ,
 i'\in(i,j]\cap \mathbb{Z}

and define

(4.10)   \mathfrak{G}_{m,k}^{\pm} :=\{i\in [\pm m, \pm 2m]\cap \mathbb{Z} : i\in N_{m,
k}^{\pm}, h_{(i,\pm 3m)}(Y^{lw}(t', t")) \geq \frac{\rho}{3}\}.

Let  L_{i,m}^{\pm,k}  :=   \frac{t"-t'}{k}\sum_{s\in T_{k}}L_{i,m}^{\pm}(s) denote the k‐th discrete approximation  0   \int_{t}^{t}  L_{i,m}^{\pm}(s)ds.
Having constructed  \mathfrak{G}_{m,k}^{\pm} , we proceed to establishing a bound on  L_{i,m}^{\pm,k} for  i  \in  \mathfrak{G}_{m,k}^{\pm}.
Let  P:= \sup_{m\in \mathbb{Z}}\Sigma_{(0,m)}^{p}(\overline{Y}^{up}(t', t")) , which is almost surely finite as  Y^{up}  \in \mathcal{R}_{T}(p) .

Lemma 4.2. For all  m,  k\in \mathbb{Z}_{>0} , there exists  c=c(t"-t', \rho,p)  <1 such that

(4.11)  L_{i_{*},m}^{\pm,k} \leq (1+P^{1/p})\frac{c\log m}{m^{\alpha/(3p)}}, \forall i_
{*} \in \mathfrak{G}_{m,k}.
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Proof. Fixing  k,  m\in \mathbb{Z}_{>0} and  i_{*}  \in N_{m,k}^{\pm} , we let  c<1 denote a generic constant

depending only on  t"-t',  \rho,  p . We begin by bounding the expression  L_{i_{*},m}^{\pm}(s) , for  s\in T_{k},

to which end we consider separately the two cases i)  \{I_{m}^{\pm}(s) \ni i_{*}\} ; and ii)  \{I_{m}^{\pm}(s) \ni i_{*}\}.
i) In (4.2), using  Y^{lw}(s)  \leq  Y^{up}(s) and  h_{(i_{*},\pm 3m)}(Y^{lw}(t', t"))  \geq   \frac{\rho}{3} , we bound the

denominator from below by  (| -i_{*}|\rho/3)^{2} . As for the numerator, we divide  Y_{(i_{*},j)}^{up}(s)-
 Y_{(i_{*},j)}^{1w}(s)  =   \sum_{a\in(i,j)}(Y_{a}^{up}(s) -Y_{a}^{1w}(s)) into two sums subject to the constraints  \{a  \not\in

 \mathfrak{A}_{m}(s)\} and  \{a \in \mathfrak{A}_{m}(s)\} . The former sum, by (4.6), is bounded by  m^{-\alpha/(3p')}|  -i_{*}|.
As for the latter, we apply the Hölder inequality to obtain

  \sum_{a\in(i_{*}j)},(|Y_{a}^{up}(s)-Y_{a}^{1w}(s)|)(1\{a\in \mathfrak{A}_{m}
(s)\})
  \leq (\sum_{a\in(i_{*},j)}Y_{a}^{up}(s)^{p})^{1/p}(\sum_{a\in(i_{*},j)}1\{a\in
\mathfrak{A}_{m}(s)\})^{1/p'}
 \leq (|j-i_{*}|P)^{1/p}(g_{(i_{*},\pm 3m)}(\mathfrak{A}_{m}(s)) |j-i_{*}|)
^{1/p'}

With  i_{*}  \not\in  I_{m}^{\pm}(s) , we have  g_{(i_{*},\pm 3m)}(\mathfrak{A}_{m}(s))  \leq  m^{-\alpha/3} , so the last expression is further

bounded by  cP^{1/p}m^{-\alpha/(3p')}|  -i_{*}| . Combining the preceding bounds yields

 L_{i_{*},m}^{\pm}(s)  \leq c(1+P^{1/p})m^{-\alpha/(3p')} \sum \frac{|j-i_{*}|}
{|-i_{*}|^{2}}(4.12)  j\in(i_{*},\pm 3m]

 \leq c(1+P^{1/p})m^{-\alpha/(3p')}\log m.

ii) Using  Y^{up}(s)  \geq Y^{lw}(s) in (4.2), we bound the ‐th term by  1/Y_{(i_{*},j)}^{1w}(s) . This,
with  h_{(i_{*},\pm 3m)}(Y^{lw}(t', t"))  \geq   \frac{\rho}{3} , is further bounded by  (|j-i_{*}|\rho/3)^{-1} . Consequently,

(4.13)  L_{i_{*},m}^{\pm}(s) \leq c\log(m+1) .

Although the bound (4.13) is undesired (  arrow\infty as   marrow\infty ), the corresponding case
 \{s\in T_{k} : I_{m}^{\pm}(s) \ni i_{*}\}   \sum ccurs at low frequency  \leq m^{-\alpha/(3p')} . Hence

(4.14)   \frac{t"-t'}{k}\sum_{s\in T_{k}}1\{II_{m}^{\pm}(s) \ni i_{*}\}L_{i_{*},m}
^{\pm}(s) \leq c\log(m+1)m^{-\alpha/(3p')}.
Averaging (4.12) over  s  \in  T_{k} for  \{s \in T_{k} : I_{m}^{\pm}(s) \ni i_{*}\} , and combining the result with
(4. 14), we conclude (4.11).  \square 

Next, we show that  \mathfrak{G}_{m,k} is nonempty for all large enough  m.

Lemma 4.3. We have   \lim_{m} in  (ink\in \mathbb{Z}_{>0}|\mathfrak{G}_{m,k}|)  \geq  1 , almost surely.

With  \mathfrak{G}_{m,k}^{\pm} defined as in (4.10), proving  |\mathfrak{G}_{m,k}|  \geq  1 requires finding   i\in  [\pm m, \pm 2m ) such
that  h_{(i,\pm 3m)}(y)  \geq   \frac{\rho}{3} for  y  =  Y^{lw}(t', t") . This is conveniently reduced to estimating

 \Sigma_{[\pm m,j)}(y) ,  j  \in  [\pm 2m, \pm 3m] , by the following lemma, which is proven by a simple

graphical argument as in [7, Proof of Lemma 4.4].
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Lemma 4.4. Let  y\in  [0, \infty]^{L},  i_{1}^{+}  <i_{2}^{+}  \leq i_{3}^{+} and  i_{3}^{-}  \leq i_{2}^{-}  <i_{1}^{-} , where  i_{1},  i_{2}  \mathbb{Z}

and  i_{3}^{\pm}  \in \mathbb{Z}\cup\{\pm\infty\} . If, for some  \gamma\in  (0, \infty) ,

(4.15)  \Sigma_{(i_{1}^{\pm},i)}(y) >\gamma, \forall i\in [i_{2}, i_{3}^{\pm}]\cap 
\mathbb{Z},
then there exists  i_{*}^{\pm}  \in  [i_{1} , i_{2}^{\pm} )  \cap L such that  h_{(i_{*}^{\pm},i_{3}^{\pm})}(y)  \geq\gamma.

Proof of Lemma 4.3. Fixing  m,  k  \in  \mathbb{Z}_{>0} , to simplify notations, we omit the de‐

pendence on  m,  k of the index sets (e.g.  N  :=N_{m,k}^{\pm} ) and let  \overline{Y}_{a}^{\pm}  :=\underline{Y}_{a}^{1w}(t', t")1\{a  \in

  N^{\pm}\pm\frac{1}{2}\} . We show

(4.16)  \Sigma_{(\pm m,\pm j)}(\overline{Y})  >   \frac{\rho}{3},  \forall j  \in  [\pm 2m, \pm 3m],  \forall large enough  m.

This, by Lemma 4.4 for  (i_{1}^{\pm}, i_{2}^{\pm}, i_{3}^{\pm})  =  (\pm m, \pm 2m, \pm 3m) , implies the existence of
 \pm

 [\pm m, \pm 2m)\cap \mathbb{Z} such that  h_{(I^{\pm},\pm 3m)}(\overline{Y})  \geq   \frac{\rho}{3} . For such , we have  h_{(I^{\pm},\pm 3m)}(Y^{lw}(t', t"))  \geq

  \frac{\rho}{3} and  \overline{Y}_{(I^{\pm},I^{\pm}\pm 1)}^{\pm}  \geq   \frac{\rho}{3}  >0 . The later implies  \pm  \in N , and therefore  \pm  \in \mathfrak{G} . Hence,

it suffices to prove (4.16).
To the end of showing (4.16), with  \overline{Y} defined as in the preceding, we begin by

estimating  |  (N )^{c}| . To this end, as  N is defined in terms of  \mathfrak{A}(s) and I  (s) , we first

establish bounds on  |\mathfrak{A}(s)\cap(\pm m, \pm 3m)| and  |^{I}I  (s)| . Fixing  s  \in  [t', t"] , with  N as in

(4.5) and  \mathfrak{A}(s) as in (4.6), we have

(4.17)  | \mathfrak{A}(s)\cap(\pm m, \pm 3m)| \leq |\mathfrak{A}(s)\cap(0, \pm 3m)| 
\leq \frac{(3m)^{1-\alpha}}{m^{-\alpha/(3p)}} \leq (3m)^{1-\frac{2\alpha}{3}}N.
Proceeding to bounding  |I_{m}^{\pm}(s)| , we require the following inequality: for any finite

 \mathcal{A}\subset L,  n\in \mathbb{Z}_{>0} , we have

(4.18)  |\mathcal{I}_{n}^{\pm}|  \leq n|\mathcal{A}| , where  \mathcal{I}_{n}^{\pm}  :=  \{i\in \mathbb{Z} : g_{(i,\pm\infty)}(\mathcal{A}) >n^{-1}\}  \subset L.

To prove this inequality, we image a pile of  n particles at each site of  \mathcal{A} , and topple the

particles to the left (for  + ) or right (for −) in any order, so that each sites of  L contains
at most one particle. Letting  \mathcal{A}_{n}^{\pm}  \subset  L denote the resulting set of particles, we clearly

have  \mathcal{I}_{n}^{\pm}  \subset  ( \mathcal{A}_{n}^{\pm}\mp\frac{1}{2}) and  |\mathcal{A}_{n}^{\pm}|  =n|\mathcal{A}| , thereby concluding (4.18). Now, with I (s) as
in (4.7), combining (4. 17) and (4. 18) for  \mathcal{A}=\mathfrak{A}(s)\cap(\pm m, \pm 3m) and  n=  \lceil m^{\alpha/3}\rceil , we
arrive at

 |I (s)| \leq \lceil m^{\alpha/3}\rceil|\mathfrak{A}(s)\cap(\pm m, \pm 3m)| \leq
6Nm^{1-\frac{\alpha}{3}} :

Now, with  N as in (4.8), we have  1\{i\not\in N^{\pm}\}   \leq m^{\frac{\alpha}{3p'}}\frac{1}{k}\sum_{s\in T_{k}}1\{i\in I (s)\} . Summing
both sides over  i\in \mathbb{Z} , we arrive at

(4.19)  |( N )^{c}| \leq \frac{1}{k}\sum_{s\in T_{k}}|I (s)|m^{\frac{\alpha}{3p'}} \leq
6Nm^{1-\alpha'},
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where  \alpha':=   \frac{\alpha}{3}(1-\frac{1}{p})  >0.

We proceed to proving (4.16). Fix  \in  [\pm 2m, \pm 3m] . With  \overline{Y}^{\pm} defined as in the
proceeding, we have

 \Sigma_{(\pm m,j)}  ( \overline{Y} )=\Sigma_{(\pm m,j)}(Y^{lw}(t', t"))-\frac{1}{|\mp m|}   \sum   \underline{Y}_{a}^{1w}(t', t")1\{a\in (N )^{c}\pm\frac{1}{2}\}.
 (\pm m,j)

For the last term, with   \frac{1}{|\mp m|}|  (N )^{c}|  \leq 6Nm^{-\alpha'} (by (4.19)) and  Y^{lw}\in \mathcal{R}_{T}(p) , we have

  \frac{1}{|j\pm m|}   \sum   \underline{Y}_{a}^{1w}(t', t")1\{a\in (N^{\pm})^{c}\pm\frac{1}{2}\}  arrow 0m\infty , uniformly in   j\in  [\pm 2m, \pm 3m].
 (\pm m,j)

Consequently, to prove (4.16), we may and shall replace  \overline{Y} with  Y^{lw}(t', t") . Applying
the continuity estimate (3.6) for  Y^{*}  =Y_{a}^{1w} , we have

 \Sigma_{(\pm m,)(Y^{lw}(t',t"))} \geq\Sigma_{(\pm m,)}(Y^{lw}(t"))-\Sigma_{(\pm
m,)}(Q^{t'}(t")) .

With  Y^{lw}  \in \mathcal{Y}_{T}(\alpha, \rho) , the first term on the r.h.  s . converges to  \rho as  marrow 1 , uniformly

in  j  \in  [\pm 2m, \pm 3m] . With  q(t"-t', 1)  \leq   \frac{\rho}{2} , by (3.4), the last term contributes  \geq  - \frac{\rho}{2} as
 marrow 1 . Combining the preceding we conclude (4.16).  \square 

Proof of Lemma 4.1 (b) . By Lemma 4.2−4.3, we have that

in  L_{i,m}^{\pm,k}  \leq  (1+P^{1/p})cm^{-\alpha/(3p')}\log(1+m) .
 i\in[\pm m,\pm 2m]

Since the constant  c does not depend on  k , upon letting  k  arrow  1 , by the continuity

of  Y_{a}^{up}(\cdot) and  Y_{a}^{1w}(\cdot) , the l.h.  s . tends to  ( \inf_{i\in[\pm m,\pm 2m]}\int_{t}^{t'},L_{m,i}(s)ds) . Consequently,

further letting  marrow 1 , we complete the proof.  \square 

§5. Existence, Proof of Proposition 2.5

We begin by establishing the monotonicity (2.13). Recall the definition of  \mathcal{Y}(\gamma)
and  \mathcal{Y}_{T}(\gamma) from  (2.10)-(2.11) .

Proposition 5.1. Fixing  y^{in},  z^{in}\in \mathcal{Y}(\gamma) ,  \gamma>0 , we let  \{Y^{(i)}\}_{i=0}^{n} and  \{Z^{(i)}\}_{i=0}^{n}
be  \underline{\mathcal{Y}} (  \gamma )‐valued sequences satisfying (2.8), with  Y^{(i)}(0)  =  y^{in} and  Z^{(i)}(0)  =  z^{in},  i  =

 0 , . . . ,
 n.

(a) The sequence  \{Y^{(i)}\}_{i=0}^{n} is decreasing,  Y^{(0)}(\cdot)  \geq:::  \geq Y^{(n)}(\cdot) .

(b) If  y^{in}\geq z^{in} , we have  Y^{(i)}(\cdot)  \geq Z (i)  (\cdot) , for  i=0 , :::,  n.
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Proof. With  \psi_{a} defined as in (2.3), it is easily to show that

(5.1)  y\mapsto\psi_{a}(y, z(s)) is uniform Lipschitz over  [0, \infty )  \cross  [0, t],  \forall t\geq 0,  \forall z\in \mathcal{Y}\tau.

We now prove  Y^{(i-1)}(\cdot)  \geq Y^{(i)}(\cdot) by induction on  i . For  i=1 , by (5.1), we have that
 -\psi_{a}(\cdot, Y^{(0)}(t)) is uniformly Lipschitz. With  -\psi_{a}(y_{a}, Y^{(0)}(t))  \leq  0 , and  Y_{a}^{(0)} and  Y_{a}^{(1)}
solving the respective equations (2.8a) and (2.8b), applying Lemma 3.1 for  y^{up}  =Y_{a}^{(0)}
and  y^{1w}=Y_{a}^{(1)} , we conclude  Y^{(0)}(\cdot)  \geq Y^{(1)}(\cdot) . Assuming  Y^{(i-1)}(\cdot)  \geq Y^{(i)}(\cdot) ,  i  >  1,

by (2.16) we have  -\psi_{a}(y, Y^{(i-1)}(t))  \geq  -\psi_{a}(y, Y^{(i)}(t)) . With  Y_{a}^{(i)} and  Y_{a}^{(i+1)} solving
(2.8b), applying Lemma 3.1 for  y^{up}  =  Y_{a}^{(i)} and  y^{1w}  =  Y_{a}^{(i+1)} we conclude  Y^{(i)}(\cdot)  \geq

 Y^{(i+1)}(\cdot) . This completes the proof of (a).
As for (b), the case  i  =  0 follows directly by applying Lemma 3.1. For  i  >  0 , by

(2.16), we have that

 Z (i)  (\cdot)  \leq Y (i)  (\cdot) implies  -\psi_{a}(y, Z(i) (s))  \leq  -\psi_{a}(y, Y^{(i)}(s)) ,

so, by induction, the case  i>0 follows by the preceding comparison argument.  \square 

Now, fixing  \gamma  >  0 and  y^{in}  \in  [\gamma, \infty)^{L} as in Proposition 2.5, We consider first the

special case of equally spaced initial condition,  z^{in}  :=\gamma=  (: ::, \gamma, \gamma, \ldots) , and construct

the corresponding iteration sequence  \{Z^{(n)}\}_{n\in \mathbb{Z}_{\geq 0}} . For  n=0,  Z^{(0)} is the  \mathscr{F}^{W} ‐adapted

Bessel process (as in  (2.8a) ) starting at  \gamma . Recalling  \underline{\mathcal{Y}}(\gamma) and  \underline{\mathcal{Y}} (  \gamma ) are defined as in
 (2.10)-(2.11) , we check that  Z^{(0)} is  \underline{\mathcal{Y}} (  \gamma )‐valued.

Lemma 5.2. We have  Z^{(0)}  \in\underline{\mathcal{Y}} (  \gamma ) .

Proof. Fix arbitrary  t\geq 0 . With  Z_{a}^{(0)} satisfying (2.8a) and   Z_{a}^{(0)}(0)=\gamma , averaging
(2.8a) over   a\in  (0, m) using  W_{a}(t)=B_{a+1/2}(t)-B_{a-1/2}(t) , we obtain

 s \in[0,t]in\{\Sigma_{(0,m)}(Z^{(0)}(s))\}-\gamma\geq- \sup |m|^{-1}|B_{m}(s)-
B_{0}(s)|. s\in[0,t]

Upon letting  |m|  arrow 1 , the r.h.  s . tends to zero, whereby  Z^{(0)}  \in\underline{\mathcal{Y}} (  \gamma ) follows.  \square 

For  n  >  0 , we construct the  \mathscr{F}^{W} ‐adapted,  \underline{\mathcal{Y}}_{\tau}(\gamma) ‐valued process  Z^{(n)} by induction

on  n , using Lemma 3.3. That is, fixing  n  >  0 , for each  a  \in  L , we let  Z_{a}^{(n)} be the

unique solution of (3.11) for  F(y, s)=-\psi_{a}(y, Z^{(n-1)}(s)) , assuming  Z^{(n-1)} is the  \mathscr{F}^{w_{-}}

adapted,  \underline{\mathcal{Y}}_{T}(\gamma) ‐valued process satisfying (2.8). For Lemma 3.3 to apply, we indeed have
that  F(0, s)  =0 , that  F(y, s) is  F^{W} ‐adapted (since  Z^{(n-1)}(s) is), and that  F(\cdot, s) is
uniformly Lipschitz, by (5.1). This yields the unique  \mathscr{F}^{W} ‐adapted,  C_{+}([0, \infty))^{L}‐valued
process  Z^{(n)}.

To complete the construction, we show that  Z^{(n)} is also  \underline{\mathcal{Y}}_{T}(\gamma) ‐valued. To this

end, we first establish the shift‐invariance of  Z^{(n)} . We say  Z :  [0, \infty )  arrow  [0, \infty)^{L} is
shift‐invariant if  Z(\cdot)^{di}=^{str}(Z_{a+i}(\cdot))_{a\in L}:=\theta_{i}(Z (.)) ,  \forall i\in \mathbb{Z}.
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Lemma 5.3. The processes  Z^{(0)} , :::,  Z^{(n)} , constructed in the preceding, are shift‐
invariant.

Proof. This follows from the shift‐invariance of the equation (2.5). See [7, proo
of Lemma 5.2] for a complete proof.  \square 

Equipped with Lemma 5.3, we proceed to showing  Z^{(n)}  \in  \underline{\mathcal{Y}} (  \gamma ) . To this end, let‐
ting  \eta_{(i_{1},i_{2})}(y)  :=   \sum_{a\in(i_{1},i_{2})}\eta_{a}(y) (where  \eta_{a}(y) is defined as in (2.2)), we will use the
following readily verified identity (c.f. (2.1)) in the proof of Lemma 5.4:

(5.2)  \eta_{(i_{1},i_{2})}(y)=\eta_{(i_{1},i_{2})}^{up}(y)-\eta_{(i_{1},i_{2})}^{1w}
(y) ,

where  i_{-}  :=  (i_{1}\wedge i_{2})  <i_{+}  :=(i_{1}\vee i_{2}) and

(5.3)   \eta_{(i_{1},i_{2})}^{up}(y) :=\sum_{i\in(i_{1},i_{2}]}\frac{1}{2y_{(i_{1},i)}
}+\sum_{i\in(i_{2},i_{1}]}\frac{1}{2y_{(i_{2},i)}},
(5.4)  \eta_{(i_{1},i_{2})}^{1w}(y) :=\overline{\eta}_{(i_{1},i_{2})}^{1w,+}(y_{(i_{1}
,i_{2})}, y)+\overline{\eta}_{(i_{1},i_{2})}^{1w,-}(y_{(i_{1},i_{2})}, y) ,

(5.5)   \overline{\eta}_{(i_{1},i_{2})}^{1w,\pm}(z, y) :=i'\in(i,\pm\infty)\sum_{\pm}
\frac{z}{2(z+y_{(i,i')})y_{(i,i')}}.
Note that the expressions  \eta_{(i_{1},i_{2})}(y) ,  \eta_{(i_{1},i_{2})}^{up}(y) and  \eta_{(i_{1},i_{2})}^{1w}(y) are well‐defined for all

 y\in\underline{\mathcal{Y}}(\gamma) .

Lemma 5.4. Let  Z^{(0)} , :::,  Z^{(n)} , with  \{Z^{(i)}\}_{i=0}^{n-1}  \subset\underline{\mathcal{Y}} (  \gamma ) and  Z^{(n)}  \in C_{+}([0, \infty))^{L},
be as in the proceeding, we have  Z^{(n)}  \in\underline{\mathcal{Y}} (  \gamma ) .

Proof. Let  V_{(i_{1},i_{2})}^{n}(s)  :=\Sigma_{(i_{1},i_{2})}(Z^{(n)}(s)) . With Z  (n)  \in  C_{+}([0, \infty))^{L} , fixing   t\geq  0,

it suffices to show  ( \lim\inf_{|m|arrow\infty}V_{(0,m)}^{n}(0, t))  \geq  \gamma . We achieve this in two steps by

showing

i)   \lim_{|m|arrow\infty}V_{(0,m)}^{n}(s')  \geq\gamma almost surely, for each fixed   s'\in  [0, t] ;

  \lim\inf V^{n}ii)  |m|arrow\infty\underline{(0,m)}(t)  \geq\gamma almost surely.

i) Fixing  s'  \in  [0, t] , we begin by deriving a lower bound on  V_{(0,m)}^{n}(s') . With
 Z^{(n-1)}(\cdot)  \geq Z^{(n)}(\cdot) (by Proposition 5.1), by (2.15) we have

  \frac{1}{Z_{a}^{(n)}(s)}-\psi_{a}(Z_{a}^{(n)}(s), Z_{a}^{(n-1)}(s))  \geq   \frac{1}{Z_{a}^{(n-1)}(s)}-\psi_{a}(Z_{a}^{(n-1)}(s), Z_{a}^{(n-1)}(s))=
\eta_{a}(Z^{(n-1)}(s)) .

Inserting this into (2.8b), summing the result over   a\in  (0, m) , and dividing both sides
by  |m| , with   \sum_{a\in(0,m)}W_{a}(s')  =B_{m}(s')-B_{0}(s') ,   Z_{a}^{(n)}(0)=\gamma and (5.2), we have

(5.6)  V_{(0,m)}^{n}(s')  \geq\gamma+|m|^{-1}(B_{m}(s')-B_{0}(s'))-\frac{\beta}{|m|} 
0^{s'}\eta_{(0,m)}^{1w}(Z^{(n-1)}(s))ds.



Infinite Dimensional T0CHASTiC Differential Equations for Dyson’s Model 193

As   \lim_{|m|arrow\infty}(|m|^{-1}(B_{m}(s')-B_{0}(s')))  =0 almost surely, it clearly suffices to show

 s'

(5.7)  |m|^{-1}\eta_{(0,m)}^{1w}(Z^{(n-1)}(s))dsarrow 0 almost surely, as  |m|  arrow 1.

 0

With  \{Z_{a}^{(n)}(s')\}_{a\in L} being shift‐invariant (by Lemma 5.3) and having a finite first mo‐
ment (since  Z^{(n)}(s')  \leq  Z^{(0)}(s') ), by the Birkhoff‐Khinchin ergodic theorem, we have
that  V_{(0,m)}^{n}(s') converges almost surely (to a possibly random limit) as  |m|  arrow 1 . Using
this, we further reduce showing (5.7) to showing

 s'

(5.8)  |m|^{-1}\eta_{(0,m)}^{1w}(Z^{(n-1)}(s))ds\Rightarrow 0 , as  |m|  arrow 1,
 0

where  \Rightarrow denotes convergence in law.

We proceed to showing (5.8). This, with (5.4), amounts to estimating  \eta^{1w,\pm}(y)  :=

 \overline{\eta}_{\mathcal{I}}^{1w,\pm}(y_{\mathcal{I}}, y) , for  \mathcal{I}:=(0, m) and  y=Z^{(n-1)}(s) . With  Z_{a}^{(n-1)} satisfying (2.8b), by (3.7)
we have that  Z_{a}^{(n-1)}(s')  \leq Z_{a}^{(n-1)}(0)+Q_{a}^{0,s'}  =\gamma+Q_{a}^{0,s'} . Combining this with (3.4), we
have

 N := \sup\{\overline{V_{(0,m)}^{n-1}}(0, s') : m\in \mathbb{Z}\} <\infty_{:}
With  Z^{(n-1)}  \in\underline{\mathcal{Y}} (  \gamma ) , we have  D  :=in  \{V_{(i,0)}^{n-1}(0, s'), i\neq 0\}  >0 . With

  \eta_{(0,|m|)}^{1w,-}(y)=\sum_{i=1}^{\infty}\frac{y_{(0,|m|)}}{y_{(-i,|m|)}y_{
(-i,0)}},
so by the preceding bounds we then have

 \eta_{(0,-|m|)}^{1w,+}(y)  = \sum_{i=1}^{\infty}\frac{y_{(-|m|,0)}}{y_{(0,i)}y_{(-|m|,i)}},

(5.9)  0^{s'}|m|^{-1} \eta_{(0,\pm|m|)}^{1w,\mp}(Z^{(n-1)}(s))ds\leq s'\sum_{i=1}
^{\infty}\frac{N}{2(iD+|m|N)iD}  arrow 0as , as  |m|  arrow 1.

Next, using  t\subset e shift‐invariance of  Z^{(n-1)} , we have

 \eta_{(0}^{1w},\ovalbox{\tt\small REJECT}_{|m|)}(Z^{(n-1)}(s))  distr=\eta_{(0}^{1w},\ovalbox{\tt\small REJECT}_{|m|)}(\theta_{\mp|m|}(Z^{(n-1)
}(s)))  =\eta_{(0,\mp|m|)}^{1w,\mp}(Z^{(n-1)}(s)) .

Combining this with (5.9) yields

 s'

 0  |m|^{-1}\eta_{(0,\mp|m|)}^{1w,\mp}(Z^{(n-1)}(s))ds\Rightarrow 0 , as  |m|  arrow 1.

From this and (5.9) we conclude (5.8), thereby completing the proof of (i).
ii) With (i), this is achieved by a continuity estimate based on (3.6). To this end,

partition  [0, t] into  j_{*} equally spaced subintervals  0  =  t_{0}  <:::  <  t_{*}  =  t . For each
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 a\in L , with  Z_{a}^{(n)} satisfying (2.8b), we apply (3.6) for  Y^{*}  =Z_{a}^{(n)} . Averaging the result
over   a\in  (0, m) , we obtain

(5.10)  V_{(0,m)}^{n}(t_{j-1}, t_{j}) \geq V_{(0,m)}^{n}(t_{j})-\Sigma_{(0,m)}(Q^{t_{j}
}(t_{-1})) .

Letting  |m|  arrow 1 , by (i) and (3.4), we have

  \lim\inf V^{n} |m|arrow\infty\underline{(0,m)}(t_{j-1}, t_{j}) \geq\gamma-q(t/j_{*}, 1) .

Combining this for  j=1 , :::,  j_{*} ,{using the readily verified inequality

  \lim_{|m|arrow}\inf_{\infty}\underline{f_{m}}(0, t)   \geq\min_{j=1}^{j_{*}}\{\lim_{|m|arrow}\inf_{\infty}\underline{f_{m}}(t_{j-1},
t_{j})\},  f_{m}(\cdot) :  [0, \infty)arrow \mathbb{R},
we thus conclude  ( \lim\inf_{|m|arrow\infty}V_{(0,m)}^{n}(0, t))  \geq  \gamma-q(t/j^{*}, 1) , almost surely. With  j^{*}

being arbitrary, the proof is completed upon letting  j^{*}  arrow  1 , (whence  q(t/j^{*}, 1)  arrow

 0) .  \square 

Having constructed the iteration sequence  \{Z^{(n)}\}_{n} for  z^{in}  =  \gamma , with  Z^{(n)}(\cdot)  \geq

 Z^{(n+1)}(\cdot) (by Proposition 5.1), we let  Z_{a}^{(\infty)}(t)  := \lim_{narrow\infty}Z_{a}^{(n)}(t)  \geq 0 denote the limit‐
ing process. We next establish a lower bound on the average spacing of  Z^{(\infty)}.

Lemma 5.5. We have  Z^{(\infty)}  \in\underline{\mathcal{Y}}_{T}'(\gamma) almost surely, where

(5.11)  \underline{\mathcal{Y}}' (  \gamma )  := {  y(\cdot) :  [0,  \infty)arrow  [0,  \infty)^{L} :   \lim inf in  \Sigma_{(0,m)}(y(s))  \geq\gamma,  \forall t\geq 0 }. |m|arrow\infty s\in[0,t]

Proof. Fixing  t  \geq  0 , we let  V_{\mathcal{I}}^{\infty}(s)  :=  \Sigma_{\mathcal{I}}(Z^{(\infty)}(s)) , and recall that  V_{\mathcal{I}}^{n}(s)  :=

 \Sigma_{\mathcal{I}}(Z^{(n)}(s)) . As already mentioned in the proof of Lemma 5.4, since  Z^{(n)} is shift‐

invariant for  n\in \mathbb{Z}_{>0} and (hence) for  n=1 , and since each  Z_{a}^{(n)} as a finite mean for
 n\in \mathbb{Z}_{>0}\cup\{\infty\} (because  Z^{(\infty)}(s)  \leq Z^{(0)}(s) ), by the Birkhoff‐Khinchin ergodic theorem,
the limits

 V^{n}(s) :=  \lim V^{n} |m| arrow\infty (0,m)(s) , V^{\infty}(s) :=\lim_{|m|arrow\infty}V_{(0,m)}
^{\infty}(s) ,

exists almost surely.

As in the proof of Lemma 5.4, we proceed by first proving  V^{\infty}(s)  \geq\gamma almost surely,

for any xed  s  \in  [0, t] . With  Z_{a}^{(\infty)}(s)  \leq  Z_{a}^{(n)}(s)  \leq  Z_{a}^{(0)}(s)  \leq  \gamma+Q_{a}^{0,s} , we have that

 \{V_{(0,m)}^{n}(s)\}_{m\in \mathbb{Z}} is uniformly integrable, for  n\in \mathbb{Z}_{\geq 0}\cup\{\infty\} . Consequently, we have

  E(V^{n}(s))=\lim_{|m|arrow\infty}E(V_{(0,m)}^{n}(s))  = \lim_{|m|arrow\infty}E(\Sigma_{(0,m)}(Z^{(n)}(s)))  =E(Z_{1/2}^{(n)}(s)) ,

 \forall n  \in  \mathbb{Z}_{\geq 0}\cup\{\infty\} . With  Z_{1/2}^{(n)}(s)  \searrow Z_{1/2}^{(\infty)}(s) , we thus conclude  E(V^{n}(s))  arrow E(V^{\infty}(s)) .

Combining this with  V^{n}(s)  \geq  V^{\infty}(s)  \geq 0 (as  Z^{(n)}(s)  \geq  Z^{\infty}(s)  \geq 0 ), we further obtain
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that  V^{n}(s)  arrow  V^{\infty}(s) almost surely. By Lemma 5.4,  V^{\infty}(s)  \geq  \gamma almost surely, so

 V^{\infty}(s)  \geq\gamma almost surely.

Now, letting  narrow 1 in (5.10), we obtain

 V_{(0,m)}^{\infty}(t_{j-1}, t_{j}) \geq V_{(0,m)}^{\infty}(t_{j})-\Sigma_{(0,m)
}(Q^{t_{i}}(t_{j-1})) .

With this and  V^{\infty}(t\cdot)  \geq  \gamma , the proof is completed by following the same continuity

argument as in the proof of Lemma 5.4(ii).  \square 

Now, we turn to the initial condition  y^{in}  \in  [\gamma, \infty)^{L} and construct the corresponding

iteration sequence and limiting process.

Lemma 5.6. Let  y^{in}  \in  [\gamma, \infty)^{L} be as in the preceding. There exists a  \underline{\mathcal{Y}}_{\tau}(\gamma)-
valued,  \mathscr{F}^{W} ‐adapted, decreasing sequence  \{Y^{n}\}_{n\in \mathbb{Z}_{\geq 0}} satisfying (2.8). Further, with

 Y_{a}^{(\infty)}(t)  := \lim_{narrow\infty}Y_{a}^{(n)}(t)  \geq 0 denoting the limiting process, we have  Y^{(\infty)}  \in\underline{\mathcal{Y}}' (  \gamma ) .

Proof. To construct such a sequence  \{Y^{n}\}_{n} , as seen from the proceeding construc‐

tion of  \{Z^{n}\}_{n} , it suffices to show  Y^{(n)}  \in\underline{\mathcal{Y}}_{T}(\gamma) . This follows directly by induction on  n

using Proposition 5.1, which assures  Y^{(n)}(\cdot)  \geq Z^{(n)}(\cdot) . Letting  narrow 1 in the previous

inequality, we obtain  Y^{(\infty)}(\cdot)  \geq Z^{(\infty)}(\cdot) , thereby concluding  Y^{(\infty)}  \in\underline{\mathcal{Y}}' (  \gamma ) .  \square 

Proof of Proposition 2.5.

Let  Y' be a generic  \underline{\mathcal{Y}} (  \gamma ) solution to (1.1) with  Y'(0)  \leq y^{in} . A simple comparison
argument similar to the proof of Proposition 5.1 shows that  Y'  \leq  Y^{(\infty)} . Further,  i

 y^{in}  \in  \mathcal{R}_{T}(p) , one concludes  Y^{(\infty)}  \in  \mathcal{R}_{T}(p) by comparing  Y^{(\infty)} to the Bessel process
 Y^{(0)} using Lemma 3.1.

With these, it now suffices to show that  Y^{(\infty)} is in fact a  \underline{\mathcal{Y}} (  \gamma )‐valued solution.
To this end, fixing  t\geq 0 and  a_{*}  \in L , we show

(5.12)  \underline{Y}_{a_{*}}^{(\infty)}(0, t)  >0 , almost surely:

With (5.12) and  Y^{(\infty)}  \in\underline{\mathcal{Y}}_{T}'(\gamma) , by letting   narrow  1 in (2.8), it is not hard to see that
 Y^{(\infty)}  \in\underline{\mathcal{Y}} (  \gamma ) and that  Y^{(\infty)} solves (2.5). We give a complete proof of (5.12) and refer
to [7, proof of Proposition 5.6] for the rest of the details.

Fixing  a_{*}  \in  \mathbb{Z} and  t  \in  [0, \infty ), without lost of generality we assume  t is small
enough such that  q(t, 1)  <  \gamma/2 , since the general case follows by partition  [0, t] into

small enough subintervals. With  Y_{a}^{(n)} solving an equation of the type (3.5), applying
(3.6) for  Y^{*}  =Y_{a}^{(n)} , we obtain

 \Sigma_{(a_{*},m)(Y^{(n)}(0,t))} \geq\Sigma_{(a_{*},m)}(Y^{(n)}(t))-\Sigma_{(a_
{*},m)}(Q^{0}(t)) .
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Sending  narrow 1 and  |m|  arrow 1 in order, with  Y^{(\infty)}(t)  \in\underline{\mathcal{Y}}' (  \gamma ) and (3.4), we obtain

jij il  \{\Sigma_{(a_{*},m)}(Y^{(\infty)}(0, t))\}  \geq\gamma-q(t, 1)  >   \frac{\gamma}{2}.
 |m|

From this we obtain some random  \pm
 \in  (a_{*}, \pm\infty)\cap \mathbb{Z} such that  \Sigma_{[a_{*},i)}(Y^{(\infty)}(0, t))  >   \frac{\gamma}{2},

 \forall i  \in  (-\infty, -] \cup [I^{+}, \infty) . Combining this with Lemma 4.4 for  (i_{1} , i_{2}, i_{3}^{\pm})  =  (a_{*}  \pm

  \frac{1}{2},  ;\pm\infty) we  J^{\pm}  \in  (a_{*}, \pm\infty)\cap \mathbb{Z} such that

(5.13)  h_{(J^{\pm},\pm\infty)}( Y^{(\infty)}(0, t)) \geq \frac{\gamma}{2},
where  h_{\mathcal{I}}(y) is as in (4.9).

Equipped with (5.13), we proceed to truncating the equation (2.8) at the finite
window  \mathfrak{J}:=  (J^{-}, J^{+}) . To this end, we express (2.8) as a system of finite‐dimensional
equations with external forces (i.e. (3.16)), as

 Y_{a}^{(n)}(t)=Y_{a}^{(n)}(0)+W_{a}(t)
(5.14)  t

 +\beta (\eta_{a}^{I}(Y_{a}^{(n)}(s), Y^{(n)}(s))+Y_{a}^{(n)}(s)Z_{a}^{**}(s))
ds, \forall a\in \mathfrak{J},
 0

where the external force  Z_{a}^{**}(s)  :=z_{a}^{**,I}(Y^{(n)}(s), Y_{a}^{(n-1)}(s)) takes the form

 z_{a}^{**,\mathcal{A}}( y, y') := \frac{1}{y}(\psi_{a}^{\mathcal{A}}(y, y)-
\psi_{a}(y, y')-\psi_{a}^{c}(y, y')) .

With  \{Y^{(n)}\} being decreasing, by (3.15) we have

 \psi_{a}^{\mathcal{A}}(y, Y^{(n)}(s))-\psi_{a}^{\mathcal{A}}(y, Y^{(n-1)}(s))  \geq 0,  \psi_{a}^{\mathcal{A}^{c}}(y, Y^{(n-1)}(s))  \leq\psi_{a}^{\mathcal{A}^{c}}(y, Y^{(n)}(s)) ,

so  Z_{a}^{**}(s)  \geq  -\psi_{a}^{\mathcal{A}^{c}}(Y_{a}^{(n)}(s), Y^{(n)}(s)) . Further, with  \psi_{a}^{c}(y, y) as in (3.12), we have
 \psi_{a}^{I^{c}}(y, y)_{a}(y)  \geq  - \frac{1}{2}\sum_{\sigma=\pm}\sum_{i=1}^{\infty}(y_{(J^{\sigma},J^{\sigma}+
\sigma i)})^{-2} . Using (5.13), we thus conclude

 Z_{a}^{**}(s)  \geq z_{a}^{2,I}(Y^{[n]}(s)) \geq-\sum_{i=1}^{\infty}(i\gamma/2)
^{-2}=:c^{*} >-1.
With this, letting  Y^{(i_{1},i_{2})} be the  C_{+}([0, \infty))^{(i_{1},i_{2})\cap L}‐valued solution of (3.16) for  Z_{a}^{*}(s)=
 c^{*} , by Lemma 3.5 we have  Y^{[n]}  >^{I}  Y^{I}  \in c_{+}([0, \infty))^{I} . As  a_{*}  \in II , letting  narrow 1 , we -[0,t]

conclude (5.12).  \square 

§6. Existence: Proof of Proposition 2.6

Fixing  y^{in}  \in  \mathcal{Y}(\alpha, \rho) and a sequence  1  \geq  \gamma_{1}  \geq  \gamma_{2}  \geq:::  arrow  0 , we let  Y^{\vee\gamma_{n}} be as

in Proposition 2.6. Our goal is to show that  Y  := \lim_{narrow\infty}Y^{\vee\gamma_{n}} is a  \mathcal{Y}_{T}(\alpha, \rho) ‐valued

solution of (2.5). The key to the proof is the following estimate

(6.1)   \sup_{s\in[0,t]}\{\sup_{m,n\in \mathbb{Z}}|\Sigma_{(0,m)}(Y^{\vee\gamma_{n}}
(s)-Y^{\vee\gamma_{n}}(0))| |m|^{\alpha}\} <1.
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Indeed, letting  narrow 1 we obtain

  \sup_{s\in[0,t]}\{\sup_{m,n\in \mathbb{Z}}|\Sigma_{(0,m)}(Y^{\vee\gamma_{n}}
(s)-y^{in})| |m|^{\alpha}\} <1.
With  y^{in}  \in  \mathcal{Y}(\alpha, \rho) , this implies  Y  \in  \mathcal{Y}_{T}(\alpha, \rho) . Further, as each of  Y^{\vee\gamma_{n}} satisfies the

equation (2.5), it is not hard (given (6.1)) to pass the equation to the limit  n  arrow  1,

whereby showing that  Y solves (2.5). That  Y is the greatest solution follows directly
from comparison and the fact that each  Y^{\vee\gamma_{n}} is the greatest solution.

The proof of (6.1) is divided into few steps as follows. The first step is to obtain
lower bounds on   \sum  Lb,k(Y^{\vee\gamma_{n}}(s)) , the averaged spacing of  Y^{\vee\gamma_{n}}(s) over a certain parti‐

tion  \{\mathcal{A}_{b,k}^{L}\}_{b} of  L constructed in the following. To the end of estimating   \sum  Lb,k(Y^{\vee\gamma_{n}}(s)) ,

we will frequently use the following lemma.

Lemma 6.1. Let  Y^{*} be a  \underline{\mathcal{Y}}_{T} ‐valued solution of (2.5),  \mathcal{K}  \subset  \mathcal{I}  \subset  \mathcal{K}'  \subset  L be
nested intervals, and   s'<s"\in  [0, t] . We have that

  \Sigma_{\mathcal{K}}(Y^{*}(s")) \geq\Sigma_{\mathcal{K}}(Y^{*}(s'))-
\frac{\beta}{|\cap L|} ss"\eta^{lw}(Y^{*}(s))ds
(6.2)  -\hat{B}_{\mathcal{K}}^{\mathcal{K}'}(t)-\lambda_{\mathcal{K}}^{\mathcal{K}'}
(Q^{s',s"}) ,

  \Sigma_{\mathcal{K}}(Y^{*}(s")) \leq\Sigma_{\mathcal{K}}(Y^{*}(s'))+
\frac{\beta}{|\cap L|} s's"\eta_{\mathcal{I}}^{up}(Y^{*}(s))ds
(6.3)  +\hat{B}_{\mathcal{K}}^{\mathcal{K}'}(t)+\lambda_{\mathcal{K}}^{\mathcal{K}'}
(Y^{*}(s')) ,

where

(6.4)   \hat{B}_{\mathcal{K}}^{\mathcal{K}'}(t) := \frac{4}{|\mathcal{K}\cap 
\mathbb{Z}|} .\in^{\frac{u}{\mathcal{K}}}\backslash \mathcal{K}
sp\overline{|B_{j}|}(0, t) , \lambda_{\mathcal{K}}^{\mathcal{K}'}(y) := \frac{1}
{|\mathcal{K}\cap \mathbb{Z}|}\sum_{a\in \mathcal{K}'\backslash \mathcal{K}}
y_{a},
and  \overline{\mathcal{K}'} denotes the closure of  \mathcal{K}'

Proof. With  Y^{*} satisfying (2.5), this lemma follows from (5.2) and elementary
manipulations. See [7, proof of Lemma 6.1] for a complete proof.  \square 

We now define the partition  \{\mathcal{A}_{b,k}^{L}\}_{b} . Let  m_{i}  :=  \lfloor i^{1/\alpha}\rfloor , for  i\geq 0 , and  m_{i}  :=-m_{|i|}

for  i  <  0 . For any fixed  k  \in  \mathbb{Z}_{>0} , we construct a partition  \{\mathcal{A}_{b,k}^{L}\}_{b\in L} of  L by letting

 \overline{m}_{i}^{k}  :=m_{ki},

(6.5)  \mathcal{A}_{b,k}  :=(m_{b-1/2}^{k}, m_{b+1/2}^{k}) ,  \mathcal{A}_{b,k}^{L}  :=\mathcal{A}_{b,k}\cap L.

This partetion is coestructed so that  |\mathcal{A}_{k,b}^{L}|  \sim  k(\overline{m}_{|b|+1/2}^{k})^{1-\alpha} . More precisely, with

 |\mathcal{A}_{b,k}^{L}|  =\overline{m}_{|b|+1/2}^{k}-\overline{m}_{|b|-1/2}^{k} and  \lfloor y-x\rfloor  \leq  \lfloor y\rfloor  -  \lfloor x\rfloor  \leq  \lceil y-x\rceil,  \forall x  \leq  y  \in  [0, \infty ), we
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have

(6.6)  | \mathcal{A}_{b,k}^{L}| \geq L\frac{k^{\frac{1}{\alpha}}}{2\alpha}|b|^{\frac{1
-\alpha}{\alpha}\rfloor} \geq L\frac{k}{\alpha 2^{1/\alpha}}(m_{k(|b|+1/2)})^{1-
\alpha}\rfloor,
(6.7)  | \mathcal{A}_{b,k}^{L}| \leq \lceil\frac{k^{\frac{1}{\alpha}}}{\alpha}(|b|+
\frac{1}{2})^{\frac{1-\alpha}{\alpha}\rceil} \leq \lceil\frac{k}{\alpha 
2^{1/\alpha}}(m_{k(|b|+1/2)}+1)^{1-\alpha}\rceil.
With  (6.6)-(6.7) and  \Sigma_{\mathcal{A}_{b,k}}(y)=   \frac{1}{|bLk|}|\sum_{a\in(0,m_{b+1/2}^{k})}(y)-\sum_{a\in(0,m_{b-1}^{k}}  2 )  (y)| , we have

(6.8)  | \Sigma_{(0,m)}(y)-\rho| \leq \frac{1}{|bLk|}|y|_{\alpha,\rho}(|m_{b+1/2}^{k}
|^{1-\alpha}+|m_{b-1/2}^{k}|^{1-\alpha}) \leq \frac{c}{k}|y|_{\alpha,\rho},
where  |y|_{\alpha,\rho} is defined as in (1.6). Hereafter, we assume  k\in \mathbb{Z}_{>0} is large enough so that
 \{\mathcal{A}_{b,k}\}_{b} is nondegenerated: i.e.  \mathcal{A}_{b,k}  \neq\emptyset,  \forall b\in L . Recall  \eta_{\mathcal{I}}^{up}(y) and  \eta_{\mathcal{I}}^{1w}(y) are defined
as in  (5.3)-(5.4) .

Recalling the definition of  q(t, 1) from (3.4), we begin by establishing the following
preliminary estimate.

Proposition 6.2. Fix  t<1 and let  \tau<1 be such that  q(\tau, 1)=   \frac{\rho}{400} . For any
 t_{*}  \in  [0, t-\tau] , if there exists some random  K_{*}  \in \mathbb{Z}_{>0} such that

(6.9)   \Sigma_{\mathcal{A}_{b,k}}(Y(t_{*})) > \frac{3\rho}{4}, \forall b\in L, k\geq 
K_{*},

then there exists some other random  K\in \mathbb{Z}_{>0} such that

(6.10)   \Sigma_{\mathcal{A}_{b,k}}(Y(s)) \geq \frac{\rho}{2}, \forall s\in [t_{*}, t_{
*}+\tau], b\in L, k\geq K_{*}\vee K.

Proof. The proof is fairly technical. Here we give a sketch of the proof, and refer

to [7, proof of Proposition 6.2] for the details.
Fixing arbitrary  n  \in  \mathbb{Z}_{>0} , we let  S_{b,k}  :=   \inf\{s \geq t_{*} : \Sigma_{\mathcal{A}_{b,k}}(Y^{\vee\gamma_{n}}(s)) < \frac
{\rho}{2}\} and

 T_{k}  :=(t_{*}+ \tau)\wedge(\inf_{b\in L}S_{b,k}) . With  Y(t)  := \lim_{narrow\infty}Y^{\vee\gamma_{n}}(t) , proving (6.10) amount to
constructing  K  \in  \mathbb{Z}_{>0} such that  T_{k}  =t_{*}+\tau , for all  k  \geq  K . However, as  T_{k} involves

infinitely many  \mathcal{A}_{b,k},  b\in L , it is not even clear,  a‐priori, whether  T_{k}  >t_{*} . We circumvent

this problem by truncating  \{\mathcal{A}_{b,k}\}_{b} as follows. Consider the  \underline{\mathcal{Y}}  (\gamma_{n}) ‐valued solution  Z_{n}

of (2.5) starting from  (: ::, \gamma_{n}, \gamma_{n}, \ldots) , given by Proposition 2.5. With  Z_{n} being shift‐
invariant (by Lemma 5.3), we have   \lim_{|m|arrow\infty}\Sigma_{(0,m)}(Z_{n})  =  Z_{n}  >  0 . Hence, given
arbitrarily large  \ell  \in  \mathbb{Z} , there exists

 /
 \in  [\ell, \infty )  \cap \mathbb{Z} such that so  \Sigma_{(\pm\ell,\pm m)}(Z(0, t))  >

  \frac{Z_{n}}{2}  :=Z_{n}' for all  |m|  \geq /. Now, applying Lemma 4.4 for  (i_{1}, i_{2}, i_{3}^{\pm})=(\pm\ell, \pm /, \pm\infty) ,

we obtain   M\pm  \in  [\pm\ell, \pm\infty )  \cap \mathbb{Z} such that

(6.11)  h_{(M\pm},\pm\infty)(Y^{\vee\gamma_{n}}(0, t)) \geq h_{(M\pm},\pm\infty)(Z(0, 
t)) \geq Z_{n}'>0.

With this, we then consider the truncated partition

(6.12)  \{b\in L:\mathcal{A}_{b,k} \subset (M_{-}, M_{+})\}= :  (J_{-}, J_{+})\cap L,  J_{-}  \leq J+  \in \mathbb{Z},
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and define the analog ef  T_{k} as  \overline{T}_{k}  :=  (t_{*} + \tau)\wedge(\inf_{b\in(J-},J_{+}{}_{)}S_{b,k}) . Instead of proving
  T_{k}=t_{*}+\tau , we prove  \overline{T}_{k}  =t_{*}+\tau for all large enough  \ell (which yields  T_{k}  =t_{*}+\tau upon
letting  \ellarrow\infty ).

Suppose the coetrary.  \overline{T}_{k}  <  t_{*}  +\tau . As each of  Y_{a}^{\vee\gamma_{n}}(s) is continuous, we must

have  \Sigma_{\mathcal{A}_{B_{*},k}}(Y^{\vee\gamma_{n}}(\overline{T}_{k}))=   \frac{\rho}{2} , for some  \mathcal{A}_{B_{*},k} within the truncation (6.12). Now, letting
 \mathcal{K}=\mathcal{A}_{B_{*},k} and  \mathcal{K}'=\mathcal{A}_{B_{*}-1,k}\cup \mathcal{A}_{B_{*},k}\cup \mathcal{A}_
{B_{*}+1,k} , we then applying (6.2) for this  (\mathcal{K}, \mathcal{K}')
(for some  \mathcal{I} to be specified latter) to derive a contradiction. This is done by showing
that the last three terms in (6.2) are made arbitrarily small by choosing  K\in \mathbb{Z}_{>0} large
enough and  \tau small enough. By  (6.6)-(6.7) , we have

(6.13)  |\mathcal{A}_{b\pm 1,k}^{L}|/|\mathcal{A}_{b,k}^{L}| \leq 16, \forall b\in L, k
\in \mathbb{Z}_{>0}.

Using this and (6.6), it is standard to show that such that the last two terms in (6.2)
can be made arbitrarily small,  \forall k  \geq  K , for some large enough  K  \in  \mathbb{Z}_{>0} and  q(\tau, 1)
small enough. See [7, proof of (6.18), (6.19)] for details. Next, turning to bounding
the interaction term in (6.6), we use the continuity of each  Y_{a}^{\vee\gamma_{n}}(s) to obtain that

 \Sigma_{\mathcal{A}_{b,k}}(Y^{\vee\gamma_{n}}(\overline{T}_{k}))  \geq   \frac{\rho}{2} , for all  \mathcal{A}_{b,k} within the truncation (6.12). Further applying the
continuity estimate (3.6) for  Y^{*}  =  Y_{a}^{\vee\gamma_{n}} , it is not hard to show that, by choosing
 K\in \mathbb{Z}_{>0} large enough and  \tau small enough, we have

(6.14)  \Sigma_{\mathcal{A}_{b,k}}(Y^{\vee\gamma_{n}}(t_{*},\overline{T}_{k}))  \geq   \frac{\rho}{3},  \forall \mathcal{A}_{b,k}  \in the truncation (6.12).

For  |B_{*}-  \pm|  >2 (i.e.  \mathcal{A}_{B_{*},k} sitting in the‘interior’ of the truncation (6.12)), combining
(6.14) with Lemma 4.4, we obtain some   B_{*}\pm  \in \mathcal{A}_{B_{*}\pm 1,k} such that the interaction from
gaps within  (J_{-}, J_{+})\backslash ( B_{*},B_{*}-I^{+}) is well under control. Taking into consideration the

case  |B_{*}-  \pm|  <2 , we let

 I_{+}  .:=  \{\begin{array}{l}
I_{B_{*}+1}^{+}, if B_{*}+2<J+,
M_{+} , otherwise,
\end{array}  I_{-}  :.=  \{\begin{array}{l}
B_{*}-1- if B_{*}-2>J_{-},
M_{-} ; otherwise,
\end{array}
and let  \mathcal{I}  .:=  (I_{-}, I_{+}) . As mentioned in the preceding, the interaction from  (J_{-}, J_{+})\backslash 

 ( B_{*},B_{*}-I^{+}) is well under control, so it remains to control the interaction from  (J_{-}, J_{+})^{c}
. We do this by using (6.11). Even though this control seems to deteriorate when  Z_{n}'
is small, with  Z_{n}' being independent of  \ell , we can always compensate this damage by

letting  \ell  arrow  1 . This is seen by considering the two cases where  \mathcal{A}_{B_{*},k} is far from or
close to the ‘boundaries’   M\pm\cdot For the former case the influence of  (J_{-}, J_{+})^{c} on  \mathcal{A}_{B_{*},k}
decays as  |J+-J_{-}|  arrow 1 , as the influence is ‘mediated’ by all the gaps within  (J_{-}, J_{+}) .

For the latter case the   \frac{1}{|\mathcal{I}\cap \mathbb{Z}|} factor multiplying the interaction term decays because

  \lim_{|b|arrow\infty}|\mathcal{A}_{b,k}|  =\infty.  \square 

Equipped with Proposition 6.2, we proceed to proving the following uniform density
estimate.
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Proposition 6.3. For any  t\geq 0 , there exists some  K\in \mathbb{Z}_{>0} , such that

(6.15)   \Sigma_{\mathcal{A}_{b,k}}(Y(s)) \geq \frac{\rho}{2}, \forall s\in [0, t], 
b\in L, n\in \mathbb{Z}_{>0}, k\geq K.

Proof. By (6.8) we have  \Sigma_{\mathcal{A}_{b,k}}(Y(0))  \geq  \rho-  ck^{-1} . Hence for all large enough
 k :  k  \geq  k_{0}  =  k_{0}(\rho, y^{in}) , we have  \Sigma_{\mathcal{A}_{b,k}}(Y(0))  >   \frac{3\rho}{4},  \forall b  \in L. With this and  \tau as in

Proposition 6.2, applying Proposition 6.2 for  t_{*}  =  0 and  K_{*}  =  k_{0} , we conclude (6.15)
if  t  \leq  \tau . To progress to  t  >  \tau , we show that, actually,  \Sigma_{\mathcal{A}_{b,k\ell}}(Y(\tau))  >   \frac{3\rho}{4} , for  k

further chosen large enough. Recall that we prove Proposition 6.2 by making the last

three terms in (6.2) arbitrarily small by choosing  K large enough and  \tau small enough.
Upon letting  K further larger (but keep  \tau fixed), we have that the interaction term
and the Brownian term becomes smaller, but the last term  \overline{Q}_{b}^{k} may stay bounded away

from zero, because the estimate (6.13) does not improve as  k  arrow  1 . This problem is
resolved by changing  k  \mapsto   k\ell , which corresponds to grouping  \ell consecutive intervals

of  \{\mathcal{A}_{b,k}\}_{b} to form a new, coarser, partition  \{\mathcal{A}_{b,k\ell}\}_{b} . Fixing arbitrary  \mathcal{A}_{b,k\ell} , we let
 \mathcal{A}\pm  \cdot:=  \mathcal{A}_{\underline{\ell}(b\pm 1/2)\pm 1/2,k} denote the neighboring ‘small’ intervals, end form the spliced
interval  \mathcal{A}'  .:=\mathcal{A}_{-}\cup \mathcal{A}_{b,k\ell}\cup \mathcal{A}_{+} . Let  \mathcal{I}' be such that  \mathcal{A}_{b,k\ell}\subset \mathcal{I}'\subset\overline{\mathcal{A}}' . With such interval

 \mathcal{I}' replacing  \mathcal{I} , we have that  |\mathcal{A}_{\pm}^{L}|/|\mathcal{A}_{b,k\ell}^{L}|  arrow  0 as  \ell  arrow  1 , uniformly in  b  \in L. With

this improvement, we obtain that  \Sigma_{\mathcal{A}_{b,k\ell_{1}}}(Y(\tau))  >   \frac{3\rho}{4} , for all  n\in \mathbb{Z}_{>0},  k\geq k_{0}\vee K and

some  \ell_{1}  =\ell_{1}(\rho) , which then allows us to apply Proposition 6.2 for  K_{*}  =\ell_{1}(k_{0}\vee K) and
 t_{*}  =\tau . Iterating the preceding procedure  i_{*}  :=  \lceil t/\tau\rceil times, we conclude (6.15).  \square 

Proof of (6.1). Here we give a sketch of the proof, and refer to [7, proof  0

Lemma 6.4] for the details.
Without lost of generality we assume  q(t, 1)  \leq   \frac{\rho}{400} . Combining Proposition 6.3 and

the continuity estimate (3.6), we obtain

(6.16)   \mathcal{A}_{b,k}(Y^{\vee\gamma_{n}}(s)) \geq \frac{\rho}{3}, \forall b\in 
\mathbb{Z}, k\geq K, s\in [0, t],

for some  K  \in  \mathbb{Z}_{>0} . Fix  m  \in  \mathbb{Z} and let  b_{*} be such that  m  \in  (m_{b_{*}-1/2}^{K}, m_{b_{*}+1/2}^{K} ].
Combining (6.16) with Lemma 4.4, we obtain  b,k

 \in  \mathcal{A}_{b,k} such that the interaction
from outside of  ( b,k,b,k-I^{+}) is well under control. Using this in  (6.2)-(6.3) yields the
desired estimate of  |\Sigma_{\mathfrak{A}}(Y^{\vee\gamma_{n}}(s))-\Sigma_{\mathfrak{A}}
(Y^{\vee\gamma_{n}}(0))| , for A of the form  \mathfrak{A}=  ( \frac{1}{2},K-, I_{b,K}^{+}) .

This estimate is turned into estimate for  \mathcal{A}  =  (0, m) by comparing the difference  0

 \Sigma_{\mathcal{A}}(Y^{\vee\gamma_{n}}(s)) for  \mathcal{A}=  ( \frac{1}{2},K-, I_{b_{*},K}^{+}) and for  \mathcal{A}=  (0, m) at the ‘boundaries’  \mathcal{A}_{1/2,K} and

 \mathcal{A}_{b_{*},K}.  \square 
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