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Rank‐one perturbation formulas for the planar
simple random walk in random potentials

By

Naoki KUBOTA*

Abstract

In this paper, we survey fluctuations around the mean value of the travel cost for the
simple random walk in random potentials on the multidimensional cubic lattice. To analyze
the fluctuations, it is important to obtain an upper bound on how much travel cost may change
when a potentials are changed. Zerner [12, Lemma 12] studied this as a rank‐one perturbation
formula, and it works very well if the dimension is reater than two. We introduce a new
rank‐one perturbation formula toward improving the results in the two dimensional case.

§1. Introduction

Let  (S_{k})_{k=0}^{\infty} be the simple random walk on the  d‐dimensional cubic lattice  \mathbb{Z}^{d},
 d\geq 2 . For  x\in \mathbb{Z}^{d} , write  P^{x} for the law of the random walk starting at  x , and  E^{x} for the
associated expectation. Furthermore, we consider the measurable space  \Omega  :=  [0, \infty)^{\mathbb{Z}^{d}}
endowed with the canonical  \sigma‐field  \mathcal{G} . Let  \mathbb{P} be the corresponding product measure on

 (\Omega, \mathcal{G}) and denote an element of  \Omega by  \omega=(\omega(x))_{x\in \mathbb{Z}^{d}} , which is called the potential. To
avoid trivialities we suppose that  \omega(0) is not almost surely equal to  0.

For  y\in \mathbb{Z}^{d},  H(y) stands for the hitting time of  (S_{k})_{k=0}^{\infty} to  y , i.e.,  H(y)  := \inf\{k\geq
 0;S_{k}=y\} . Furthermore we define for  x,  y\in \mathbb{Z}^{d},

(1.1)  e(x, y,  \omega) :=E^{x}[\exp\{-\sum_{k=0}^{H(y)-1}\omega(S_{k})\}1_{\{H(y)
<\infty\}}],
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where  e(x, y, \omega)  :=1 if  x=y . Let us now introduce the travel cost  a(x, y, \omega) from  x to

 y for the simple random walk in a potential  \omega as follows:

 a(x, y, \omega) :=-\log e(x, y, \omega) , x, y\in \mathbb{Z}^{d}

Throughout this paper, we drop  \omega in the notation if there is no confusion.

Notice that the subadditivity

 a(x, z) \leq a(x, y)+a(y, z) , x, y, z\in \mathbb{Z}^{d},

immediately follows from the strong Markov property, see the proof of Proposition 2  0

[12]. As we are working with i.i.  d . potentials, the subadditive ergodic theorem shows
the following proposition. This means that  a (  0 , nx) grows roughly linearly as  n  arrow  1

along the direction  x , see the proof of [12, Proposition 4] for more details.

Proposition 1.1 (Zerner . Assume  E[\omega(0)]  <  1 . Then there exists  a nor
 \alpha(\cdot) on  \mathbb{R}^{d} (which is called the Lyapunov exponent) such that for all  x\in \mathbb{Z}^{d} , P‐a.  s . and
in  L^{1}(\mathbb{P}) ,

  \lim_{n} \frac{1}{n}a (0, nx)=\lim_{n} \frac{1}{n}E[a(0, nx)]=n\geq 
1in\frac{1}{n}E[a(0, nx)]=\alpha(x) .

Furthermore,  \alpha(\cdot) is invariant under permutations of the coordinates and under reflec‐

tions in the coordinate hyperplanes, and satisfies

‐  \log E[e^{-\omega(0)}]  \leq   \frac{\alpha(x)}{\Vert x\Vert_{1}}  \leq\log(2d)+E[\omega(0)],

where  \Vert .  \Vert_{1} is the  \ell^{1} ‐norm on  \mathbb{R}^{d}.

Remark 1.2. The present paper always assumes that potentials have at least

second moment (see hypotheses (A1) and (A2) below), so that, for simplicity, we can
use the result obtained by Zerner. However, it is known that the above proposition is

valid under lower moments. In fact, Mourrat [9, Theorems 1.1] proved the following: I
 Z is the minimum of  2d i.i.d. random variables distributed as  \omega(0) , then for each  x\in \mathbb{Z}^{d},

 E[Z]  <1 if and only  i   \frac{1}{n}a (  0 , nx) converges a.s.

§2. Mean value fluctuations for the travel cost

Let us first introduce the following assumptions for the potential:

(A1)  E[e^{\gamma\omega(0)}]  <1 for some  \gamma>0.
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(A2)  E[\omega(0)^{2}]  <1.

(A3) The law of  \omega(0) has strictly positive support.

Assuming some of these conditions, we have the exponential concentration for the
upper tail and the Gaussian concentration for the lower tail.

Theorem 2.1. Assume (A1 . In addition, suppose that (A3) is valid if  d=2.

Then, there exist constants  0  <  C_{1},  C_{2}  <  1 such that for all large  x  \in  \mathbb{Z}^{d} and for al

 t\geq 0,

 \mathbb{P} (a(0, x)-E[a(0, x)] \geq t\Vert x\Vert_{1}^{1/2}) \leq C_{1}e^{-
C_{2}t}

Theorem 2.2. Assume (A2 . In addition, suppose that (A3) is valid if  d=2.

Then, there exists a constant  0  <C3  <  1 such that for all large  x  \in  \mathbb{Z}^{d} and for al

 t\geq 0,

 \mathbb{P} (a(0, x)-E[a(0, x)] \leq-t\Vert x\Vert_{1}^{1/2}) \leq e^{-C_{3}
t^{2}}
We omit the proofs since these are too long to reproduce in this paper, and refer

the reader to [8]. Instead, let us survey the proof of the following proposition obtained
by Zerner [12, Theorem 11] in the end of this section. This is because the proof  0

it is simple, and is done by using the essential argument and a key tool to obtain

Theorems 2.1 and 2.2. Note that the following proposition immediately follows from

Theorems 2.1 and 2.2 under the same assumption of Theorem 2.1.

Proposition 2.3 (Zerner . Assume (A2 . Furthermore, suppose that (A3) is
valid if  d=2 . Then, there exists a constant  0<C_{4}  <1 such that

(2.1)  Var(a(0, y)) \leq C_{4}\Vert y\Vert_{1}, y\in \mathbb{Z}^{d}

In the statements of the above theorems and proposition, we suppose the additional

assumption (A3) in  d  =  2 , but it may not be necessary. In fact, Zerner expects that
in  d  =  2 , Proposition 2.3 holds without (A3), see below Theorem 11 of [12]. This
conjecture may not be applied to Theorems 2.1 and 2.2 since they need more precise

arguments. However, it can be an important common problem in fluctuations of the
travel cost.

Furthermore, the above proposition derives the following generalization of Propo‐

sition 1.1, which is called the uniform shape theorem [12, Theorem 13].

Proposition 2.4 (Zerner . Suppose that  E[\omega(0)^{d}]  <1 . In addition, we assume
(A3) if  d=2 . Then, P‐a.  s.,

  \lim_{n} \frac{a(x_{n},y_{n})}{\alpha(x_{n}-y_{n})} =1.
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for all sequence  x_{n},  y_{n}  \in \mathbb{Z}^{d} such that  c(\Vert x_{n}\Vert_{1}\vee\Vert y_{n}\Vert_{1})  \leq  \Vert x_{n}-y_{n}\Vert_{1}  arrow 1 as  narrow 1

for some  c>0.

The key tool mentioned above is the following rank‐one perturbation formula ob‐

tained by Zerner [12, Lemma 12].

Proposition 2.5 (Zerner . Let  z\in \mathbb{Z}^{d} and  \omega_{1},  \omega_{2}  \in\Omega such that  \omega_{1}(x)  =\omega_{2}(x)
for  x  \neq  z and  \omega_{1}(z)  \leq  \omega_{2}(z) . Then,  a(0, y, \omega_{2})  -a(0, y, \omega_{1}) is nonnegative, and is

bounded from above by the minimum of

 -\log Q_{\omega_{1}}^{0,x}(H(y) \leq H(z))
and

(2.2)   \omega_{2}(z)+(1-\min\{e^{-\omega_{1}(z)}, P^{0} (H_{2}(0) <\infty)\})^{-1},
where  H_{2}(0) is the time of the second visit of  0 for the random walk, and  Q_{\omega}^{0,x} is the

probability measure such that

  \frac{dQ_{\omega}^{0,x}}{dP^{0}} =e(0, x, \omega)^{-1}\exp\{-\sum_{k=0}^{H(x)-
1}\omega(S_{k})\}1_{\{H(x)<\infty\}}.
For the proofs of Theorem 2.1, Theorem 2.2 and Proposition 2.3, it is important that

the last term in (2.2) is finite. If  d\geq 3 then this is trivial since the simple random walk
is transient, i.e.,  P^{0}  (H_{2}(0) <\infty)  <  1 . On the other hand,  P^{0}(H_{2}(0) <\infty)=1 holds for
 d=2 . This means that the last term in (2.2) is equal to  \omega_{2}(y)+(1-e^{-\omega_{1}(y)})^{-1} , which
is not finite if  \omega_{1}(y)  =0 . Additional assumption (A3) always guarantees the finiteness
for  d=2.

With these observations, it is meaningful to derive a new rank‐one perturbation

formula for  d=2 without additional assumption (A3). In the next section, we try to do
this. Unfortunately there still remains an obstacle to improve Proposition 2.3 to  d=2,
see the end of Section 3.2.

We close this section with the proof of Proposition 2.3 and several remarks.

Proof of Proposition 2.3. Let us enumerate  \mathbb{Z}^{d}=  \{x_{1}, x_{2}, :::\} . Then,  \mathcal{F}_{0} de‐

notes the trivial  \sigma‐field and let  \mathcal{F}_{i} be the  \sigma‐field generated by  \omega(x_{1}) , :::,  \omega(x_{i}) . More‐

over, define for   i\geq  1,

 \triangle_{i} :=E[a(0, y)|\mathcal{F}_{i}]-E[a(0, y)|\mathcal{F}_{i-1}].

Since  E[a(0, y)|\mathcal{F}_{i}],  i  \geq  0 , is a martingale with respect to the filtration  \mathcal{F}_{i},  i  \geq  0 , we
have

Var  (a(0, y))= \sum_{i=1}^{\infty}E[\triangle_{i}^{2}].
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Note that we can write

 \triangle_{i}(\omega)= \Omega\{a(0, y, [\omega, \sigma]_{i})-a(0, y, [\omega, 
\sigma]_{i-1})\}\mathbb{P}(d\sigma) ,

where  [\omega, \sigma]_{0}  :=\sigma and

 [\omega, \sigma]_{i} :=(\omega(x_{1}), \ldots, \omega(x_{i}), \sigma(x_{i+1}), 
\ldots) , i\geq 1.

Schwarz’s inequality yields that

Var  (a(0, y))

(2.3)   \leq\sum_{i=1}^{\infty} \Omega \Omega\{a(0, y, [\omega, \sigma]_{i})-a(0, y, [
\omega, \sigma]_{i-1})\}^{2}\mathbb{P}(d\sigma)\mathbb{P}(d\omega)
 =2 \sum_{i=1}^{\infty} \Omega \Omega\{a(0, y, [\omega, \sigma]_{i})-a(0, y, 
[\omega, \sigma]_{i-1})\}^{2}1_{\{\sigma(x_{i})\leq\omega(x_{i})\}}\mathbb{P}
(d\sigma)\mathbb{P}(d\omega) ,

where we used the symmetry of the integrand. Proposition 2.5 proves that there exists

a constant  0  <C5  <  1 such that the most right side of the above is bounded from

above by

2   \sum_{i=1}^{\infty}(  \Omega  \Omega(\omega(x_{i})+C_{5})^{2}1_{\{Q_{[\omega,\sigma]_{i-1}}^{0,y}(H(y)
<H(x_{i}))<1/2\}}\mathbb{P}(d\sigma)\mathbb{P}(d\omega)
 +

 \Omega  \Omega\{\log Q_{[\omega,\sigma]_{i-1}}^{0,y} (H(y) <H(x_{i}))\}^{2}
1_{\{Q_{[\omega,\sigma]_{i-1}}^{0,y}(H(y)<H(z))\geq 1/2\}}\mathbb{P}(d\sigma)
\mathbb{P}(d\omega)) .

By using  (\log t)^{2}  \leq  1-t for   1/2\leq t\leq  1 , this is smaller than or equal to

 2  \sum_{i=1}^{\infty}(2E[(\omega(0)+c)^{2}]+1)\mathbb{P}(Q_{\omega}^{0,y}(H(x_
{i}) <H(y)))
 =2(2E[(\omega(0)+c)^{2}]+1)E[E_{Q_{\omega}^{0,y}}[\#\mathcal{A}]],

where  \mathcal{A}  :=  \{S_{k};0 \leq k < H(y)\} . Lemma 3 of [12] guarantees that  E[E_{Q_{\omega}^{0,y}}[\#\mathcal{A}]]  \leq

 C_{6}\Vert y\Vert_{1} for some constant  0<C_{6}  <1 , and therefore (2.1) follows.  \square 

Remark 2.6. In the case where the law of potentials has bounded and strictly

positive support, Ioffe‐Velenik [6, Lemma 4] and Sodin [10, Theorem 1] proved the
Gaussian concentration for both tails: There exists a constant  0<c<1 such that for

all sufficiently large  x\in \mathbb{Z}^{d} and for all  t\geq 0,

 \mathbb{P} (|a(0, x)-E[a(0, x)]| \geq t\Vert x\Vert_{1}^{1/2}) \leq e^{-ct^{2}}

In this context, Sznitman [11, Theorem 2.1] proved exponential concentrations for Brow‐
nian motion in a truncated Poissonian potential. This model is a continuous counterpart
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of the simple random walk in random potentials. With these observations, there are

few results for unbounded nonnegative potentials, and Theorems 2.1 and 2.2 extend the

aforementioned previous works to concentrations for unbounded nonnegative potentials.

Remark 2.7. Sodin [10, Theorem 2] proved that we have the sublinear variance
bound if  \mathbb{P}  (\omega(0) = a)  =  \mathbb{P}(\omega(0) = b)  =  1/2 for some  0  <  a  <  b , i.e., there exists a
constant  0<c<1 such that

Var  (a(0, x))  \leq   \frac{c\Vert x||_{1}}{\log(\Vert x\Vert_{1}+2)}.
It is expected that this is valid under the assumption of Theorem 2.1 or Theorem 2.2.

To this end, we may apply the approach taken in [3] for the first passage percolation on
 \mathbb{Z}^{d} . A rank‐one perturbation formula also plays a key role in [3], and it seems to be a
sharper estimate than Proposition 2.5 for our model. After all, we need to review the

rank‐one perturbation formula more carefully.

§3. On a rank‐one perturbation formula for  d=  2

Throughout this section, let  d=2 and we always assume the following hypothesis,

which is weaker than (A3):

(A4)  \mathbb{P}(\omega(0) = 0)  <  p_{c} , where  p_{c}  (\approx 0:592  ) is the critical threshold for site
percolation on  \mathbb{Z}^{2}.

In this section, we will derive a new rank‐one perturbation formula under assumption

(A4) following the approach taken in [9, Section 6]. Then one tries to apply it to the
argument taken in the proof of Proposition 2.3. As mentioned above, our method is

not enough to answer Zerner’s conjecture, so we will point out its fault in the end  0

Subsection 3.2.

§3.1. Preliminary

In this subsection, we prepare some notation to derive a new rank‐one perturbation

formula. Let  \Vert .  \Vert_{\infty} be the  \ell\infty ‐norm on  \mathbb{R}^{d} . For any two points  x,  y\in \mathbb{Z}^{2} , write  x\sim y

or  x
 *

 y if  \Vert x-y\Vert_{1}  =  1 or  \Vert x-y\Vert_{\infty}  =  1 , respectively. A path  r=  (r0, :::, r_{l}) is  \mathbb{Z}^{2}-

or  *‐connected if  r_{i}  \sim r_{i+1} or  r_{i}
 *

 r_{i+1} for all  0\leq i  \leq l-1 , respectively. Moreover,  a

subset  A\subset \mathbb{Z}^{2} is said to be  \mathbb{Z}^{2}-or*‐connected if for any two sites  x,  y\in A , there exists
 a\mathbb{Z}^{2}-or*‐connected path from  x to  y , respectively. For  a*‐connected nonempty set  A,

we define its exterior boundary as

 \partial_{ext}A:= \{x\in \mathbb{Z}^{d}\backslash A;_{fromxto\infty 
withoutusinganysiteofA}^{x^{*}yforsomey\in A,andthereexistsa\mathbb{Z}^{2}-path}
\}
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By assumption (A4), we can take  \kappa  >  0 satisfying  \mathbb{P}(\omega(0) < \kappa)  <  p_{c} . A site
 x  \in  \mathbb{Z}^{d} is said to be bad if  \omega(x)  <  \kappa , and good otherwise.  \mathbb{Z}^{2}- or  *‐connected path
 r=  (r0, :::, r_{l}) is called bad (resp. good) if each site  r_{i} is bad (resp. good). For  x\in \mathbb{Z}^{2}

let  C_{x} be a  *‐connected bad cluster containing a bad site  x , i.e., the set of all sites

connected to  x by a  bad*‐connected path. It is well known from [5, Theorem 6.1] that
there exist constants  0<C_{7},  C_{8}  <1 such that for all  x\in \mathbb{Z}^{2} and  t\geq 0,

(3.1)  \mathbb{P}(\# C_{x}\geq t)\leq C7e^{-C_{8}t}

Let  \overline{C}_{x}  :=C_{x}\cup\partial_{ext}C_{x} , and we decide  \overline{C}_{x}=\partial_{ext}C_{x}=\{x\} if   C_{x}=\emptyset . Note that any site  0

 \partial_{ext}C_{x} is good. Furthermore, Lemma 2.23 in [7] guarantees that  \partial_{ext}C_{x} is  \mathbb{Z}^{2} ‐connected.
Finally, define the distance dist  (A, B) between two subsets  A,  B\subset \mathbb{R}^{2} as

dist  (A, B)  := \inf\{\Vert a-b\Vert_{1};a\in A, b\in B\}.

In particular, write dist  (a, B)  := dist  (\{a\}, B) to shorten notation.

§3.2. A new rank‐one perturbation formula

Let us introduce for  \omega\in\Omega,

 H^{g}(y,  \omega) :=\inf\{k\geq 0;S_{k} \in\partial_{ext}C_{y}(\omega)\}.

Then, define  e^{*}(x, y) by replacing  H(y) with  H^{g}(y) in (1.1), and set

 e^{g}(x, y) := \max_{x'\in\partial_{ext}C_{x}}e^{*}(x', y) .

Moreover, let

 a^{*}(x, y) :=-\log e^{*}(x, y) , a^{g}(x, y) :=-\log e^{g}(x, y) .

The quantity  a^{g}(x, y) means the travel cost between the two exterior boundaries  \partial_{ext}C_{x}
and  \partial_{ext}C_{y}.

The next proposition compares between two travel costs  a(x, y) and  a^{g}(x, y) . The

proof follows from the same argument as in [9, Proposition 6.1], and we omit the proof.

Proposition 3.1. For  x,  y\in \mathbb{Z}^{2} , we have

 a^{g}(x, y) \leq a(x, y) \leq a^{g}(x, y)+u(x)+u(y) ,

where

 u(z) := \sum_{w\in\overline{C}_{z}(\omega)}(\omega(w)+2\log 2) , z\in 
\mathbb{Z}^{2}
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To observe how much travel cost may change when potentials are changed, it is

useful to consider the following new travel costs mixed by two potentials: For  \omega_{1},  \omega_{2}  \in\Omega,

 a^{*}(x, y, \omega_{1}, \omega_{2})  :=-\log\overline{e}^{*}(x, y, \omega_{1}, \omega_{2}) ,  \overline{a}^{g}(x, y, \omega_{1}, \omega_{2})  :=-\log\overline{e}^{g}(x, y, \omega_{1}, \omega_{2}) ,

where

  \overline{e}^{*}(x, y, \omega_{1}, \omega_{2}) :=E^{x}[\exp\{-\sum_{k=0}
^{H^{g}(y,\omega_{1})-1}\omega_{2}(S_{k})\}1_{\{Hg(y,\omega_{1})<\infty\}}],
  \overline{e}^{g}(x, y, \omega_{1}, \omega_{2}) :=\max\overline{e}^{*}(x', y, 
\omega_{1}, \omega_{2})x'\in\partial {}_{t}C_{x}(\omega_{1}).

Finally, let us introduce a similar quantity  v(z, \omega_{1}, \omega_{2}) to  u(z) mixed by two potentials
 \omega_{1} and  \omega_{2} as follows:

 v(z,  \omega_{1}, \omega_{2}) :=\sum_{w\in\overline{C}_{z}(\omega_{1})}(\omega_
{2}(w)+2\log 2) , z\in \mathbb{Z}^{2}
After the preparation above, we have the next two theorems.

Theorem 3.2. Let  z\in \mathbb{Z}^{2} and  \omega_{1},  \omega_{2}  \in\Omega such that  \omega_{1}(x)=\omega_{2}(x)  forx\neq z and

 \omega_{1}(z)  \leq  \omega_{2}(z) . Then  \overline{a}^{g}(0, y, \omega_{1}, \omega_{2})-a(0, y, \omega_{1}) is nonnegative and has the followin

upper bounds:

1. If dist  (\overline{C}_{0}(\omega_{1}), \overline{C}_{z}(\omega_{1}))  \geq  1 and dist  (\overline{C}_{y}(\omega_{1}), \overline{C}_{z}(\omega_{1}))  \geq  1 , then  \overline{a}^{g}(0, y, \omega_{1}, \omega_{2})  -

 a^{g}(0, y, \omega_{1}) is bounded from above by the minimum of

(3.2) −  \log\Phi_{\omega_{1}}^{0,y}(H^{g}(y, \omega_{1}) <H^{g}(z, \omega_{1}))

and

(3.3)  2v(z, \omega_{1}, \omega_{2})-\log(1-e^{-\kappa}) ,

where

 \Phi_{\omega_{1}}^{0,y}(A)

 :=e^{g}(0, y,  \omega_{1})^{-1}\max_{x\in\partial_{ext}C_{0}}E^{x}[\exp\{-\sum_
{k=0}^{H^{g}(y,\omega_{1})-1}\omega_{1}(S_{k})\}1_{\{Hg(y,\omega_{1})<\infty\}
\cap A}] :

2. Otherwise, one has

 \overline{a}^{g}(0, y, \omega_{1}, \omega_{2})-a^{g}(0, y, \omega_{1})
(3.4)

 \leq v(0, \omega_{1}, \omega_{2})+v(y, \omega_{1}, \omega_{2})+2v(z, \omega_{1}
, \omega_{2})-\log(1-e^{-\kappa}) .
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Theorem 3.3. Suppose the same assumptions as in Theorem 3.2. If

dist  (z, \overline{C}_{0}(\omega_{1}))  \geq  1 and dist  (z,\overline{C}_{y}(\omega_{1}))  \geq  1,

the

 \overline{a}^{g}(0, y, \omega_{2})-\overline{a}^{g}(0, y, \omega_{1}, 
\omega_{2})=0.

Otherwise, one has

 0\leq\overline{a}^{g}(0, y, \omega_{2})-\overline{a}^{g}(0, y, \omega_{1}, 
\omega_{2}) \leq v(0, \omega_{1}, \omega_{2})+v(y, \omega_{1}, \omega_{2}) .

The second term of (3.3) corresponds to that of (2.2). We thus succeed in deriving
the finiteness forcing the effect of potentials on bad clusters to some extent. By (3.1) the
effect of  v(\cdot, \omega_{1}, \omega_{2}) ’s seems to be harmless, but the lack of the independence makes it

difficult to prove (2.1). Let us first apply these theorems to the proof of Proposition 2.3
and explain this difficulty. We postpone the proofs of Theorems 3.2 and 3.3 to the next
subsection.

Suppose assumptions (A2) and (A4). From (3.1) and Proposition 3.1, there exists
a constant  0<C_{9}  <1 such that

Var  (a(0, y))  \leq Var  (a^{g}(0, y))+C_{9}.

Therefore, for (2.1) it suffices to estimate  Var(a^{g}(0, y)) . To shorten notation, let  \tau_{i}  :=

 [\omega, \sigma]_{i} for   i\geq  1 . Replacing  a(0, y) with  a^{g}(0, y) in (2.3), one has

Var  (a^{g}(0, y))   \leq 4\sum_{i=1}^{\infty}\{J_{1}(i) +J_{2}(i)\},
where

 J_{1} (i)  :=

 \Omega  \Omega\{a^{g}(0, y, \tau_{i})-a^{g}(0, y, \tau_{i-1}, \tau_{i})\}^{2}
1_{\{\sigma(x_{i})\leq\omega(x_{i})\}}\mathbb{P}(d\sigma)\mathbb{P}(d\omega)
and

 J_{2} (i)  :=

 \Omega  \Omega\{a^{g}(0, y, [\omega, \sigma]_{i-1}, \tau_{i})-a^{g}(0, y, \tau_{i-1})\}
^{2}1_{\{\sigma(x_{i})\leq\omega(x_{i})\}}\mathbb{P}(d\sigma)\mathbb{P}(d\omega) .

We shall estimate the sum of all  J_{2}(i)' s . Theorem 3.3 allows us to show that

  \sum_{i=1}^{\infty}J_{2}(i)\leq\sum_{i=1}^{\infty}  \Omega  \Omega\{v(0, \tau_{i-1}, \tau_{i})+v(y, \tau_{i-1}, \tau_{i})\}^{2}
 \cross  1\{dist(x_{i},\overline{C}_{0}(\tau_{i-1}))=0 or dist  (z,\overline{C}_{y}(\tau_{i-1}))=0\}^{1}\{\sigma(x_{i})\leq\omega(x_{i})\}
\mathbb{P}(d\sigma)\mathbb{P}(d\omega)

  \leq 4\sum_{i=1} (K_{1}\infty (  i )  +K_{2}(i)) ,
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where

 K_{1} (i)  :=  v(0, \tau_{i-1}, \tau_{i})^{2}1\{ dist  (x_{i},\overline{C}_{0}(\tau_{i-1}))=0\}^{1_{\{\sigma(x_{i})\leq\omega(x_{i})\}
}\mathbb{P}(d\sigma)\mathbb{P}(d\omega)},
 \Omega  \Omega

 K_{2} (i)  :=  v(0, \tau_{i-1}, \tau_{i})^{2}1\{ dist  (x_{i},\overline{C}_{y}(\tau_{i-1}))=0\}^{1_{\{\sigma(x_{i})\leq\omega(x_{i})\}
}\mathbb{P}(d\sigma)\mathbb{P}(d\omega)}.
 \Omega  \Omega

Schwarz’s inequality implies

  \sum_{i=1}^{\infty}K_{1}(i)\leq\sum_{i=1}^{\infty}\sum_{z\in \mathbb{Z}^{2}} 
\Omega \Omega(\tau_{i}(z)+2\log 2)^{2}\#\overline{C}_{0}(\tau_{i-1})
1_{\{z\in\overline{C}_{0}(\tau_{i-1})\}}
 \cross 1\{ dist  (x_{i},\overline{C}_{0}(\tau_{i-1}))=0\}^{1}\{\sigma(x_{i})\leq\omega(x_{i})\}^
{\mathbb{P}(d\sigma)\mathbb{P}(d\omega)}

(3.5)

  \leq\sum_{i=1}^{\infty} \Omega \Omega(\omega(x_{i})+2\log 2)^{2}
(\#\overline{C}_{0}(\tau_{i-1}))^{2}1_{\{x_{i}\in\overline{C}_{0}(\tau_{i-1})\}}
\mathbb{P}(d\sigma)\mathbb{P}(d\omega)
 + \sum_{i=1}^{\infty}\sum_{z\in \mathbb{Z}^{2}}E[(\omega(z)+2\log 2)^{2}
\#\overline{C}_{0}1_{\{z,x_{i}\in\overline{C}_{0}\}}].

Since  (\#\overline{C}_{0}(\tau_{i-1}))^{2}1_{\{x_{i}\in\overline{C}_{0}(\tau_{i-1})\}
} does not depend on  \omega(x_{i}) , the first term of the most

right side is equal to

  \sum_{i=1}^{\infty}E[(\omega(0)+2\log 2)^{2}]E[(\#\overline{C}_{0})^{2}1_{\{x_
{i}\in C_{0}\}}] =E[(\omega(0)+2\log 2)^{2}]E[(\#\overline{C}_{0})^{3}],
which is finite by assumption (A2) and (3.1). Furthermore, thanks to Chebyshev’s
assoc ation inequality (see [1, Theorem 2.14]), the last term smaller than or equal to

  \sum_{i=1}^{\infty}\sum_{z\in \mathbb{Z}^{2}}E[(\omega(x_{i})+2\log 2)^{2}]
E[\#\overline{C}_{0}1_{\{z,x_{i}\in\overline{C}_{0}\}}]  =E[(\omega(0)+2\log 2)^{2}]E[(\#\overline{C}_{0})^{3}].

This is also finite by assumption (A2) and (3.1). Similarly to the above,   \sum_{i=1}^{\infty}K_{2}(i)\leq
 C_{10} holds for some constant  0  <  C_{10}  <  1 . With these observations, there exists a
constant  0<C_{11}  <1 such that

  \sum_{i=1}^{\infty}J_{2}(i)\leq C_{11}.
We next try to estimate the sum of all  J_{1}(i)' s . Divide  J_{1} (i) into the following two

terms:

 L_{1}(i)+L_{2} (i)  :=

 \Omega  \Omega\{a^{g}(0, y, \tau_{i})-a^{g}(0, y, \tau_{i-1}, \tau_{i})\}^{2}
 \cross  1\{\sigma(x_{i})\leq\omega(x_{i})\}^{1} {case 2 of Theorem 3.2}  \mathbb{P}(d\sigma)\mathbb{P}(d\omega)

 + \{a^{g}(0, y, \tau_{i})-a^{g}(0, y, \tau_{i-1}, \tau_{i})\}^{2}
 \Omega  \Omega

 \cross  1\{\sigma(x_{i})\leq\omega(x_{i})\}^{1} {case 1 of Theorem 3.2}  \mathbb{P}(d\sigma)\mathbb{P}(d\omega)
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We use Theorem 3.2 and the same argument below (2.3) to)obtain

 L_{1}(i)\leq (2v(x_{i}, \tau_{i-1}, \tau_{i})-\log(1-e^{-\kappa}))^{2}
 \Omega  \Omega

 \cross 1_{\{\Phi_{\tau_{i-1}}^{0,y}(Hg(y,\tau_{i-1})<Hg(x_{i},\tau_{i-1}))
<1/2\}}\mathbb{P}(d\sigma)\mathbb{P}(d\omega)

 \leq 2 (2v(x_{i}, \tau_{i-1}, \tau_{i})-\log(1-e^{-\kappa}))^{2}
 \Omega  \Omega

 \cross\Phi_{\tau_{i-1}}^{0,y} (H^{g}(x_{i}, \tau_{i-1}) <H^{g}(y, \tau_{i-1}))
\mathbb{P}(d\sigma)\mathbb{P}(d\omega)

and

 L_{2}(i)\leq (\log\Phi_{\tau_{i-1}}^{0,y} (H^{g}(y, \tau_{i-1}) <H^{g}(z, \tau_
{i-1})))^{2}
 \Omega  \Omega

 \cross 1_{\{\Phi_{\tau_{i-1}}^{0,y}(Hg(y,\tau_{i-1})<Hg(x_{i},\tau_{i-1}))\geq 
1/2\}}\mathbb{P}(d\sigma)\mathbb{P}(d\omega)

 \leq \Phi_{\omega}^{0,y} (H^{g}(x_{i}, \omega) <H^{g}(y, \omega))\mathbb{P}
(d\omega) .

 \Omega

In view of the proof of Proposition 2.3, our task is now to prove that for some
constant  0<C_{12}  <1,

(3.6)   \sum_{i=1}^{\infty}L_{1} (i)+\sum_{i=1}^{\infty}L_{2}(i)\leq C_{12}\Vert 
y\Vert_{1}.
If we ignore the integrand  (2v(x_{i}, \tau_{i-1}, \tau_{i}) -\log(1 -e^{-\kappa}))^{2} in the estimate for  L_{1} (i)
above, then the following common quantity arises:

  E[\sum_{i=1}^{\infty}\Phi_{\omega}^{0,y} (H^{g}(x_{i}, \omega) <H^{g}(y, 
\omega))],
which is roughly bounded above  b∪

  E[\frac{\#\overline{C}_{0}}{e^{g}(0,y)}\max_{x\in\partial_{ext}C_{0}}E^{x}[\#(
\bigcup_{v\in \mathcal{A}}C_{v})\exp\{-\sum_{k=0}^{H^{g}(y)-1}\omega(S_{k})\}1_{
\{Hg(y)<\infty\}}\Vert.
If the term  \#\overline{C}_{0} is harmless, this is the mean size of the union of all bad clusters

encountering the random walk from  0 to  y under a weighted measure. For (3.6), we
have to bound this mean by const  \cross  \Vert y\Vert_{1} , and it is a generalization of Lemma 3 in [12].
Unfortunately the author was not able to establish this. Howevr, the the techniques in

[2] and [4] may be applicable and this is subject for future research.

§3.3. Proofs of Theorems 3.2 and 3.3

In this subsection, we shall prove Theorems 3.2 and 3.3.
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Proof of Theorem 3.2. Since  \omega_{1}(x)  \leq  \omega_{2}(x) for  x  \in  \mathbb{Z}^{2} , it is clear that

 \overline{a}^{g}(0, y, \omega_{1}, \omega_{2})-a(0, y, \omega_{1}) is nonnegative.

We first treat case 1. Let  x_{1},  x_{2}  \in  \partial_{ext}C_{0}(\omega_{1}) ,  z_{1}  \in  \partial_{ext}C_{z}(\omega_{1}) and let  z_{2}  \in

 \partial_{ext}C_{z}(\omega_{2}) with  e^{*}(z_{2}, y, \omega_{2})  =  e^{g}(z, y, \omega_{2}) . We now divide  \overline{e}^{*}(x, y, \omega_{1}, \omega_{2}) into the

following two parts:

 E^{x_{2}}[ \exp\{-\sum_{k=0}^{H^{g}(y,\omega_{1})-1}\omega_{2}(S_{k})\}
1_{\{Hg(y,\omega_{1})<Hg(z,\omega_{1})\}}]
 +E^{x_{2}}[ \exp\{-\sum_{k=0}^{H^{g}(y,\omega_{1})-1}\omega_{2}(S_{k})\}1_{\{Hg
(z,\omega_{1})\leq Hg(y,\omega_{1})<\infty\}}].

The strong Markov property implies that the second term is equal to

(3.7)
  \sum_{w\in\partial_{ext}C_{z}(\omega_{1})}  E^{x_{2}}[ \exp\{-\sum_{k=0}^{H^{g}(z,\omega_{1})-1}\omega_{2}(S_{k})\}
1_{\{Hg(z,\omega_{1})\leq Hg(y,\omega_{1})<\infty}, S_{Hg(z,\omega_{1})}=w\}]
  \cross E^{w}[\exp\{-\sum_{k=0}^{H^{g}(y,\omega_{1})-1}\omega_{2}(S_{k})\}
1_{\{Hg(y,\omega_{1})<\infty\}}]

In case 1, we have  H^{g}(y, \omega_{1})  =H^{g}(y, \omega_{2}) since  \overline{C}_{y}(\omega_{1})  =\overline{C}_{y}(\omega_{2}) . Furthermore, noting

that  \omega_{1}(z)  \leq  \omega_{2}(z) , one has  \overline{C}_{z}(\omega_{2})  =  \overline{C}_{z}(\omega_{1}) if  z is bad in  \omega_{2} , and  \overline{C}_{z}(\omega_{2})  =  \{z\}  \subset

 \overline{C}_{z}(\omega_{1}) otherwise. With these observations, the last expectation in (3.7) is bounded
below uniformly in  w by

  \exp\{-\sum_{v\in\overline{C}_{z}(\omega_{1})}(\omega_{2}(v)+2\log 2)\}e^{*}
(z_{2}, y, \omega_{2})  \geq\exp\{-v(z, \omega_{1}, \omega_{2})\}e^{g}(z, y, \omega_{2}) .

This together with (3.7) shows that

 e  (x_{2}, y, \omega_{1}, \omega_{2})   \geq E^{x_{2}}[\exp\{-\sum_{k=0}^{H^{g}(y,\omega_{1})-1}\omega_{1}(S_{k})\}1_{
\{Hg(y,\omega_{1})<Hg(z,\omega_{1})\}}]
 +E^{x_{2}}[ \exp\{-\sum_{k=0}^{H^{g}(z,\omega_{1})-1}\omega_{1}(S_{k})\}1_{\{Hg
(z,\omega_{1})\leq Hg(y,\omega_{1})<\infty\}}]
 \cross\exp\{-v(z, \omega_{1}, \omega_{2})\}e^{g}(z, y, \omega_{2}) ,

where we used that  \omega_{1} and  \omega_{2} coincide outside  z . On the other hand, by using the
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strong Markov property again,

 E^{x_{2}}[ \exp\{-\sum_{k=0}^{H^{g}(y,\omega_{1})-1}\omega_{1}(S_{k})\}
1_{\{Hg(z,\omega_{1})\leq Hg(y,\omega_{1})<\infty\}}]
  \leq E^{x_{2}}[\exp\{-\sum_{k=0}^{H^{g}(z,\omega_{1})-1}\omega_{1}(S_{k})\}1_{
\{Hg(z,\omega_{1})\leq Hg(y,\omega_{1})<\infty\}}]e^{g}(z, y, \omega_{1}) .

Therefore,

  \frac{\overline{e}^{*}(x_{2},y,\omega_{1},\omega_{2})}{e^{*}(x_{1},y,
\omega_{1})}

  \geq e^{*}(x_{1}, y, \omega_{1})^{-1}E^{x_{2}}[\exp\{-\sum_{k=0}^{H^{g}(y,
\omega_{1})-1}\omega_{1}(S_{k})\}1_{\{Hg(y,\omega_{1})<Hg(z,\omega_{1})\}}]
(3.8)

 + \exp\{-v(z, \omega_{1}, \omega_{2})\}\frac{e^{g}(z,y,\omega_{2})}{e^{g}(z,y,
\omega_{1})}

  \cross e^{*}(x_{1}, y, \omega_{1})^{-1}E^{x_{2}}[\exp\{-\sum_{k=0}^{H^{g}(y,
\omega_{1})-1}\omega_{1}(S_{k})\}1_{\{Hg(z,\omega_{1})\leq Hg(y,\omega_{1})
<\infty\}}].
In particular, bound (3.2) immediately follows by only using the first term of the right
side.

For bound (3.3), note that  e^{g}(z, y, \omega_{2})/e^{g}(z, y, \omega_{1})  \leq  1 . This is because  \omega_{1}(x)  \leq

 \omega_{2}(x) for  x\in \mathbb{Z}^{2} aed  \overline{C}_{y}(\omega_{1})=\overline{C}_{y}(\omega_{2}) . Thus, by (3.8),

 ee
(3.9)   \frac{\overline{e}^{*}(x_{2},y,\omega_{1},\omega_{2})}{e^{*}(x_{1},y,
\omega_{1})} \geq\exp\{-v(z, \omega_{1}, \omega_{2})\}\frac{e^{g}(z,y,\omega_{2}
)}{e^{g}(z,y,\omega_{1})},
and it remains to estimate the last fraction. For  \omega  \in  \Omega , we use the strong Markov

property to obtain

 e^{g}(z, y, \omega)

  \leq z'\in\partial_{ext}C_{z}(\omega)\max E^{z'}[\exp\{-\sum_{k=0}^{H^{g}(y,
\omega)-1}\omega(S_{k})\}1_{\{Hg(} \omega)<H_{2}^{g}(z,\omega)\}]
 +e^{g}(z, y,  \omega)_{z\in\partial_{ext}C_{z}(\omega)}\max E^{z'}[\exp\{-\sum_
{k=0}^{H_{2}^{g}(z,\omega)-1}\omega(S_{k})\}1_{\{H_{2}^{g}(z,\omega)\leq Hg(y,
\omega)<\infty\}}],



250 Naoki Kubota

where  H_{2}^{g}(z, \omega) is the time of the second visit of  y . It follows that

 e^{g}(z, y, \omega)

(3.10)   \leq \frac{\max_{z'\in\partial_{ext}C_{z}(\omega)}E^{z'}[\exp\{-\sum_{k=0}^{H^
{g}(,\omega)-1}\omega(S_{k})\}1_{\{Hg(y,\omega)<H_{2}^{g}(z,\omega)\}}]}{1-\max_
{z\in\partial_{ext}C_{z}(\omega)}E^{z'}[\exp\{-\sum_{k=0}^{H_{2}^{g}(z,\omega)-
1}\omega(S_{k})\}1_{\{H_{2}^{g}(z,\omega)\leq Hg(y,\omega)<\infty\}}]}
  \leq (1-e^{-\kappa})^{-1}\max E^{z'}z'\in\partial_{ext}C_{z}(\omega)[\exp\{-
\sum_{k=0}^{H^{g}(y,\omega)-1}\omega(S_{k})\}1_{\{Hg(y,\omega)<H_{2}^{g}(z,
\omega)\}}].

On the other hand, the definition of  e^{g}(z, y, \omega) implies that for  z'\in\partial_{ext}C_{z}(\omega) ,

 e^{g}(z, y,  \omega) \geq E^{z'}[\exp\{-\sum_{k=0}^{H^{g}(y,\omega)-1}\omega(S_
{k})\}1_{\{Hg(y,\omega)<H_{2}^{g}(z,\omega)\}}].
Hence, taking  \omega=\omega_{2} , one has

 e^{g}(z, y, \omega_{2})  \geq\exp\{-v(z, \omega_{1}, \omega_{2})\}

  \cross\max E^{z"}z"\in\partial_{ext}C_{z}(\omega_{1})[\exp\{-\sum_{k=0}^{H^{g}
(y,\omega_{1})-1}\omega_{1}(S_{k})\}1_{\{Hg(y,\omega_{1})<H_{2}^{g}(z,\omega_{1}
)\}}].
This, combined with (3.10) for  \omega=\omega_{1} , enables us to show that

(3.11)   \frac{e^{g}(z,y,\omega_{2})}{e^{g}(z,y,\omega_{1})} \geq (1-e^{-\kappa})\exp\{
-v(z, \omega_{1}, \omega_{2})\},
and bound (3.3) follows.

We next treat case 2. Suppose that dist  (\overline{C}_{0}(\omega_{1}), \overline{C}_{z}(\omega_{1}))  =0 . In this case, we can

take an  x_{0}  \in\partial_{ext}C_{0}(\omega_{1})\cap\partial_{ext}C_{z}(\omega_{1}) and  \overline{C}_{y}(\omega_{2})  \subset\overline{C}_{y}(\omega_{1}) . Hence,

 \overline{e}^{g}(0, y, \omega_{1}, \omega_{2}) \geq e (x_{0}, y, \omega_{1}, 
\omega_{2})

  \geq E^{x_{0}}[\exp\{-\sum_{k=0}^{H^{g}(y,\omega_{2})-1}\omega_{2}(S_{k})\}1_{
\{Hg(y,\omega_{2})<\infty\}}]
 \geq\exp\{-v(z, \omega_{1}, \omega_{2})\}e^{g}(z, y, \omega_{2}) .

Furthermore, we use  x_{0}  \in\partial_{ext}C_{0}(\omega_{1})\cap\partial_{ext}C_{z}(\omega_{1}) again to obtain

 e^{g}(z, y, \omega_{1}) \geq e^{*}(x_{0}, y, \omega_{1}) \geq\exp\{-v(0, 
\omega_{1}, \omega_{2})\}e^{g}(0, y, \omega_{1}) .

Therefore,

(3.12)   \frac{\overline{e}^{g}(0,y,\omega_{1},\omega_{2})}{e^{g}(0,y,\omega_{1})} \geq
\exp\{-(v(0, \omega_{1}, \omega_{2})+v(z, \omega_{1}, \omega_{2}))\}\frac{e^{g}
(z,y,\omega_{2})}{e^{g}(z,y,\omega_{1})}.
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If dist  (\overline{C}_{y}(\omega_{1}), \overline{C}_{z}(\omega_{1}))=0 , then there exists  z_{0}  \in\partial_{ext}C_{y}\cap\partial_{ext}C_{z} . This means that

 e^{g}(z, y, \omega_{1}) \geq e^{*}(z_{0}, y, \omega_{1})=1,

which proves  e^{g}(z, y, \omega_{1})=1 . Thus, the last fraction of (3.12) is equal to

 e^{g}(z, y, \omega_{2})

 \geq  \{\begin{array}{ll}
E^{z_{0}}[\exp\{-\sum_{k=0}^{H^{g}(y,\omega_{1})-1}\omega_{2}(S_{k})\}1_{\{Hg(y,
\omega_{1})<\infty\}}] =1,   if z is bad in \omega_{2},
\exp\{-v(z, \omega_{1}, \omega_{2})\},   otherwise:
\end{array}
This together with (3.12) derives bound (3.4).

On the other hand, if dist  (\overline{C}_{y}(\omega_{1}),\overline{C}_{z}(\omega_{1}))  \geq  1 , then bound (3.4) immediately
follows from (3.11).

Finally, suppose that

dist  (\overline{C}_{0}(\omega_{1}), \overline{C}_{z}(\omega_{1}))  \geq  1 and dist  (\overline{C}_{y}(\omega_{1}), \overline{C}_{z}(\omega_{1}))=0.

By (3.9), we have

  \frac{\overline{e}^{g}(0,y,\omega_{1},\omega_{2})}{e^{g}(0,y,\omega_{1})} \geq
\exp\{-v(z, \omega_{1}, \omega_{2})\}\frac{e^{g}(z,y,\omega_{2})}{e^{g}(z,y,
\omega_{1})}.
We now assume dist  (\overline{C}_{y}(\omega_{1}), \overline{C}_{z}(\omega_{1}))  =  0 , so that the same argument below (3.12)
shows that the last fraction is bigger than or equal to  \exp\{-v(z, \omega_{1}, \omega_{2})\} . Therefore,

(3.4) follows.  \square 

Proof of Theorem 3.3. If dist  (z, C_{0}(\omega_{1}))  \geq  1 and dist  (z, C (\omega_{1}))  \geq  1 , then we

have  \partial_{ext}C_{0}(\omega_{1})=\partial_{ext}C_{0}(\omega_{2}) and  \partial_{ext}C_{y}(\omega_{1})  =\partial_{ext}C_{y}(\omega_{2}) . Hence,

 \overline{a}^{g}(0, y, \omega_{2})-\overline{a}^{g}(0, y, \omega_{1}, 
\omega_{2})=0.

Suppose that dist  (z, C_{0}(\omega_{1}))=0 or dist  (z, C (\omega_{1}))  =0 . Then,

 e^{g}(0, y, \omega_{2}) \geq e^{-(v(0,\omega_{1},\omega_{2})+v(y,\omega_{1},
\omega_{2}))}e^{g}(0, y, \omega_{1}, \omega_{2}) ,

which proves

 \overline{a}^{g}(0, y, \omega_{2})-\overline{a}^{g}(0, y, \omega_{1}, 
\omega_{2}) \leq v(0, \omega_{1}, \omega_{2})+v(y, \omega_{1}, \omega_{2}) .

Furthermore, it is clear that  \overline{a}^{g}(0, y, \omega_{2})-\overline{a}^{g}(0, y, \omega_{1}, 
\omega_{2})  \geq  0 holds because  \overline{C}_{0}(\omega_{2})  \subset

 \overline{C}_{0}(\omega_{1}) or  \overline{C}_{y}(\omega_{2})  \subset\overline{C}_{y}(\omega_{1}) .  \square 
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