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Stochastic differential equations related to
random matrix theory

By

Hirofumi OSADA* and Hideki TANEMURA**

Abstract

In this note we review recent results on existence and uniqueness of solutions of infinite‐
dimensional stochastic differential equations describing interacting Brownian motions on  \mathbb{R}^{d}.

§1. Introduction

Let  X^{N}(t)=(X_{j}^{N}(t))_{j=1} be a solution of the stochastic differential equation (SDE)

(1.1)  dX. (t)=dB_{j}(t)+ \frac{\beta}{2}\sum_{k=1,k\neq j}^{N}\frac{dt}{X^{N}(t)-
X_{k}(t)}
or the SDE with Ornstein‐Uhlenbeck’s type drifts

(1.2)  dX^{N}(t)=dB_{j}(t)- \frac{\beta}{4N}X. (t)dt+\frac{\beta}{2}\sum_{k=1,k\neq j}
^{N}\frac{dt}{X^{N}(t)-X_{k}(t)},
where  B\cdot(t) ,  j=1 , 2, :::,  N are independent one‐dimensional Brownian motions. These
are called Dyson’s Brownian motion models with parameters  \beta  >  0  [4] . They were
introduced to understand the statistics of eigenvalues of random matrix ensembles as
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distributions of particle positions in one‐dimensional Coulomb gas systems with log‐

potential.

The solution of (1.2) is a natural reversible stochastic dynamics with respect to
 \check{\mu} bulk,  \beta^{:}

(1.3)   \check{\mu}_{bulk,\beta}(dx_{N})= \frac{1}{Z}h_{N}(x_{N})^{\beta}e^{-
\frac{\beta}{4N}|x_{N}|^{2}}dx_{N},
where   dx_{N}=dx_{1}dx_{2}\cdots  dx_{N},  x_{N}=(x_{i})  \in \mathbb{R}^{N} , and

 h_{N}( x_{N})=\prod_{i<j}^{N}|x_{i}-x_{j}|.
Throughout,  Z denotes a normalizing constant. Gaussian ensembles are called Gaussian

orthogonal/unitary/symplectic ensembles  (GOE/GUE/GSE) according to their invari‐
ance under conjugation by orthogonal/unitary/symplectic groups, which correspond to
the inverse temperatures  \beta=1 , 2 and 4, respectively [9, 2]. It is natural to believe that
the  N‐limit of the process  X^{N}(t) solves the infinite‐dimensional stochastic differential

equation (ISDE)

(1.4)  dX_{j}(t)=dB_{j}(t)+ \frac{\beta}{2}\lim_{r} \sum_{k=1,k\neq j}^{\infty} 
\frac{dt}{X_{j}(t)-X_{k}(t)}.
 |X_{k}(t)|<r

The result was not proved rigorously until a few years ago when it was shown for  \beta=2

in [17], for  \beta=1 , 2, 4 in [8], and fop  \beta\geq  1 in [23] .
Set  Y_{j}^{N}(t)  =N^{1/6}(X_{j}^{N}(t)-2 N) ,  j=1 , 2,  N for the solution  X^{N} of (1.2). It

has also been shown that the  N‐limit of the process  Y^{N}(t) solves the ISDE

(1.5)  dY_{j}(t)=dB_{j}(t)+ \frac{\beta}{2}\lim_{r} \{\sum_{k=1,k\neq j}^{\infty}\frac
{1}{Y\cdot(t)-Y_{k}(t)}- -rr\frac{\hat{\rho}(x)dx}{-x}\}dt,
with  \hat{\rho}(x)=\pi^{-1}\sqrt{-x}1(x<0) , for  \beta=2  [17] and for  \beta=1 , 2, 4  [8].

One of the key parts of proving the above results is the existence and uniqueness
of solutions of an ISDE of the form

(1.6)  dX \cdot(t)=dB\cdot(t)-\frac{1}{2}\nabla\Phi(X\cdot(t))dt-\frac{1}{2}\sum_{k=1,
k\neq j}^{\infty}\nabla\Psi(X\cdot(t), X_{k}(t))dt
with free potential  \Phi and interaction (pair) potential  \Psi . In ISDEs (1.4) and (1.5),  \Psi is
given by the  \log pair potential  -\beta\log|x-y| . The present note is a short summary  0

results on existence and uniqueness of solutions for ISDE (1.6).
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§2. Quasi‐Gibbs measure

Let  S be a closed set in  \mathbb{R}^{d} such that   0\in  S and  \overline{S^{int}}=S , where  S^{int} denotes the

interior of  S . The configuration space  \mathfrak{M} of unlabelled particles is given by

(2.1)  \mathfrak{M}= {  \xi :  \xi is a nonnegative integer valued Radon measure in }
 = {   \xi(\cdot)=\sum_{j\in I}\delta_{x_{j}}(\cdot) : ♯  \{j\in I:x_{j}  \in K\}<1 , for any  K compact},

where I is a countable set and  \delta_{a} is the Dirac measure at  a  \in  S . Thus  \mathfrak{M} is a Polish

space with the vague topology. We also introduce a subset  \mathfrak{M}_{s.i} of  \mathfrak{M} :

(2.2)  \mathfrak{M}_{s.i}.  = {  \xi\in \mathfrak{M} :  \xi(\{x\})  \leq  1 for all  x\in S,  \xi(S)=\infty },

that is, the set of configurations of an infinite number of particles without collisions.

For Borel measurable functions  \Phi :  Sarrow \mathbb{R}\cup\{\infty\} and  \Psi :  S\cross Sarrow \mathbb{R}\cup\{\infty\} and a given

increasing sequence  \{b_{r}\} of  \mathbb{N} , we introduce the H   \summiltonian

(2.3)  H_{r}( \xi)=H_{r}^{\Phi,\Psi}(\xi)=\sum_{x_{j}\in S_{r}}\Phi(x_{j})+\sum_{x_{j}
,x_{k}\in S_{r},j<k}\Psi(x_{j}, x_{k}) , \xi=\sum_{\in I}\delta_{x_{j}},
where  S_{r}  =  \{x \in S : |x| < b_{r}\} . We call  \Phi a free potential, and call  \Psi an interaction

potential. Let  \Lambda_{r}^{m} be the restriction of a Poisson random measure with intensity measure
 dx on  \mathfrak{M}_{r}^{m}  =  \{\xi \in \mathfrak{M} : \xi(S_{r}) = m\} . We define maps  \pi_{r},  \pi_{r}^{c} :  \mathfrak{M}  arrow  \mathfrak{M} such that

 \pi_{r}(\xi)  =  \xi(. \cap S_{r}) and  \pi_{r}^{c}(\xi)  =  \xi(. \cap S_{r}^{c}) . For two measures  v_{1},  v_{2} on a measurable

space  (\Omega, \mathcal{F}) we write  v_{1}  \leq  v_{2} if  v_{1}(A)  \leq  v_{2}(A) for any  A\in \mathcal{F} . We can now state the

definition of a quasi‐Gibbs measure [13, 14].

Definition 2.1. A probability measure  \mu on  \mathfrak{M} is said to be  a(\Phi, \Psi) ‐quasi Gibbs

measure if its regular conditional probabilities

 \mu_{r,\xi}^{m}(d\zeta)=\mu(d\zeta|\pi_{r}^{c}(\zeta)=\pi_{r}^{c}(\xi), 
\zeta(S_{r})=m) , r, m\in \mathbb{N},

satisfy that, for  \mu-a.s.  \xi,

 c^{-1}e^{-H_{r}(\eta)}\Lambda_{r}^{m} (\pi_{S_{r}} \in d\eta) \leq\mu_{r,\xi}
^{m}(\pi_{S_{r}} \in d\eta) \leq ce^{-H_{r}(\eta)}\Lambda_{r}^{m}(\pi_{S_{r}} 
\in d\eta) .

Here,  c=c(r, m, \xi) is a positive constant depending on  r,  m , and  \xi.

It is readily seen that the quasi‐Gibbs property is a generalized notion of the

canonical Gibbs property. If  \mu is  a  (\Phi, \Psi) ‐quasi Gibbs measure, then  \mu is also a

 (\Phi + \Phi_{1oc.bdd}, \Psi) ‐quasi Gibbs measure for any locally bounded measurable function
 \Phi_{1oc.bdd} . In this sense, the notion of “quasi‐Gibbs” seems to be robust. Information

about the free potential of  \mu is determined from its logarithmic derivative [12].
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A function  f on  \mathfrak{M} is called a polynomial function  i

(2.4)  f(\xi)=Q(\langle\phi_{1}, \xi\rangle, \langle\phi_{2}, \xi\rangle, \ldots, 
\langle\phi_{\ell}, \xi\rangle)

with  \phi_{k}  \in C_{c}^{\infty}(S) and a polynomial function  Q on  \mathbb{R}^{\ell} , where  \langle\phi,  \xi\rangle  = \int_{S}\phi(x)\xi(dx) and

 C_{c}^{\infty}(S) is the set of smooth functions with compact support. We denote by  \mathcal{P} the set

of all polynomial functions on M.

Definition 2.2. We call  d^{\mu}  \in  L_{loc}^{1}(S\cross \mathfrak{M}, \mu^{[1]}) the logarithmic derivative of  \mu

 i

 d^{\mu}(x, \eta)f(x, \eta)d\mu^{[1]}(x, \eta)=- \nabla_{x}f(x, \eta)d\mu^{[1]}
(x, \eta)
 S\cross \mathfrak{M}  S\cross \mathfrak{M}

is satisfied for  f\in C_{c}^{\infty}(S)\otimes \mathcal{P} . Here  \mu^{[k]} is the Campbell measure of  \mu

 \mu^{[k]}(A\cross B)=  A^{\mu_{x}(B)\rho^{k}(x)dx} ’  A\in \mathcal{B}(S^{k}) ,  B\in \mathcal{B}(\mathfrak{M}) ,

 \mu_{x} is the reduced Palm measure conditioned at  x\in S^{k}

(2.5)  \mu_{x}=\mu (   \cdot-\sum_{j=1}^{k}\delta_{x_{j}}|\xi(x_{j})  \geq  1 for  j=1,2,  \ldots,
 k) ,

and  \rho^{k} is the  k‐correlation function for  k\in \mathbb{N}.

Quasi‐Gibbs measures inherit the following property from canonical Gibbs measures

[19, Lemma 11.2]. Let  T(\mathfrak{M}) be the tail  \sigma‐field

 T( \mathfrak{M})=\bigcap_{r=1}^{\infty}\sigma(\pi_{r}^{c})
and let  \mu_{Tai1}^{\xi} be the regular conditional probability defined as

(2.6)  \mu_{Tai1}^{\xi}=\mu(\cdot|T(\mathfrak{M}))(\xi) .

Then the following decomposition holds:

(2.7)  \mu(\cdot)= \mu_{Tai1}^{\xi}(\cdot)\mu(d\xi) .
 \mathfrak{M}

Furthermore, there exists a subset  \mathfrak{M}_{0} of  \mathfrak{M} satisfying  \mu(\mathfrak{M}_{0})=1 and, for all  \xi,  \eta\in \mathfrak{M}_{0} :

(2.8)  \mu_{Tai1}^{\xi}(A)  \in\{0 , 1  \} for all  A\in T(\mathfrak{M}) ,

(2.9)  \mu_{Tai1}^{\xi}(\{\zeta\in \mathfrak{M}:\mu_{Tai1}^{\xi}=\mu_{Tai1}^{\zeta}\})
=1,
(2.10)  \mu_{Tai1}^{\xi} and  \mu_{Tai1}^{\eta} are mutually singular on  T(\mathfrak{M}) if  \mu_{Tai1}^{\xi}\neq\mu_{Tai1}^{\eta}.
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§3. General theory of solutions of ISDEs

A polynomial function  f on  \mathfrak{M} is a local function, that is, a function satisfying

 f(\xi)  =f(\pi_{r}(\xi)) for some  r\in \mathbb{N} . When  \xi\in \mathfrak{M}_{r}^{m},  m\in \mathbb{N}\cup\{0\} and  \pi_{r}(\xi) is represented

by   \sum_{j=1}^{m}\delta_{x_{j}} , we can regard  f(\xi)  =  f( \sum_{j=1}^{m}\delta_{x_{j}}) as a permutation invariant smooth

function on  S_{r}^{m} . For  f,  g\in \mathcal{P} , define

 \mathbb{D}  (f, )(\xi)=   \frac{1}{2}\sum_{j=1}^{\infty}\nabla_{x_{j}}f(\xi) .  \nabla_{x_{j}}g(\xi) .

For a probability  \mu on  \mathfrak{M} , we denote by  L^{2}(\mathfrak{M}, \mu) the space of square integrable functions

on  \mathfrak{M} with the inner product  \langle\cdot,  \rangle_{\mu} and the norm  \Vert  \Vert_{L^{2}(\mathfrak{M},\mu)} . We consider the bilinear

form  (\mathcal{E}^{\mu}, \mathcal{P}^{\mu}) on  L^{2}(\mathfrak{M}, \mu) defined by

(3.1)  \mathcal{E}^{\mu}(f, )= \mathbb{D}(f, )d\mu,
 \mathfrak{M}

where  \Vert f\Vert_{1}^{2}\equiv \mathcal{E}^{\mu}(f, f)+\Vert f\Vert_{L^{2}
(\mathfrak{M},\mu)}^{2}.
We make the following assumptions

 \mathcal{P}^{\mu}=\{f\in \mathcal{P}: \Vert f\Vert_{1}^{2} <\infty\},

(A.0)  \mu has a locally bounded  n‐correlation function  \rho^{n} for each  n\in \mathbb{N}.

(A.1) There exist upper semi‐continuous functions  \Phi_{0} :  S  arrow  \mathbb{R}\cup  \{\infty\} and  \Psi_{0} :
 S\cross Sarrow \mathbb{R}\cup\{\infty\} that are locally bounded from below, and  c>0 such that

 c^{-1}\Phi_{0}(x) \leq\Phi(x) \leq c\Phi_{0}(x) , c^{-1}\Psi_{0}(x, y) \leq\Psi
(x, y) \leq c\Psi_{0}(x, y) .

(A.2) There exists a  T>0 such that for each  R>0

  \lim_{rarrow}\inf_{\infty} Erf  ( \frac{r}{(r+R)T})  |x|\leq r+R^{\rho^{1}(x)dx}=0,
where  Erf(t)  =(2 \pi)^{-1/2}\int_{t}^{\infty}e^{-x^{2}/2}dx.

Note that  \mathcal{P}^{\mu}=\mathcal{P} and  (\mathcal{E}^{\mu}, \mathcal{P}^{\mu})  =(\mathcal{E}, \mathcal{P}) under condition (A.0).

Theorem 3.1 ([12, 13, 14, 11, 16]). Suppose that  \mu is  a(\Phi, \Psi) ‐quasi Gibbs mea‐
sure satisfying  (A. 0) and (A. 1 . The
(i)  (\mathcal{E}, \mathcal{P}) is closable and its closure  (\mathcal{E}^{\mu}, \mathcal{D}^{\mu}) is a quasi regular Dirichlet form and there
exists the  di usion process  (---(t), P_{\mu}^{\xi}) associated with  (\mathcal{E}^{\mu}, \mathcal{D}^{\mu}) .

(ii) Furthermore, assume conditions (A.2) and (A.3 :
(A.3)  Cap^{\mu}((\mathfrak{M}_{s.i})^{c})=0 and  Cap^{\mu}(\xi(\partial S) \geq 1)=0,
where  Cap^{\mu} is the capacity of the Dirichlet form. If there exists a logarithmic derivative
 d^{\mu} , then there exists  \tilde{\mathfrak{M}}\subset \mathfrak{M} such that  \mu(\tilde{\mathfrak{M}})=1 , and for any   \xi=\sum_{j\in \mathbb{N}}\delta_{x_{j}}  \in\tilde{\mathfrak{M}} , there

exists an
 \mathbb{N}

‐valued continuous process  X(t)=(X_{j}(t))_{j=1}^{\infty} satisfying X(0)  =x=(x_{j})_{j=1}^{\infty}
and

 dX_{j}(t)=dB_{j}(t)+ \frac{1}{2}d^{\mu}(X_{j}(t),\sum_{k:k\neq j}\delta_{X_{k}
(t)})dt, \in \mathbb{N}.
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Let (be a label map from  \mathfrak{M}_{s.i} . to
 \mathbb{N}

, that is, for each  \xi\in \mathfrak{M}_{s.i}.,  ((\xi)  =(((\xi)_{j})_{j=1}^{\infty}
 \mathbb{N}

satisfies   \xi=\sum_{j=1}^{\infty}\delta_{\mathfrak{l}(\xi)_{j}} . The map (can be lifted to the map from  C([0, \infty), \mathfrak{M}_{s.i}.)
to  C([0, \infty), \mathbb{N}) . For  ---\in C([0, \infty), \mathfrak{M}_{s.i}.) we put

 ---
◇

 m(t)  = \sum_{j=m+1}^{\infty}\delta_{X_{j}(t)}
for each  m\in \mathbb{N} , where  (X_{j})_{j=1}^{\infty}  =((---)  \in C([0, \infty), \mathbb{N}) . We make the following assump‐
tion.

(A4) There exists a subset  \mathfrak{M}_{SDE} of  \mathfrak{M}_{s.i} . such that

 P_{\mu}^{\xi}  (---(t) \in \mathfrak{M}_{SDE})  =1 for any  \xi\in \mathfrak{M}_{SDE},

and for each  ---\in C([0, \infty), \mathfrak{M}_{SDE}) and each  m\in \mathbb{N},

(3.2)  dY_{j}^{(m)}(t)=dB_{j}(t)- \frac{1}{2}\nabla\Phi(Y_{j}^{(m)}(t))dt-\frac{1}{2}
\sum_{k=1,k\neq j}^{m}\nabla\Psi(Y_{j}^{(m)}(t), Y_{k}^{(m)}(t))dt
 -\underline{1}  \nabla\Psi(Y^{(m)}(t), X(t))_{-}^{-}-◇

 m(dX)dt,   1\leq  \leq m,
2  \mathfrak{M}

(3.3)  Y_{j}^{(m)}(0)=((---(0))_{j}, 1\leq \leq m,
has a unique strong solution  Y^{(m)}  =(Y_{1}^{(m)}, Y_{2}^{(m)}, \ldots, Y_{m}^{(m)}) .

We also make the following assumptions about the probability measure  \mu

(A5) For each  r,  T\in \mathbb{N} , there exists a positive constant  c such that

 s^{Er} ( \frac{|x|-r}{cT})\rho^{1}(x)dx<\infty.
(A6) The tail  \sigma‐field  T(\mathfrak{M}) is  \mu‐trivial, that is,  \mu(A)  \in\{0 , 1  \} for  A\in T(\mathfrak{M}) .

Definition 3.2. Let  \mu be a probability measure on  \mathfrak{M} and let  ---(t) be an  \mathfrak{M}-

valued process. We say that  ---(t) satisfies the  \mu ‐absolute continuity condition if  \mu\circ_{-}^{-}-(t)^{-1}
is absolutely continuous with respect to  \mu for  \forall t  >  0 . We say that an

 \mathbb{N}
‐valued

  \sumrocess  X(t) satisfies the  \mu‐absolute continuity condition if  u(X(t)) satisfies the  \mu-

absolute continuity condition, where  u is the map from
 \mathbb{N}

to  \mathfrak{M} defined by  u((x_{j})_{j=1}^{\infty})  =

  \sum_{=1}^{\infty}\delta_{x_{j}}.

Then we have the following theorem.

Theorem 3.3 ([19]). Suppose that the assumptions in Theorem 3.1 are satisfied.
Furthermore assume  (A4)-(A6 . Then, for  \mu-a.s.  \xi , ISDE (1. 6) with X(0)  =  ((\xi)
has a strong solution satisfying the  \mu ‐absolute continuity condition, and that pathwise

uniqueness holds for ISDE (1.6) with the  \mu ‐absolute continuity condition.
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§4. Applications

Theorems 3.1 and 3.3 can be applied to quite general class of ISDEs. In this section

we give some important examples.

Example 4.1 (Canonical Gibbs measures). Let  S  =  \mathbb{R}^{d},  d  \in N. Assume that
 \Phi  =  0 and that  \Psi_{0} is a super stable and regular in the sense of Ruelle [22], and is
smooth outside the origin. Let  \mu be a canonical Gibbs measure with the interaction  \Psi_{0}.

Then its logarithmic derivative is

(4.1)   d^{\mu}(x,\sum_{k:k\neq j}\delta_{y_{k}}) =-\sum_{k=1,k\neq j}^{\infty}
\nabla\Psi_{0}(x-y_{k}) .

Assume that (A.2) is satisfied. In the case  d  \geq  2 , there exists a diffusion process
associated with  \mu and the labeled process solves

(4.2)  dX_{j}(t)=dB_{j}(t)- \frac{1}{2}\sum_{k=1,k\neq j}^{\infty}\nabla\Psi_{0}(X_{j}
(t)-X_{k}(t))dt.
In the case  d=1,  \Psi_{0} needs to be sufficient repulsive at the origin to satisfy (A.3).

Assume that (A.5) is satisfied and that, for each  n  \in  \mathbb{N} , there exist positive con‐
stants  c,  c' satisfying

(4.3)   \sum_{r=1}^{\infty}\frac{\int_{|x|>r}\rho^{1}(x)dx}{r^{c}} <1,
(4.4)   \sum_{i,j=1}^{d}|\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}\Psi_{0}(x)|
\leq \frac{c'}{(1+|x|)^{c'+1}},
for all  |x|  \geq  1/n . In [19, Theorem 3.3] it was proved that, for  \mu-a.s.  \xi , ISDE (4.2) with
X(0)  =  ((\xi) has a strong solution satisfying the  \mu_{Tai1}^{\xi}‐absolute continuity condition,
and that pathwise uniqueness holds for ISDE (1.6) with the  \mu_{Tai1}^{\xi}‐absolute continuity
condition.

Example 4.2 (Sine random point fields). Let  \check{\mu}_{bulk,\beta} be the probability measure
defined in (1.3). We denote by  \mu_{bulk,\beta} the distribution  0   \sum_{j=1}\delta_{x_{j}} under  \check{\mu}_{bulk,\beta} . For
 \beta>0 the existence of the limit of  \mu_{bulk,\beta}^{N} as  Narrow 1 was shown in Valko‐Virág[24]. We
denote the limit by  \mu_{bulk,\beta} . In particular, when  \beta=2,  \mu_{bulk,2} is the determinantal point

process (DPP) with the sine kernel

(4.5)  K_{sin,2}(x, y)=  \frac{\sin(x-y)}{\pi(x-y)},
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and when  \beta  =  1 , 4, it is a quaternion determinantal point process [2]. It was shown
that  \mu_{bulk,\beta} for  \beta  =  1 , 2, 4 is a quasi‐Gibbs measure in [13], and that its logarithmic
derivative is

(4.6)   d^{\mu}(x,\sum_{k:k\neq}.\delta_{y_{k}}) =\beta\lim_{r} \sum_{k:k\neq j} \frac
{1}{x-y_{k}}
 |y_{k}|<r

in [12]. In [19, Theorem 3.1] it was shown that for  \mu_{bulk,\beta}-a.s.  \xi , ISDE (1.4) with X(0)  =

 ((\xi) has a strong solution satisfying the  \mu_{buik,\beta,Taii}^{\xi}‐absolute continuity condition, and

that pathwise uniqueness holds for ISDE (1.4) with the  \mu_{buik,\beta,Taii}^{\xi}‐absolute continuity
condition. In the case  \beta=2 , the facts that  T(\mathfrak{M}) is  \mu_{bulk,2} ‐trivial and  \mu_{buik,2,Taii}^{\xi}=\mu_{bulk,2}
were shown in [15].

Tsai [23] proved the existence and uniqueness of solutions of ISDE (1.4) for  \beta\geq  1

by a different method. Thus it is conjectured that  \mu_{bulk,\beta} is a quasi‐Gibbs measure and

has a logarithmic derivative of the form (4.6) for  \beta\geq  1.

Example 4.3 (Airy random point fields). We denote by  \mu_{soft,\beta} the distribution
 0   \sum_{j=1}\delta_{N^{1/6}(x_{j}-2\sqrt{N})} under  \check{\mu}_{bulk,\beta}^{N} . For  \beta  >  0 , the existence of the limit of  \mu_{soft,\beta} as
 N  arrow  1 was shown in Ramírez‐Rider‐Virág [21]. We denote the limit by  \mu_{soft,\beta} . In
particular, when  \beta=2,  \mu_{soft,2} is the DPP with the Airy kernel

(4.7)  K_{Ai,2}(x, y)=  \frac{Ai(x)Ai'(y)-Ai'(x)Ai(y)}{x-y},
where Ai denotes the Airy function and  Ai' its derivative [9]. When  \beta  =  1 , 4, it is a
quaternion determinantal point process [2]. In the cases  \beta=1 , 2, 4, it has been proved
that the random point field is quasi‐Gibbsian [14], and that its logarithmic derivative is

(4.8)   d^{\mu}(x,\sum_{k:k\neq j}\delta_{y_{k}}) =\beta\lim_{r} \{\sum_{k:k\neq j}
\frac{1}{x-y_{k}}- -rr\frac{\hat{\rho}(x)dx}{-x}\},
and for  \mu_{soft,\beta}-a.s.  \xi , ISDE (1.5) with X(0)  =  ((\xi) has a strong solution satisfying the

 \mu_{soft,\beta,Taii}^{\xi} ‐absolute continuity condition, and pathwise uniqueness holds for ISDE (1.5)
with the  \mu_{soft,\beta,Taii}^{\xi}‐absolute continuity condition [18, Theorem 2.3]. In the case  \beta=2

the facts that  T(\mathfrak{M}) is  \mu_{soft,2} ‐trivial and that  \mu_{soft,2,Taii}^{\xi}=\mu_{soft,2} were shown in [15].
Determining whether  \mu_{soft,\beta} has the quasi‐Gibbs property for general  \beta and finding

its logarithmic derivative is (4.8) are interesting and important problems.

Example 4.4 (Bessel random point field). Let  S=  [0, \infty ) and  1  \leq\alpha<1 . Let
 \mu_{hard,2} be the determinantal pointppropess with Bespel kerpel

(4.9)  K_{J_{\alpha}}(x, y)=  \frac{J_{\alpha}(x)yJ_{\alpha}'(y)-xJ_{\alpha}'(x)
J_{\alpha}(y)}{2(x-y)}.
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In [6] it was shown that  \mu_{hard,2} is a quasi‐Gibbs measure and that the related process is
the unique strong solution of the  I8DE

 dX_{j}(t)=dB_{j}(t)+ \{\frac{\alpha}{2X_{j}(t)}+\sum_{k=1,k\neq j}^{\infty}
\frac{1}{X_{j}(t)-X_{k}(t)}\}dt
with the  \mu_{hard,2} ‐absolute continuity condition.

Example 4.5 (Ginibre random point field). Let  S=\mathbb{R}^{2} be identified as C. Let
 \mu_{Gin} be the DPP with the kernel  K_{Gin} :  \mathbb{C}\cross \mathbb{C}arrow \mathbb{C} defined by

(4.10)  K_{Gin}(x, y)=  \frac{1}{\pi}e^{-|x|^{2}/2-|y|^{2}/2}e^{xy}.
In [13] it was shown that  \mu_{Gin} is a quasi‐Gibbs measure, and in [12] that the related
process is a solution of the ISDE

(4.11)  dX_{j}(t)=dB_{j}(t)-X_{j}(t)dt+ \lim_{r} \sum_{|x_{k(t)|<r}^{k:k\neq j}}
\frac{X_{j}(t)-X_{k}(t)}{|X\cdot(t)-X_{k}(t)|^{2}}dt.
The pathwise uniqueness of solutions of (4.11) with the  \mu_{Gin} ‐absolute continuity condi‐
tion was shown in [19].

§5. Remarks

In the previous section we gave some examples of DPPs that are not canonical

Gibbs measures but quasi‐Gibbs measures. It is expected that quite general DPPs have

the quasi‐Gibbs property. We thus present examples of DPPs related to random matrix

theory or non‐colliding Brownian motions, whose quasi‐Gibbs property have not been
shown.

Example 5.1 (Pearcey process). Consider  2N noncolliding Brownian motions,
in which all particles start from the origin and  N particles end at  N at time  t  =

 1 , and the other  N particles end at —  N at  t  =  1 . We denote the system by

 (X_{1}^{N}(t), \ldots, X_{2N}^{N}(t)) ,  0  \leq  t  \leq  1 . When  N is very large, there is a cusp at  x_{0}  =  0

when  t_{0}  =   \frac{1}{2} , that is, before time  t_{0} particles are in one interval with high probability,

while after time  t_{0} they are separated into two intervals by the origin. We denote the
distribution

  \sum_{j=1}^{2N}\delta_{2^{3/2}}(2N)^{1/4}X_{j}^{N}(\frac{1}{2})
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on  \mathfrak{M} by  \mu_{pearcey} . It was proved in Adler‐Orantin‐von Moerbeke [1] that

 \mu_{pearcey}arrow\mu_{pearcey} , weakly as  Narrow 1

and that  \mu pearce is the DPP  K_{pearce}  (x, y) given by

Kpearcey  (x, y)=   \frac{P(x)Q"(y)-P'(x)Q'(y)+P"(x)Q(y)}{x-y},  x,  y\in \mathbb{R},

with

 Q(y)=   \frac{i}{2\pi}  -i\infty i\infty  e^{-u^{4}/4} du and  P(x)=   \frac{1}{2\pi i}  e^{v^{4}/4+vx}dv,

where the contour  C is given by the ingoing rays from  \pm\infty e^{i\pi/4} to  0 and the outgoing

rays from  0 to  \pm\infty e^{-i\pi/4} . These integrals are known as Pearcey’s integrals [20].

Example 5.2 (Tacnode process). Consider two groups of non‐colliding pinned
Brownian motions  (X_{1}^{N}(t), \ldots, X_{2N}^{N}(t)) in the time interval   0\leq t\leq  1 , where one group

of  N partiples starts and ends at  N and the other group of  N particles starts and
ends at —  N . The distribution  (N^{1/6}X_{1}^{N}( \frac{1}{2}), N^{1/6}X_{2}^{N}( \frac{1}{2}), \ldots, 
N^{1/6}X_{2N}^{N} ( \frac{1}{2})) on the

Weyl chamber of type  A_{2N-1}

 W_{2N}= \{x= (x_{1}, x_{2}, \cdot \cdot \cdot x_{2N}) : x_{1} <x_{2} < . . . 
<x_{2} \},
is given by

 m_{tac}^{2}(d x_{2N})= \frac{1}{Z} [\det (e^{-2|x_{i}-a_{j}|^{2}})]^{2} ,

where  a_{j}  =  -  N for  1  \leq j  \leq  N and  a_{j}  =  N for  N+1  \leq j  \leq  2N . We denote the

distribution  0   \sum_{j=1}^{2}\delta_{N^{1/6}x_{j}} under  m_{tac}^{2N} by  \mu_{tac} . It was proved in Delvaux‐Kuijlaars‐

Zhang [3] and Johansson [7] that

 \mu_{tac}arrow\mu_{tac} , weakly as  Narrow 1

and that  \mu_{tac} is the DPP with the correlation kernel

 K_{tac}(x, y)\equiv L_{tac}(x, y)+L_{tac}(-x, -y) , x, y\in \mathbb{R},

where

 L_{tac}(x, y)=K_{Ai,2}(x, y)

 +2^{1/3}  dudv Ai  (y+2^{1/3}u)R(u, v)Ai(x+2^{1/3}v)
 (0,\infty)^{2}

 -2^{1/3} dudvAi(-y+2^{1/3}u)Ai(u+v)Ai(x+2^{1/3}v)
 (0,\infty)^{2}

 -2^{1/3} dudvdw A i(-y+2^{1/3}u)R(u, v)Ai(v+w)Ai(x+2^{1/3}w) .
 (0,\infty)^{3}
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Here,  R(x, y) is the resolvent operator for the restriction of the Airy kernel to  [0, \infty ),
that is, the kernel of the operator

(5.1)  R=(I-K_{Ai})^{-1}K_{Ai}

on  L^{2}[0, \infty) .

In [3, 7] it was also shown that

 ---N(t) \equiv\sum_{j=1}^{2N}\delta_{N^{1/6}}x_{j}(\frac{1}{2}+N-1/3t)  arrow---(t) , as  Narrow 1,

in the sense of finite‐dimensional distributions, where  ---(t) is a reversible process with

reversible measure  \mu_{tac} . We expect that  ---(t) is the diffusion process associated with the
Dirichlet form  (\mathcal{E}^{\mu_{tac}}, \mathcal{D}^{\mu_{tac}}) .

References

[1] Adler, M., Orantin, N. and von Moerbeke, P., Universality for the Pearcey process, Physic
D 239 (2010), 924‐941.

[2] Anderson, G. W., Guionnet, A. and Zeitouni, O., An Introduction to Random Matrices,
Cambridge university press, 2010.

[3] Delvaux, S., Kuijlaars, B.J. and Zhang, L., Critical Behavior of Nonintersecting Brownian
motions at a Tacnode, Comm. Pure Appl. Math. 64 (2011), 1305‐1383.

[4] Dyson, F. J., A Brownian‐motion model for the eigenvalues of a random matrix, J. Math.
Phys. 3 (1962), 1191‐1198.

[5] Fukushima, M., Oshima, Y. and Takeda, M., Dirichlet forms and symmetric Markov pro‐
cesses, 2nd ed., Walter de Gruyter, 2011.

[6] Honda, R. and Osada, H., Infinite‐dimensional stochastic differential equations related to
the Bessel random point fields, Stochastic Processes and their Applications 125 (2015),
3801‐3822.

[7] Johansson, K., Non‐colliding Brownian motions and the extended Tacnode process,
Comm. Math. Phys., 269 (2012), 571‐609.

[8] Kawamoto, Y. and Osada, H., Finite particle approximations of interacting Brownian
motions in infinite dimensions and SDE gaps, (in preparation).

[9] Mehta, M. L., Random Matrices. 3rd edition, Amsterdam: Elsevier, 2004
[10] Osada, H., Dirichlet form approach to infinite‐dimensional Wiener processes with singular

interactions, Commun. Math. Phys., 176 (1996), 117‐131.
[11] Osada, H., Tagged particle processes and their non‐explosion criteria, J. Math. Soc. Japan,

62 (2010), 867‐894.
[12] Osada, H., Infinite‐dimensional stochastic differential equations related to random matri‐

ces, Probability Theory and Related Fields, 153 (2012), 471‐509.
[13] Osada, H., Interacting Brownian motions in infinite dimensions with logarithmic interac‐

tion potentials, Ann. of Probab.. 41 (2013), 1‐49.



214 Hirofumi sada and Hideki Tanemura

[14] Osada, H., Interacting Brownian motions in infinite dimensions with logarithmic interac‐
tion potentials II .: Airy random point field, Stochastic Processes and their Applications,
123 (2013), 813‐838.

[15] Osada, H. and Osada, S., Discrete approximations of determinantal point processes on con‐
tinuous space: tree representations and tail triviality, (preprint) arXiv:1517677 [math. PR].

[16] Osada, H. and Tanemura, H., Cores of Dirichlet forms related to Random Matrix Theory,
Proc. Jpn. Acad., Ser. A, 90 (2014), 145‐150.

[17] Osada, H. and Tanemura, H., Strong Markov property of determinantal processes with
extended kernels, Stochastic Processes and their Applications, 126 (2016), 186‐208.

[18] Osada, H. and Tanemura, H., Infinite‐dimensional stochastic differential equations arising
from Airy random point fields, (preprint) arXiv:1408.0632 [math. PR].

[19] Osada, H. and Tanemura, H., Infinite dimensional stochastic differential equations and
tail  \sigma‐fields, (preprint) arXiv:1412.8674 [math. PR].

[20] Pearcey, T., The structure of an electomagnetic field in the neighbourhoood of a cusp of
a caustic, Phil. Mag. 37 (1946), 311‐317.

[21] Ramírez, J.A., Rider, B. and Virá , B., Beta ensembles, stochastic Airy spectrum, and a
diffusion, Journal of the American Mathematical Society, 24 (2011), 919‐944.

[22] Ruelle, D., Superstable interactions in classical statistical mechanics, Commun. Math.
Phys. 18 (1970), 127‐159.

[23] Tsai, Li‐Chen , Infinite dimensional stochastic differential equations for Dyson’s model,
Probability Theory and Related Fields, DOI 10.1007/s00440‐0l5‐0672‐2.

[24] Valkó, B. and Virá , B., Continuum limits of random matrices and the Brownian carousel,
Inventions 177 (2009), 463‐508.


