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A new proof of first order phase transition for the
planar random‐cluster and Potts models with q  \gg 1

By

Hugo DUMINIL−COPIN*

Abstract

We provide a proof that the random‐cluster model on the square lattice undergoes a dis‐
continuous phase transition for large values of the cluster‐weight  q . This implies discontinuity
of the phase transition for Potts model on the square lattice provided that the number of colors
 q is large enough. Let us remind the reader that this result is classical and that we simply
provide an alternative approach based on the loop representation.

§1. Introduction

The random‐cluster model, also called Fortuin‐Kasteleyn percolation, is a percola‐

tion model on  \mathbb{Z}^{d} introduced in [FK72]. This model has been proved to be useful both
as a geometric representation for the Potts model, and as an archetypical example of a

dependent percolation model.

Let  G be a graph with vertex and edge sets  V_{G} and  E_{G} respectively. A percolatio

configuration  \omega on a graph  G is a subgraph of  G with the same vertex set as  G . Let

 o(\omega) and  k(\omega) be the number of edges and connected components in  \omega . The probability

measure  \phi_{G,p,q}^{free} of the random‐cluster model on a finite graph  G with   p\in  [0 , 1  ],  q  >  0

and free boundary conditions is defined by

(1.1)   \phi_{G,p,q}^{free}[\{\omega\}] :=\frac{p^{o(\omega)}(1-p)^{|E_{G}|-o(\omega)}
q^{k(\omega)}}{Z(G,p,q)}
for every percolation configuration  \omega in  G . The constant  Z(G,p, q) is the partitio
function defined in such a way that the sum over all configurations equals 1. For   q\geq  1,
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a measure  \phi_{\mathbb{Z}^{2},p,q}^{free} on percolation configurations on  \mathbb{Z}^{2} can be defined by taking sub‐

sequential limits along a sequence of graphs  G_{n} increasing to  \mathbb{Z}^{2}.

Let  \{0\ovalbox{\tt\small REJECT} x\} denote the event that  0 and  x are in the same connected component

of  \omega . Also let  \{0\ovalbox{\tt\small REJECT}\infty\} denote the event that  0 is in an infinite connected component
of  \omega.

The random‐cluster model undergoes a phase transition when  q  \geq  1 : there exists

 p_{c}=p_{c}(q)  \in  (0,1) such that

 \phi_{\mathbb{Z}^{2},p,q}^{free}[0\ovalbox{\tt\small REJECT}\infty]  =  \{\begin{array}{ll}
0   if p<p_{c},
\theta(p, q) >0   if p>p_{c}.
\end{array}
The model admits a dual model (see below for a definition) defined on the dual lattice
 (\mathbb{Z}^{2})^{*}  =  ( \frac{1}{2}, \frac{1}{2})  +\mathbb{Z}^{2} . It is known that the dual measure of the random‐cluster mea‐

sure with free boundary conditions  \phi_{\mathbb{Z}^{2},p,q}^{free} is the random‐cluster measure with wired

boundary conditions  wired(\mathbb{Z}^{2})^{*},p^{*},q^{*} ’ where  p^{*}  =p^{*}(p, q) and  q^{*}  =q^{*}(p, q) satisfy

  \frac{pp^{*}}{(1-p)(1-p^{*})} and  q^{*}  =q.

We refer to [Gri06] for a formal definition of the wired boundary conditipns. Let us
simply mention that  \phi_{\mathbb{Z}^{2},p,q}^{free}=\phi_{\mathbb{Z}^{2},p,q}^{wired} for any  p\neq p_{c} . The value  p_{sd}(q)  =   \frac{q}{1+q} satisfies

that  p_{sd}(q)^{*}  =p_{sd}(q) and is equal to  p_{c}(q) in [BD12, DRT].
The main result of this note is the following.

Theorem 1.1. For  q>256 , there exists  c=c(q)  >0 such that for every  x\in \mathbb{Z}^{2},

(1.2)  \phi_{\mathbb{Z}^{2},p_{c}(q),q}^{free}[0\ovalbox{\tt\small REJECT} x] \leq\exp
(-c|x|) .

Furthermore,

(1.3)  \mathbb{Z}^{2},p_{c}(q),q[0 \ovalbox{\tt\small REJECT} \infty] > 0.
wired

A similar result was proved for  q\geq 25.72 in [LMR86, LMMS  +91 , KS82]. Here, we
provide an alternative proof of this last statement on  \mathbb{Z}^{2}.

Discussion Let us discuss the context in which this theorem takes place. Once

 p_{c}(q) is determined, mathematicians and physicists are interested in the behavior at

criticality. In [DST15], the authors proved that for any   q\geq  1 , the following properties
are equivalent:

(1)   \lim_{p\searrow p_{c}}\theta(p, q)=0,
(2)  \mathbb{Z}^{2},p_{c},qwired [  0\ovalbox{\tt\small REJECT}\infty]  =0,
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Figure 1. The square lattice (left), its dual lattice (center , its medial lattice with the
orientation of its edges (right).

(3)   \sum_{x\in \mathbb{Z}^{2}}\phi_{\mathbb{Z}^{2},p_{c},q}^{free}
[0\ovalbox{\tt\small REJECT} x]  =\infty,

(4)  \phi_{\mathbb{Z}^{2},p_{c},q}^{free}=\phi_{\mathbb{Z}^{2},p_{c},q}^{wired}.

If one of (and therefore all) these properties are satisfied, we say that the phase
transition is continuous. Otherwise, the phase transition is discontinuous. Notice that

each one of these properties corresponds to a classical facet of a phase transition: con‐

tinuity of the infinite‐component density, absence of infinite‐component at criticality,

infinite susceptibility, uniqueness of the infinite‐volume measure at criticality.

With this vocabulary, the main theorem states that the phase transition is dis‐

continuous for  q  >  256 (or  q  > 25:72 if one refers to [LMR86, LMMS  +91 , KS82]). In
[DST15], the phase transition was proved to be continuous when   q\in  [1 , 4 ] . Let us men‐
tion the following conjecture, due to Baxter [Bax71, Bax73, Bax78, Bax89], claiming
that the phase transition of the planar random‐cluster model is continuous if   q\in  [0 , 4  ],
and discontinuous if  q>4.

Let us conclude this introduction by reminding the reader that this result implies

the discontinuity of the phase transition for the Potts model on  \mathbb{Z}^{2} for  q  >  256 . We

refer to [Dum15] for details on this fact.

§2. The loop representation of the random‐cluster model

Let us start by defining the dual configuration  \omega^{*} and the loop configuration  !

associated to a percolation configuration  \omega.

Consider the dual lattice  (\mathbb{Z}^{2})^{*}  =  ( \frac{1}{2}, \frac{1}{2})+\mathbb{Z}^{2} of  \mathbb{Z}^{2} . Let  e^{*} be the unique edge  0

 (\mathbb{Z}^{2})^{*} crossing  e in its middle, and  G^{*} be the subgraph whose edge set is  E_{G^{*}}  =  \{e^{*} :

 e\in E_{G}\} , and vertex set is given by the endpoints of these edges.
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Figure 2. The configurations  \omega (in bold lines),  \omega^{*} (in dashed lines) and  ! (in plain
lines).

Definition 2.1. The dual con guration  \omega^{*} of  \omega is a percolation configuration

on  G^{*} defined as follows: an edge  e^{*} is in  \omega^{*} if and only if  e is not in  \omega.

Consider the medial lattice  (\mathbb{Z}^{2}) ◇ whose vertices are the midpoints of edges of the

lattice  \mathbb{Z}^{2} , and edges between nearest neighbors. It is a rotated and rescaled version  0

the square lattice, see Fig. 1. Faces of  (\mathbb{Z}^{2}) ◇ correspond to vertices of  \mathbb{Z}^{2} or  (\mathbb{Z}^{2})^{*} . We

call them black and white faces respectively. Furthermore, edges are oriented counter‐

clockwise around black faces. Let  G◇ be the subgraph of  (\mathbb{Z}^{2}) ◇ induced by the set  0

vertices bordering a face of  (\mathbb{Z}^{2}) ◇ corresponding to a vertex of  G.

Definition 2.2. The loop con guration  ! of  \omega is the collection of (oriented)
loops drawn on  G◇ as follows: a loop arriving at a vertex of  G◇ always makes a  \pm\pi/2
turn so as not to cross any edge of  \omega or  \omega^{*} , see Fig. 2.

The loop configuration is defined in an unequivocal way since:

 \bullet there is either an edge of  \omega or an edge of  \omega^{*} crossing non‐boundary vertices in  G◇,

and therefore there is exactly one coherent way for the loop to turn at non‐boundary
vertices.

 \bullet there is only one possible  \pm\pi/2 turn at boundary vertices keeping the loops in  G◇.

Identify freeG, p,q with the push forward of  \phi_{G,p,q}^{free} by the map  \omega  \mapsto  ! . In other words,
freeG, p,q now denotes a measure on loop configurations in  G◇,i.e. configurations of loops
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that can be obtained from a percolation configuration on  G following the procedure
above.

Remark. The loop representation of the random‐cluster model is an intermediate

step in a sequence of mappings going from the Potts model to a solid‐on‐solid ice‐type

model named six vertex model. The six vertex model is exactly solvable, in the sense

that its free energy can be computed via transfer matrices and the so‐called Bethe

Ansatz (see [Bax89] and references therein).

The law of the loop configuration can be easily expressed in terms of the number

of loops as follows. Set

 x=x(p, q) :=  \frac{p}{q(1-p)}.
Proposition 2.3. Let  G be a finite subgraph of  \mathbb{Z}^{2} . Let  p  \in  (0,1) and  q  >  0.

For any con guration  \omega,

  \phi_{G,p,q}^{free}[\overline{\omega}] = \frac{x^{o(\omega)}q^{\ell(\overline{
\omega})}}{\hat{Z}(G,p,q)},
where  \ell(!) is the number of loops in  ! and  \hat{Z}(G, p, q) is a normalizing constant.

Note that  x(p, q)  =1 when  p=p_{c}(q) . As a consequence, the law of  ! depends only
on the number of loops in  ! in this case.

Proof. An induction on the number of edges of  \omega shows that

(2.1)  \ell(!)=2k(\omega)+o(\omega)-|V_{G}|.

Indeed, if there is no edge, then  \ell(!)=k(\omega)=  |V_{G}| . Now, adding an edge can either:

 \bullet join two connected components of  \omega , thus decreasing the number of loops and

connected components by 1,

 \bullet close a cycle in  \omega , thus increasing the number of loops by 1 and not changing the
number of connected components.

Equation (2. 1) implies that

 p^{o(\omega)}(1-p)^{|E_{G}|-o(\omega)}q^{k(\omega)}  =(1-p)^{|E_{G}|}

 =(1-p)^{|E_{G}|}

The proof follows by setting

 q^{|V_{G}|}  ( \frac{p}{(1-p)q})^{o(\omega)}  q^{2k(\omega)+o(\omega)-|V_{G}|}

 q^{|V_{G}|}x^{o(\omega)}  q^{\ell(!)}.

  \hat{Z}(G, p, q) := \frac{Z(G,p,q)}{(1-p)^{|E_{G}|}q^{|V_{G}|}}.
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Figure 3. Consider a loop configuration  ! containing the loop  L (in bold).

§3. Proof of the theorem

Let  G be a finite graph and  L be a loop on  G◇ which is oriented counter‐clockwise.

Let  n be the number of edges of  (\mathbb{Z}^{2}) ◇ on  L.

Let  A_{L} be the event that the loop  L is a loop of the configuration !. Our goal is to
bound  \phi_{G,p_{c},q}^{free}[A_{L}] . In order to do so, we construct a one‐to‐one “repair map”  f_{L} from

 A_{L} to the set of loop configurations on  G◇ such that the image  f_{L} (!) has much larger
probability than the probability of !. This will imply a bound on the probability of  A_{L}

(see below).
Let  ! be a loop configuration in  A_{L} . A loop of  ! is said to be inside (resp. outside)

 L if it is included in the bounded (resp. unbounded) connected component of  \mathbb{R}^{2}\backslash L.
Perform the following three successive modifications on !:

Step 1 Remove the loop  L from !.

Step 2 Translate the loops of  ! which are inside  L by the vector   \frac{1-i}{2}.

Step 3 Complete the configuration thus obtained by putting loops of length four around

black faces of  G◇ bordered by an edge which is not covered by any loop after Step
2.

(See Figures 3‐6 for an illustration.) The configuration thus obtained is denoted by
 f_{L}(!) .
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Figure 4. (Step 1) Remove the loop  L from !. The loops inside  L are depicted in bold.

Figure 5. (Step 2) Translate the loops inside  L in the south‐east direction.
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Figure 6. (Step 3) Fill the “holes” (depicted in darker gray) with loops of length four.

Claim 1. The configuration  f_{L}(!) is a loop configuration on  G◇.

Proof. We need to prove that each edge is covered by exactly one loop after Step

3. Step 3 rules out the fact that an edge is not covered by any loop. Furthermore, there

is no edge inside  L whose translate by   \frac{1-i}{2} is outside  L . Therefore, there is no edge

covered by two loops after Step 2. Hence, we only need to prove that Step 3 cannot add

a loop on an edge already covered by a loop after Step 2. Equivalently, it is sufficient to

prove that if a black face  F is bordered by an edge which is not covered by a loop after

Step 2, then none of the edges bordering  F is covered by a loop after Step 2. Indeed, in

such case the loop of length four which will be added in Step 3 will not cover an already

covered edge. We prove this property now. Let  e be the edge pointing south‐west which

is bordering  F :

 \bullet If  e is outside  L , then the counter‐clockwise orientation of  L implies that all the

edges bordering  F also are. In particular they are all covered by a loop after Step

2. This contradicts the assumption on  F.

 \bullet If  e is inside  L , then the counter‐clockwise orientation of  L prevents the existence

of an edge in  L bordering the translate  F' of  F by the vector−   \frac{1-i}{2} . But this means

that none of the edges bordering  F' were removed in Step 1, and therefore their

translates by   \frac{1-i}{2} are all covered in Step 2. This again contradicts the assumption
on  F.

 \bullet If  e\in L , then  F is bordering  L from the inside while  F' (defined above) is bordering
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 L from the outside. In this case, a loop of  ! covering an edge bordering  F is either

removed in Step 1 (if it is  L ) or translated (or both, for instance for  e). In both cases
it does not cover any edge bordering  F . On the contrary, every edge bordering  F' is

either on  L or outside of  L . Therefore, no loop covering such an edge is translated

onto an edge of  F during Step 2.

Claim 2. For any counter‐clockwise loop  L included in  G,  \phi_{G,p_{c},q}^{free}[A_{L}]  \leq q^{1/2-n/8}

Proof. Let  G be a finite graph containing  L . Step 1 of the construction removes

a loop from !, but Step 3 adds one loop per edge of  L pointing south‐west. Since the

number of edges added in the last step is four times this number, and that the final

configuration has as many edges as the first one, we deduce that this number is equal

to  n/4 . Thus, we have

 \phi_{G,p_{c},q}^{free}[\overline{\omega}] = q^{\ell(!)-\ell(fL(!))}\phi_{G,
p_{c},q}^{free}[f_{L}(!)] = q^{1-n/4}\phi_{G,p_{c},q}^{free}[f_{L} (!)].

Using the previous equality in the second line and the fact that  f_{L} is one‐to‐one in the

third, we deduce that

  \phi_{G,p_{c},q}^{free}[A_{L}] =\sum_{!\in A_{L}}\phi_{G,p_{c},q}^{free}
[\overline{\omega}]
 =q^{i/2-n/8} \sum_{!\in A_{L}} freeG, p_{c},q[f_{L}(!)]

 =q^{i/2-n/8}\phi_{G,p_{c},q}^{free}[f_{L}(A_{L})] \leq q^{i/2-n/8}

Let us now prove (1.2). Let  G be a finite graph containing  0 and  x . If  0 and  x are
connected to each others, then there must exist a loop in  ! surrounding  0 and  x which

is oriented counter‐clockwise (simply take the exterior‐most such loop). Since any such
loop contains at least  |x| edges, we deduce that

  \phi_{G,p_{c},q}^{free}[0 \ovalbox{\tt\small REJECT} x] \leq \sum \phi_{G,
p_{c},q}^{free}[A_{L}]
 L surrounding

 0 and  x

  \leq \sum \sum q^{1/2-n/8}
 n\geq|x|  L of length  n

surrounding  0

  \leq\sum_{n\geq|x|}n2^{n}
.  q^{i/2-n/8}

In the last inequality, we used the following easy claim:
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Claim 3. The number of loops with  n edges on  G◇  is smaller than  n2^{n}.

Proof. The number of loops with  n edges passing through a vertex of  (\mathbb{Z}^{2}) ◇ is

bounded by  2^{n} (simply notice that there are at most two choices for every new step
of the loop, except for the first  / last ones for which there are respectively four/one
choices). Therefore, the number of loops with  n edges surrounding the origin is smaller
than  n\cdot 2^{n} since the loop must go through one of the vertices of  (\mathbb{Z}^{2}) ◇ of the form   \frac{1}{2}+k
with  k\in\{0, :::, n-1\}.  \square 

Letting  G tend to the full lattice  \mathbb{Z}^{2} , the weak convergence of  \phi_{G,p_{c},q}^{free} to  \phi_{\mathbb{Z}^{2},p_{c},q}^{free}
implies that

 \phi_{\mathbb{Z}^{2},p_{c},q}^{free}[0\ovalbox{\tt\small REJECT} x]   \leq\sum_{n\geq|x|}n2^{n}
.  q^{i/2-n/8}

The existence of  c=  c(q)  >  0 such that (1.2) holds true follows from the assumption
 2q^{-1/8}  <  1.

Let us now turn to (1.3). First, the previous computation applied to  x  =0 gives
that

  \sum \phi_{\mathbb{Z}^{2},p_{c},q}^{free}[A_{L}] < 1.
 L surrounding  0

The Borel‐Cantelli lemma thus implies that there is almost surely finitely many loops

oriented counter‐clockwise surrounding the origin in !. Since nested loops have alter‐

nating orientations, this implies that there is almost surely finitely many loops (oriented
clockwise or counter‐clockwise) surrounding the origin in !.

This translates into the following property of  \omega and  \omega^{*} : there is almost surely an

infinite connected component either in  \omega or in  \omega^{*} . The bound (1.3) implies immediately
that there is no infinite cluster in  \omega almost surely, which implies that there exists almost

surely an infinite cluster in  \omega^{*} . Duality [Gri06] implies that

 \mathbb{Z}^{2},p_{c},qwired [there exists an infinite connected component in  \omega ]  =1.

Remark. The value 256 is not optimal. Taking into account that the connective

constant of the Manhattan lattice (which is counting the number of possible loops) is
smaller than 1:733535 [Jen15], we deduce that the proof works for  q  \geq  82 . We could
also improve this constant by observing that sometimes, one may put a loop with eight

edges instead of two loops with four edges, thus offering us more possible images by the

repair map. We did not try to estimate from which value of  q does the reasoning work

if we try this approach. Anyway, it most probably does not beat 25:72.
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