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Quenched localisation in the Bouchaud trap model

with regularly varying traps

By

David Croydon∗ and Stephen Muirhead∗∗

Abstract

This article describes the quenched localisation behaviour of the Bouchaud trap model

on the integers with regularly varying traps. In particular, it establishes that for almost every

trapping landscape there exist arbitrarily large times at which the system is highly localised

on one site, and also arbitrarily large times at which the system is completely delocalised.

§ 1. Introduction

The Bouchaud trap model (BTM) was introduced in [3] as a simple way of in-

vestigating the evolution of a physical system – particularly a spin glass – through

a sequence of meta-stable states. A distinctive feature of the systems considered by

Bouchaud is that they exhibit the phenomena of ageing, meaning that we can tell how

long the system has been running by observing its present state. For one-dimensional

versions of the model, which were first studied in [7] (in [3] the BTM was studied on the

complete graph), the limited number of accessible sites means the property of ageing

is intrinsically related to localisation, namely that at certain times we can predict with

high probability the state of the system (for further background, see [2, 8]). It is the

goal of this article to study this latter property in the special case of the BTM on the

integers with regularly varying traps.
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We now introduce the model of study, following the notation of [5]. First, define

a trapping landscape σ = (σx)x∈Z, which is a collection of independent and identically

distributed (i.i.d.) strictly-positive random variables, built on a probability space with

probability measure P. Conditional on σ, the dynamics of the BTM are given by a

continuous-time Z-valued Markov chain X = (Xt)t≥0, started from the origin, with

transition rates

(1.1) wx→y =

 1
2σx

, if y ∼ x,

0, otherwise,

where y ∼ x means that x and y are nearest neighbours in Z. We denote the law of

X conditional on σ, the so-called ‘quenched’ law of the BTM, by Pσ. Throughout the

article we will suppose that the trap distribution σ0 satisfies

(1.2) P (σ0 ≥ u) = u−α, ∀u ≥ 1,

for some constant α ∈ (0, 1]. Whilst this is a strict assumption, we believe that, after

making suitable adaptations to the arguments, one could deduce the same results under

certain weaker conditions. For instance, in the case α ∈ (0, 1), it should be sufficient

that the tail of the distribution of σ0 be regularly varying with the same index. We

exclude the parameter range α > 1 since in this regime the BTM does not exhibit

localisation, as explained below.

Specifically, the aim of this article is to establish the following quenched localisation

behaviour of the BTM on the integers with regularly varying traps. On the one hand, we

prove that for almost every trapping landscape there are arbitrarily large times at which

the system is highly localised on one site, a site that can be described explicitly in terms

of the trapping landscape. Conversely, we show that for almost every trapping landscape

there are also arbitrarily large times at which the BTM is completely delocalised, i.e.

no single site carries a prescribed amount of probability.

Theorem 1.1. For the BTM on the integers with a trapping distribution satis-

fying (1.2) for some α ∈ (0, 1], it P-a.s. holds that

lim inf
t→∞

sup
x∈Z

Pσ (Xt = x) = 0, lim sup
t→∞

sup
x∈Z

Pσ (Xt = x) = 1.

We now compare this result with previous studies of the quenched behaviour of the

BTM that have appeared in the literature. In [7] (see also [8]) it was established that,

for α ∈ (0, 1), the probability mass function of the BTM exhibits quenched localisation,

in the sense that

sup
x∈Z

Pσ (Xt = x) ̸→ 0
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as t → ∞. Theorem 1.1 strengthens the above localisation result by demonstrating that

the supremum (indeed the ℓp-norm, for any p > 1) of the probability mass function of

the BTM fluctuates infinitely often between the bounds of 0 and 1.

One interesting consequence of Theorem 1.1 is to demonstrate a relatively sharp

transition in the quenched behaviour of the BTM between the homogenised regime and

a regime of strong disorder, as the tail of the trap distribution gets heavier. Recall that

if σ0 has finite mean (and in particular if (1.2) holds for some α > 1), the BTM ho-

mogenises P-a.s. In other words the BTM, rescaled diffusively, converges in distribution

to Brownian motion P-a.s. In Section 4 we check that this, in turn, implies that, P-a.s.,

as t → ∞,

(1.3) sup
x∈Z

Pσ (Xt = x) → 0.

By contrast, the lim sup part of Theorem 1.1 demonstrates that, if α ≤ 1, there are

arbitrarily large times, P-a.s., at which the probability mass function of the BTM is in

a maximally disordered state. Whether this remains true for any σ0 with infinite mean

(perhaps under suitable regularity conditions) is an interesting question which we leave

open.

We also note that the recent work [5] investigated the result corresponding to

Theorem 1.1 in the case of σ0 with a slowly varying tail at infinity (roughly this is the

α = 0 case; see [6, Theorem 1.9]). In particular, it was demonstrated that in the one-

sided case (i.e. restricting the BTM to the positive integers), there exist distributions

of σ0 such that

lim inf
t→∞

sup
x∈Z+

Pσ (Xt = x) =
1

N
, lim sup

t→∞
sup
x∈Z+

Pσ (Xt = x) = 1

for each N ∈ {2, 3, . . .}. We suspect that the equivalent result also holds true in the

two-sided case, for N restricted to {3, 4, . . .}. Whether there exist trap distributions σ0

for which

lim inf
t→∞

sup
x∈Z

Pσ (Xt = x) = p

for arbitrary p ∈ [0, 1/3] (or p ∈ [0, 1/2] in the one-sided case) is also an interesting

open question.

Our approach to establishing the lim sup part of Theorem 1.1, which we do in

Section 2, largely follows the argument in [5]. On the other hand, our argument for

the lim inf part in Section 3 makes use of heat-kernel estimates, which is quite different

from the approach taken for the equivalent bounds in [5].

Finally, we remark that as a by-product of our argument we establish bounds on the

almost sure fluctuations in the max/sum ratio of i.i.d. sequences of random variables

with common distribution σ0. Again, one might compare to the integrable case, in
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which the lim sup will tend to zero, and the slowly varying case, in which the lim inf

can be positive.

Theorem 1.2. Assume σ0 satisfies (1.2) for some α ∈ (0, 1]. Denote by Mn

and Sn the maximum and sum respectively of the partial sequence (σi)1≤i≤n

Mn := max
1≤i≤n

σi, Sn :=
∑

1≤i≤n

σi.

Then it P-a.s. holds that

lim inf
n→∞

Mn

Sn
= 0, lim sup

n→∞

Mn

Sn
= 1.

§ 2. Localisation on a single point

The aim of this section is to prove that at arbitrarily large times the BTM is highly

localised, that is, to prove the lim sup part of Theorem 1.1. Our approach is to show

that certain favourable configurations of the trapping landscape occur infinitely often

P-a.s., and moreover, when such favourable configurations arise, the BTM is highly

localised on a single site at a certain time.

We first introduce an ε ∈ (0, 1) that will act as our error threshold. Unless explicitly

stated, ε will remain fixed throughout this section, and as such we shall suppress the

explicit dependence of other notation on ε. To define the favourable configurations, we

introduce the scales, for n ∈ N,

(2.1) an := ⌊e2n logn⌋, bn := ⌈ε−1an⌉.

Note that we have chosen an specifically so that the ratio an−1/an ∼ n−2 → 0 is a

summable sequence. Further, recalling the notation for the one-sided maximum and

sum processes Mn and Sn from the statement of Theorem 1.2, we introduce the two-

sided sum process

S̄n :=
∑

−n≤i≤n

σi,

and define the events, for n ∈ N,

En :=
{
Man > ε−2a1/αn ℓα(an), S̄bn −Man < 3ε−1a1/αn ℓα(an)

}
,

where

ℓα(n) :=

1, if α ∈ (0, 1),

log n, if α = 1,

is a logarithmic correction in the case α = 1.
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We show that, for each ε ∈ (0, 1), the events En occur infinitely often P-a.s. (see

Lemma 2.2). Moreover, we show that, when the event En occurs, at the time

tn := ε−2a1+1/α
n ℓα(an)

the BTM is completely localised, up to an ε-dependent error, on the site achieving the

maximum Man (see Corollary 2.4), a site that we shall denote by

xn := arg max1≤i≤an
σi.

To establish that the events En occur infinitely often, we start by proving the

corresponding result for a closely related sequence of independent events. In particular,

define the collections of intervals (In)n≥1 and (Jn)n≥1 by setting I1 := (0, a1], J1 :=

[−b1, 0] ∪ (a1, b1], and, for n ≥ 2,

In := (bn−1, an], Jn := [−bn,−bn−1) ∪ (an, bn].

Note that ∪∞
n=1(In ∪ Jn) = Z, and also In, Jn, n ≥ 1, are all disjoint. For a subset

I ⊆ Z, we write

S(I) :=
∑
i∈I

σi, M(I) := max
i∈I

σi.

Then define the events

An :=
{
M(In) > ε−2a1/αn ℓα(an), S(In ∪ Jn)−M(In) < 2ε−1a1/αn ℓα(an)

}
.

Importantly, we observe that the disjointness of the intervals involved in their definition

readily yields that these events are independent. We use this fact in the proof of the

following result.

Lemma 2.1. As n → ∞, it P-a.s. holds that An occurs infinitely often.

Proof. By the independence of (An)n≥1 and the second Borel-Cantelli lemma, it

will suffice to show that

(2.2)
∞∑

n=1

P (An) = ∞.

Since we have a continuous distribution for σ0, it holds that

P (An) =
∑
i∈In

P (An, M(In) = σi)

= (an − bn−1)P
(
σan > ε−2a1/αn ℓα(an), S(In ∪ Jn\{an}) < 2ε−1a1/αn ℓα(an)

)
≥ (an − bn−1)P

(
σ0 > ε−2a1/αn ℓα(an)

)
P
(
S2bn < 2ε−1a1/αn ℓα(an)

)
.
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From (1.2) it is easy to check that the first of these probabilities satisfies

(an − bn−1)P
(
σ0 > ε−2a1/αn ℓα(an)

)
∼ ε2αℓα(an)

−α

as n → ∞. To control the second probability, we treat the cases α ∈ (0, 1) and α = 1

separately. In the case α ∈ (0, 1), it is well-known that (see [11, p. 62, Table 2.1], for

example), as n → ∞, n−1/αSn ⇒ Ξα in distribution, where Ξα is a random variable

with a maximally-asymmetric α-stable law supported on (0,∞). Hence

P
(
S2bn < 2ε−1a1/αn

)
→ P

(
Ξα < (2ε−1)1−1/α

)
as n → ∞. Thus we find that

P (An) → ε2αP
(
Ξα < (2ε−1)1−1/α

)
> 0,

and the result at (2.2) follows. In the case α = 1, it is instead the case that (again, see

[11, p. 62, Table 2.1], for example), as n → ∞, n−1(Sn − n log n) ⇒ Ξ1 in distribution,

where Ξ1 is a random variable with a maximally-symmetric 1-stable law supported on R.
Hence

P
(
S2bn < 2ε−1an log an

)
→ P (Ξ1 < − log(2/ε)) > 0

as n → ∞. Thus we find that, as n → ∞,

P (An) ∼ c log(an)
−1 ∼ c/(2n logn),

for some constant c > 0, and so the result at (2.2) also follows in this case.

Lemma 2.2. As n → ∞, it P-a.s. holds that En occurs infinitely often.

Proof. We start by defining the event

Bn :=
{
S̄bn−1 < a1/αn ℓα(an)

}
,

which we claim holds eventually, P-a.s. To prove this, note that it is an elementary

computation to deduce from (1.2) that

1−E
(
e−θσ0

)
∼ cαθ

αℓα(θ
−1)

as θ → 0, where

cα :=

Γ(1− α), if α ∈ (0, 1),

1, if α = 1,

with Γ the usual gamma function. Thus, for any cn such that

lim
n→∞

nc−α
n ℓα(cn) = 0,
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applying Markov’s inequality we have,

P (Sn > cn)≤
1−E

(
e−c−1

n Sn

)
1− e−1

= (1− e−1)−1
(
1−E

(
e−c−1

n σ0

)n)
∼ cα(1− e−1)−1nc−α

n ℓα(cn).

Finally note that there is a constant c > 0 such that, as n → ∞, eventually

(2bn−1 + 1)ℓα(a
1/α
n ℓα(an))

anℓα(an)α
< cn−2 → 0,

where we have used the fact that an−1/an ∼ n−2. Hence we deduce that there exists a

constant c > 0 such that, as n → ∞, eventually

P
(
S̄bn−1

> a1/αn ℓα(an)
)
= P

(
S2bn−1+1 > a1/αn ℓα(an)

)
< cn−2,

and by the Borel-Cantelli lemma the claim is proved.

Now, it is a consequence of Lemma 2.1 and the conclusion of the previous paragraph

that An ∩Bn occurs infinitely often, P-a.s. Thus to complete the proof it will suffice to

show that An ∩ Bn ⊆ En. However, this is straightforward, since on An ∩ Bn, we have

that

Man = max{Mbn−1 ,M(In)} ≥ M(In) > ε−2a1/αn ℓα(an),

and also

S̄bn −Man ≤ S̄bn−1 + S(In ∪ Jn)−M(In) < (2ε−1 + 1)a1/αn ℓα(an)

as required, since ε < 1.

We now proceed to establish that, on the event En, at the time tn the BTM is

completely localised, up to an ε-dependent error, on the site xn. We first state a

general localisation result that is valid for arbitrary times t > 0 and deterministic

trapping landscapes σ, before specialising to the time tn and invoking the properties of

the trapping landscape contained in En.

Lemma 2.3. Let σ be a deterministic strictly-positive trapping landscape, and

denote by X the continuous-time Z-valued Markov chain, started from 0, with transition

rates given by (1.1), with Pσ its law. Then, for each pair of sites 0 < x < y and each

time t > 0,

Pσ (Xt = x) ≥

(
y

x+ y
− t−1x

∑
−y<z<x

σz

)
+

(
σx∑

−y≤z≤y σz
− t

(y − x)σx

)
+

,

where α+ denotes the positive part of α ∈ R.
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Proof. We prove Lemma 2.3 in a similar manner to the equivalent results in [5],

which were established in the one-sided case. Here we adapt these arguments to the

two-sided case.

For a site z ∈ Z, denote by τz the first hitting time by X of z, i.e. τz := inf{s ≥ 0 :

Xs = z}, and further denote by P z
σ the law of the Markov chain X started from z. By

applying the strong Markov property at the (almost-surely finite) stopping time τx, we

have that

(2.3) Pσ (Xt = x) =

∫ t

0

P x
σ (Xt−s = x)Pσ (τx ∈ ds) ≥ Pσ (τx ≤ t) inf

s≤t
P x
σ (Xs = x) .

We will bound these probabilities using the methods of [5].

In particular, to bound the first of the terms in the lower bound at (2.3), note that

Pσ (τx ≤ t) ≥ Pσ (τx ≤ t ∧ τ−y) ≥ Pσ (τx < τ−y)− Pσ (τx ∧ τ−y ≥ t) .

By basic properties of random walks, it holds that Pσ(τx < τ−y) = y/(x+y). Moreover,

by [5, Proposition 2.1], we have the following upper bound

Pσ(τx ∧ τ−y ≥ t) ≤ t−1x
∑

−y<z<x

σz,

and so we conclude

Pσ (τx ≤ t) ≥

(
y

x+ y
− t−1x

∑
−y<z<x

σz

)
+

.

To bound the second of the terms in the lower bound at (2.3), we observe

P x
σ (Xs = x)≥ P x

σ (Xs = x, τ−y ∧ τy > t)

≥ P x
σ (τ−y ∧ τy > t)− P x

σ (Xs ̸= x, τ−y ∧ τy > t) .(2.4)

For the first term here we can apply the following lower bound (see [5, Proposition 2.2])

P x
σ (τ−y ∧ τy > t) ≥ 1− t

(y − x)σx
.

Towards bounding the remaining probability in (2.4), we define the continuous-time

[−y, y]-valued Markov chain X̂, started from x, with transition rates given by (1.1) (in-

terpreting ∼ as denoting nearest neighbours on [−y, y]∩Z), and let P̂ x
σ be its law. Then

it is clear that (X̂s∧τy∧τ−y )s≥0 has the same distribution as the chain (Xs∧τy∧τ−y )s≥0

started from x. Hence, for any s ≤ t, we have that

P x
σ (Xs ̸= x, τy ∧ τ−y > t) = P̂ x

σ

(
X̂s ̸= x, τy ∧ τ−y > t

)
≤ P̂ x

σ

(
X̂s ̸= x

)
≤ 1− inf

u≥0
P̂ x
σ

(
X̂u = x

)
.
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Finally note that, since P̂ x
σ (X̂s = x) is decreasing in s, the process X̂ satisfies

inf
s≥0

P̂ x
σ (X̂s = x) = lim

s→∞
P̂ x
σ (X̂s = x) =

σx∑
−y≤z≤y σz

,

where the second inequality follows from the ergodicity of the Markov chain in question,

and a computation of its invariant distribution from the detailed balance equations.

Combining the above results establishes that

inf
s≤t

P x
σ (Xs = x) ≥

(
σx∑

−y≤z≤y σz
− t

(y − x)σx

)
+

,

which completes the proof.

Applying the previous result with the setting x := xn, y := bn and t := tn, together

with the definition of En, we readily deduce the following.

Corollary 2.4. On the event En, it holds that

Pσ (Xtn = xn) >

(
1

1 + ε
− 3ε

)
+

(
1

1 + 3ε
− ε

1− ε

)
+

.(2.5)

The right-hand side of (2.5) can be written 1−O(ε) as ε → 0.

Observe that, for any ε ∈ (0, 1), the times tn → ∞ as n → ∞. Hence, since

ε ∈ (0, 1) was arbitrary, as a simple consequence of Lemma 2.2 and Corollary 2.4 we

obtain the lim sup part of Theorem 1.1. Furthermore, note that on En we have that

1 ≥ Man

San

≥ Man

S̄bn

=
1

1 + (S̄bn −Man)/Man

>
1

1 + 3ε
.

Hence, since an → ∞ and ε ∈ (0, 1) was arbitrary, we also deduce from Lemma 2.2 the

lim sup part of Theorem 1.2.

§ 3. Complete delocalisation

In this section we prove that the BTM is completely delocalised at arbitrarily large

times, that is, we prove the lim inf part of Theorem 1.1. As in Section 2, our approach is

to show that certain favourable configurations of the trapping landscape occur infinitely

oftenP-a.s., and moreover, when such favourable configurations arise, the BTM is highly

delocalised.

Throughout this section we again introduce an ε ∈ (0, 1) to act as our error thresh-

old. We also introduce a parameter K ∈ N which measures the extent of the spread

of the probability mass function of the BTM. Again, unless explicitly stated, both ε
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and K will remain fixed throughout this section, and as such we suppress the explicit

dependence of other notation on ε and K.

To define the favourable configurations, recall the scale an from (2.1) and further

define, for k ∈ Z, the evenly spaced sites an,k := kan, the corresponding intervals

In,k := [an,k, an,k+1),

and the events, for n ∈ N,

En :=
∩

k∈[−K,K]

{
S(In,k) ∈

(
1

2
a1/αn ℓα(an), 2a

1/α
n ℓα(an)

)
, M(In,k) < εa1/αn ℓα(an)

}
.

We will show that, for each ε ∈ (0, 1) and K ∈ N, the events En occur infinitely often

P-a.s. (see Lemma 3.2). Moreover, we show that, when the event En occurs, at the time

tn := 12a1+1/α
n ℓα(an)

no site carries a non-negligible ((ε,K)-dependent) proportion of the probability mass of

the BTM (see Lemma 3.4).

To establish that the events En occur infinitely often, we again start by proving the

corresponding result for a closely related sequence of independent events. In particular,

define the collection of intervals (Ĩn,k)n≥2,k∈[−K,K] by setting,

Ĩn,0 := [(K + 1)an−1, an), Ĩn,−1 := [an,−Kan−1)

and Ĩn,k = In,k for k ∈ [−K,K] \ {−1, 0}. We then set

An :=
∩

k∈[−K,K]

{
S(Ĩn,k) ∈

(
1

2
a1/αn ℓα(an),

3

2
a1/αn ℓα(an)

)
, M(Ĩn,k) < εa1/αn ℓα(an)

}
.

Observe that the intervals (Ĩn,k)n≥2,k∈[−K,K] are distinct for sufficiently large n. Hence,

as n → ∞ the events An are eventually independent. We use this fact in the proof of

the following result.

Lemma 3.1. As n → ∞, it P-a.s. holds that An occurs infinitely often.

Proof. By the eventual independence of (An)n≥2 and the second Borel-Cantelli

lemma, it suffices to show that
∑∞

n=2 P(An) = ∞. It is well-known ([10]) that as n → ∞(
n−1/αℓα(n)

−1S⌊nt⌋

)
t≥0

⇒ (Ξα(t))t≥0

weakly in the space D(R+) of real-valued càdlàg functions equipped with the standard

Skorohod J1 topology (see [12] for the definition), where Ξα(t) denotes an α-stable
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subordinator for α ∈ (0, 1), and Ξ1(t) := t. Notice that the functionals f 7→ f(1) and

f 7→ supt∈[0,1] ∆f(t), where ∆f(t) := f(t) − f(t−) denotes the jump in the function f

at the time t, are both continuous in the J1 topology for functions that are continuous

at t = 1, and moreover that all fixed times are continuity times for Ξα. Hence it follows

that

P (An) → P

(
Ξα(1) ∈ (1/2, 3/2), sup

t∈[0,1]

∆Ξα(t) < ε

)2K+1

> 0

as desired.

Lemma 3.2. As n → ∞, it P-a.s. holds that En occurs infinitely often.

Proof. We start by defining the event, for n ≥ 2,

Bn :=

{
S(−Kan−1, (K + 1)an−1) <

(
1

2
∧ ε

)
a1/αn ℓα(an)

}
,

which we claim holds eventually, P-a.s. To prove this, recall from the proof of Lemma 2.2

that, for any cn such that limn→∞ nc−α
n ℓα(cn) = 0, there exists a constant c > 0 such

that, as n → ∞, eventually P(Sn > cn) < cnc−α
n ℓα(c

−1
n ). Now consider that there is a

constant c > 0 such that, as n → ∞, eventually

an−1ℓα(
(
1
2 ∧ ε

)
a
1/α
n ℓα(an))

anℓα(an)α
< cn−2 → 0,

where we use the fact that an−1/an ∼ n−2. Hence we deduce that there exists a constant

c > 0 such that, as n → ∞, eventually

P

(
S(−Kan−1, (K + 1)an−1) >

(
1

2
∧ ε

)
a1/αn ℓα(an)

)
= P

(
S2(K+1)an−1

>

(
1

2
∧ ε

)
a1/αn ℓα(an)

)
< cn−2,

and by the Borel-Cantelli lemma the claim is proved.

Now, it is a consequence of Lemma 3.1 and the previous paragraph that An ∩ Bn

occurs infinitely often, P-a.s. Thus to complete the proof it will suffice to show that

An ∩ Bn ⊆ En. However, this is straightforward for, since on An ∩ Bn each k = −1, 0

satisfies

M(In,k) ≤ max
{
M(Ĩn,k), S(−Kan−1, (K + 1)an−1)

}
< εa1/αn ℓα(an),

and

S(In,k) ∈
(
S(Ĩn,k), S(Ĩn,k) + S(−Kan−1, (K + 1)an−1)

)
∈ (1/2, 2) a1/αn ℓα(an),
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and moreover the conditions on M(In,k) and S(In,k) for each k ∈ [−K,K] \ {−1, 0} are

identical in the events An and En.

We now proceed to study the behaviour of the BTM on the event En. In particular,

our first aim is to show that at time tn no site in the interval [an,−K+1, an,K ] carries

significant mass.

Lemma 3.3. If En holds, then

sup
x∈[an,−K+1,an,K ]

Pσ (Xtn = x) < 4ε.

Proof. We first introduce the notation

V (x, r) := S([x− r + 1, x+ r − 1])

and denote the quenched heat kernel of the Markov chain X by

(3.1) pσt (x, y) = σ−1
y P x

σ (Xt = y) ,

where again we write P x
σ to denote the law of X started from x. Throughout the proof

we suppose that En holds, and we note that on this event

(3.2)
1

2
a1/αn ℓα(an) < V (x, an) < 6a1/αn ℓα(an), ∀x ∈ [an,−K+1, an,K ].

Next, in this one-dimensional setting, it is possible to check by applying the argument

of [9, Proposition 4.1] that pσ2anV (x,an)
(x, x) ≤ 2/V (x, an). Hence, since (pσt (x, x))t≥0 is

decreasing in t, it follows from (3.2) that

(3.3) pσtn(x, x) <
4

a
1/α
n ℓα(an)

, ∀x ∈ [an,−K+1, an,K ].

In conjunction with the Cauchy-Schwarz bound

pσt (0, x) ≤
√
pσt (0, 0)p

σ
t (x, x), ∀x ∈ Z, t > 0,

and the estimate maxx∈[an,−K+1,an,K ] σx < εa
1/α
n ℓα(an) that holds on En, (3.3) implies

the result.

We now extend the bound of the previous lemma to hold uniformly over the entire

integer lattice, by checking that on En the Markov chain X does not exit the interval

[an,−K+1, an,K ] quickly.

Lemma 3.4. If En holds, then

sup
x∈Z

Pσ (Xtn = x) < 4ε+ bK ,

where (bk)k≥1 is a deterministic sequence of positive numbers such that bk → 0 as

k → ∞.
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Proof. First we introduce the two-sided hitting time

τ(x, r) := inf{t ≥ 0 : |Xt − x| ≥ r},

and note that, in light of Lemma 3.3, it suffices to show that, on En,

Pσ (τ(0, (K − 1)an) ≤ tn) ≤ bK ,(3.4)

where (bk)k≥1 is a deterministic sequence of positive numbers such that bk → 0.

To bound the probability at (3.4), set t̃n := tn/24 = 1
2a

1+1/α
n ℓα(an), and write

τ0 = 0 and

τi+1 := inf {t ≥ τi : Xt ∈ 2anZ\{Xτi}} .

Then we may bound (3.4) as follows:

Pσ (τ(0, (K − 1)an) ≤ tn)≤ Pσ

⌊(K−1)/2⌋−1∑
i=0

τi ≤ tn


≤ Pσ

⌊(K−1)/2⌋−1∑
i=0

1{τi≥t̃n} ≤ 24

 .(3.5)

Writing P x
σ for the law of X started from x, it now suffices to show that on En, for every

x ∈ [an,−K+2, an,K−1] ∩ anZ,

P x
σ

(
τ(x, 2an) ≥ t̃n

)
> 1/32.(3.6)

Indeed, (3.5) is then bounded above by bK , as defined by setting

bk := P (Bin (⌊(k − 1)/2⌋, 1/32) ≤ 24) ,

where Bin(N, p) a binomial random variable with parameters N and p, which is a choice

that clearly yields (bk)k≥1 is a null sequence.

To establish (3.6), first let Ex
σ denote the expectation corresponding to the law P x

σ .

By considering the number of visits to each vertex by the jump process of X, we have

that: for every x ∈ Z, r ∈ N, y ∈ (x− r, x+ r),

Ey
σ(τ(x, r)) =

x+r−1∑
i=x−r+1

P y
σ (τi < τ(x, r))× P i

σ(τ
+
i > τ(x, r))−1 × σi,

where we again write τi to represent the first hitting time by X of i, and write τ+i :=

inf{s ≥ inf{t : Xt ̸= i} : Xs = i} to represent the first return time. Now, it is an

elementary computation to check that

P y
σ (τi < τ(x, r)) = min

{
x+ r − y

x+ r − i
,
y − x+ r

i− x+ r

}
,
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P i
σ(τ

+
i > τ(x, r)) =

1

2

(
1

i− x+ r
+

1

x+ r − i

)
,

and so we obtain:

Ey
σ(τ(x, r)) = 2

x+r−1∑
i=x−r+1

min

{
x+ r − y

x+ r − i
,
y − x+ r

i− x+ r

}
×
(

1

i− x+ r
+

1

x+ r − i

)−1

σi.

By the definition of En we readily deduce from this bound that

Ey
σ (τ(x, 2an)) < 16a1+1/α

n ℓα(an)

and

Ex
σ (τ(x, 2an)) > a1+1/α

n ℓα(an)

for every x ∈ [an,−K+2, an,K−1] ∩ anZ, y ∈ (x − 2an, x + 2an). Thus, applying the

Markov property at time t, we deduce

a1+1/α
n ℓα(an)<Ex

σ (τ(x, 2an))

≤ t+ P x
σ (τ(x, 2an) ≥ t) 16a1+1/α

n ℓα(an)

for every x ∈ [an,−K+2, an,K−1] ∩ anZ. Setting t = t̃n completes the proof.

Putting together Lemmas 3.2 and 3.4, recalling that ε ∈ (0, 1) and K ∈ N were

arbitrary, and noting that tn → ∞, we have thus established the lim inf part of Theo-

rem 1.1. Furthermore, note that on En we have that

Man

San

< 2ε.

Hence we also deduce from Lemma 3.2 the lim inf part of Theorem 1.2.

§ 4. Delocalisation for traps with finite expectation

In this section, we deal with the case when Eσ0 < ∞, and in particular estab-

lish (1.3). In this case, it is known that, for P-a.e. realisation of the trapping environ-

ment, we have that

(4.1) (εXt/ε2)t≥0 → (Bt)t≥0

in distribution in D([0,∞),R), where up to a deterministic linear time change B =

(Bt)t≥0 is a standard one-dimensional Brownian motion [1, Theorem 2.10]. Moreover,

by the strong law of large numbers we P-a.s. have that ε
∑

x∈Z σxδεx → E(σ0)λ vaguely,

where δx is the probability measure placing all its mass at x, and λ is Lebesgue measure
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on R. It follows that we can apply the local limit theorem of [4, Theorem 1] to deduce

that, P-a.s.,

lim
t→∞

max
x∈Z: |x|≤R

√
t

√
t
∣∣∣pσt (0, x)− q(x/

√
t)
∣∣∣ = 0,

where pσ is the discrete heat kernel defined as at (3.1), and q is the density of B1 with

respect to E(σ0)λ. (For this, it is useful to note that in this setting the Euclidean metric

coincides with the resistance metric, where we consider Z as an electrical network with

unit conductances between nearest neighbours. This means we can immediately apply

[4, Proposition 14] to check the equicontinuity of the discrete heat kernels under the

relevant scaling.) In particular, we obtain that, P-a.s., for large t,

max
x∈Z: |x|≤R

√
t
Pσ (Xt = x) ≤ 2 sup

x∈R: |x|≤R

q(x) max
x∈Z: |x|≤R

√
t

σx√
t

Applying the strong law of large numbers again, one can readily check that the upper

bound here converges to 0 for any R < ∞, P-a.s. From (4.1), we also deduce that,

P-a.s.,

sup
x∈Z: |x|>R

√
t

Pσ (Xt = x) ≤ Pσ

(
τ(0, R

√
t) < t

)
→ P

(
τB(0, R) < 1

)
,

where τB(0, R) is the exit time of B from (−R,R). Hence we find that

lim sup
t→∞

sup
x∈Z

Pσ (Xt = x) ≤ P
(
τB(0, R) < 1

)
for any R < ∞, P-a.s. Since this bound can be made arbitrarily small by taking R

large, we are done.
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