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Born‐Oppenheimer approximation for an atom in
constant magnetic fields

By

Sohei ASHIDA*

Abstract

We announce our recent results about a reduction scheme for the study of the quantum
evolution of an atom in constant magnetic fields by the method developed by Martinez, Nenciu
and Sordoni based on the construction of almost invariant subspace. Using the center of mass
coordinates and constructing the almost invariant subspace different from that of Martinez and
Sordoni, we obtain the reduced Hamiltonian which does not include the vector potential terms
of the nucleus. Using the reduced evolution we also obtain the asymptotic expansion of the
evolution for a specific localized initial data, which verifies the straight motion of an atom in
constant magnetic fields.

§1. Introduction

The main purpose of this article is to announce the results of [1] on the Born‐
Oppenheimer approximation for an atom in constant magnetic fields.

The Hamiltonian of an atom with a nucleus and  N electrons moving in constant

magnetic fields has the form

(1.1)  \hat{P}=   \frac{1}{2m}(D_{x_{1}} -e_{1}A(x_{1}))^{2}+\sum_{i=2}^{N+1}\frac{1}{2m_{e}}(D_
{x_{i}} -eA(x_{i}))^{2}
 + \sum_{i<}V_{ij}(x_{i}-x_{j})+\sum_{i=1}^{N+1}V_{i}(x_{i}) .

Here  x_{1}  \in \mathbb{R}^{3} (resp., m) denotes the position (resp., the mass) of the nucleus,  x_{j},  j\geq 2

(resp.,  m_{e} ) denote the position (resp., the mass) of electrons and  V_{i} . (resp.,  V_{i} ) are
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interaction (resp., external) potentials.  e_{1} (resp., e) denotes the charge of the nucleus
(resp., electrons) and  A denotes the vector potential.

In the Born‐Oppenheimer approximation framework without magnetic fields, the
Hamiltonian of some nuclei and electrons is written as

 P(h)=-h^{2}\triangle_{x}-\triangle_{y}+V(x, y) ,

where we denote the coordinates of the electrons by  y and that of the nuclei by  x and  h^{2}

is the ratio of electronic and nuclear mass. Our purpose is to study the asymptotics  0

the solution to the Schrödinger equation   ih\partial_{t}\varphi=P(h)\varphi as  harrow 0 . Since the electrons

change their state adiabatically, if the electrons are in bound states for the fixed nuclei,
 i.e . the bound states for  P_{e}(x)  :=  -\triangle_{y}+V(x, y) at the initial time, we expect the

electrons remain in the bound states even after time passes. This suggests there is

an almost invariant subspace close to the electronic bound states under the evolution
 e^{-itP(h)/h}.

The almost invariant subspaces are described by the projections (see Nenciu [17,
18]). If an orthogonal projection  \Pi satisfies  [P(h), \Pi]  =  \mathcal{O}(h^{\infty}) , then   e^{-itP/h}\Pi  =

 \Pi e^{-itP/h}+\mathcal{O}(h^{\infty}|t|) holds which means  Ran\Pi is the almost invariant subspace. We ex‐

pect there exists such a projection  \Pi such that  \Pi-\Pi_{0}=\mathcal{O}(h) where   \Pi_{0}=\int  \Pi_{0}(x)dx
and  \Pi_{0}(x) is the spectral projection onto an arbitrarily chosen part of the discrete

spectrum of  P_{e}(x) separated from the other part of the spectrum. In the case of Born‐

Oppenheimer approximation the almost invariant subspace does not seem to exist ac‐

cording to the physical intuition saying that the adiabatic decoupling becomes weaker

and weaker when the energy increases. However for any cutoff function  \chi a projection
 \Pi which satisfies  [P(h), \Pi]\chi(P)  =  \mathcal{O}(h^{\infty}) is constructed by Sordoni [21]. Using the
projection  \Pi the quantum evolution  e^{-itP/h} of the molecule is reduced to the evolu‐
tion of the nuclei  e^{-itG/h} where  G is a  k\cross k matrix of semiclassical pseudodifferential

operators  H^{2}(\mathbb{R}_{x}^{n})  arrow  L^{2}(\mathbb{R}_{x}^{n}) , of the nuclear variables,  k being the rank of  \Pi_{0} (see
Martinez‐Sordoni [15, 16]). The symbol of  G is written as  g= \xi^{2}I_{k}+\mu(x)+\sum_{j=1}^{\infty}g_{j}h^{j},
where  I_{k} is the  k‐dimensional identity matrix and  \mu(x) is a matrix of  \Pi_{0}P_{e}(x) in a basis
of  Ran\Pi_{0}.

In semiclassical limit the quantum evolution of generalized coherent states admits

an asymptotic expansion each term of which is a generalized coherent state centered

at the point reached by the classical flow (see Combescure‐Robert [3] and Combescure
[2]). In [16] Martinez and Sordoni applied this expansion to  G in order to obtain the
evolution of a specific localized initial data.

When there is a constant magnetic field, the coordinates of the particles perpendic‐

ular to the magnetic field stay in a bounded region as in the classical mechanics. When

there are  N particles, the center of mass of the particles does not move freely, so that we

cannot divide the motion of the particles into the internal and external motion. How‐
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ever, if the total charge of the particles is zero, there is a subspace  \mathcal{H}_{bound} of  L^{2}(\mathbb{R}^{3N})
such that internal coordinates of the particles in the state in  \mathcal{H}_{bound} stay in a bounded

region and the particles travel to infinity across the magnetic field (see Gérard‐Laba
[4]). Thus we expect when there is an atom, the electrons around the nucleus offset
the influence of the magnetic fields. Hence it seems to be natural that the vector po‐

tential terms do not appear in the reduced Hamiltonian  G . The Born‐Oppenheimer

approximation with magnetic fields is also dealt with by Martinez‐Sordoni [16] but in
their construction the term  h^{2}(D_{x}-eA(x))^{2} remains in  G . We obtain in [1] a reduction
scheme from  \hat{P} in (1.1) to  G without vector potential terms.

To obtain such  G we change the coordinates to the new coordinates where the inde‐

pendent variables are the center of mass and the relative position of the electrons. The

difficulty in our construction of  \Pi is that when we expand the symbol of the resolvent

 (P-z)^{-1} in formal power series in  h as   \sum_{=0}^{\infty}q_{j}(x, \xi;z)h^{j} where  q_{j} are operators on
 L^{2}  (\mathbb{R}_{y}^{3}) , the power of  y contained in  q_{j}(z) becomes of higher order as  j increases.

§2. Adiabatic theory and Born‐Oppenheimer approximation

We recall the Adiabatic theory and Born‐Oppenheimer approximation (see Nenciu
[17], Nenciu‐Sordoni [19] Martinez‐Sordoni [15],[16]).

§2.1. Adiabatic theory and almost invariant subspace

Consider the evolution,  U_{h}(t, t_{0}) , given by

 ih   \frac{d}{dt}U_{h}(t, t_{0})=H(t)U_{h}(t, t_{0}) ,  U_{h}(t_{0}, t_{0})=1

Since this is hard to integrate, we need obtain information without integrating this

equation. For this purpose we find out almost invariant subspaces,  \mathcal{K}(t;h) under the

evolution  U_{h}(t, t_{0}) ;

 U_{h}(t, t_{0})\mathcal{K}(t_{0};h)\cong \mathcal{K}(t;h) .

Assume that  \mathcal{K}(t_{0};h) is obtained by a projection  \Pi_{h}(t) as  \Pi_{h}(t)U_{h}(t, t_{0})  \cong U_{h}(t, t_{0})\Pi_{h} (t0).
Then that  \mathcal{K}(t_{0};h) is almost invariant means

 \Pi_{h}(t)U_{h}(t, t_{0})\cong U_{h}(t, t_{0})\Pi_{h} (  t0),

or

 \Pi_{h}(t)\cong U_{h}(t, t_{0})\Pi_{h}(t_{0})U_{h}(t, t_{0})^{-1}

If we differentiate it we have

 ih   \frac{d}{dt}\Pi_{h}(t)\cong  [H(t), \Pi_{h}(t)]
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Nenciu [17] constructed such an almost invariant subspace by recurrent relation.

§2.2. Born‐Oppenheimer approximation

For simplicity we consider the case without magnetic fields. Hamiltonian of  n nuclei
and  N electrons is written as follows:

 P=- \sum_{i=1}^{n}\frac{1}{2m}\triangle_{x_{i}}-\sum_{i=1}^{N}\frac{1}{2m_{e}}
\triangle_{y_{i}}+\sum_{i<j}V_{i}\cdot(x_{i}-x_{j})
 + \sum_{i<}\tilde{V}_{ij}(y_{i}-y_{j})+\sum_{i}\hat{V}_{ij}(x_{i}-y_{j})

Here  x_{i}  \in  \mathbb{R}^{3} (resp., m) denote the position (resp., the mass) of the nuclei,  y_{i}  \in  \mathbb{R}^{3}

(resp.,  m_{e} ) denote the position (resp., the mass) of electrons and  V_{ij},  \tilde{V}_{ij} and  \hat{V}_{ij} are
interaction potentials.

Since the electrons are lighter than the nuclei, they move rapidly and adjust their

state adiabatically as the nuclei move more slowly. To demonstrate this mathematically

we change the scale and rewrite the Hamiltonian as

 P(h)=-h^{2} \sum_{i=1}^{n}\triangle_{x_{i}}-\sum_{i=1}^{N}\triangle_{y_{i}}+
V(x, y)
where  h^{2}  =   \frac{m_{e}}{m} . Then our aim is to study the asymptotics of the solution of the

Schrödinger equation

  ih\partial_{t}\varphi=P(h)\varphi

as  harrow 0 . We introduce the electronic Ha   \sumiltonian

 P_{e}(x) :=- \sum_{i=1}\triangle_{y_{i}}+V(x, y) .

We deal with the given part of the discrete spectrum  \sigma_{0}(x) of  P_{e}(x) such that

 \sigma(P_{e}(x))=\sigma_{0}(x)\cup\sigma_{1}(x)

 \exists d>0,  x\in \mathbb{R}^{3}in dist  (\sigma_{0}(x), \sigma_{1}(x))  \geq d

This assumption is called the gap condition. We denote the spectral projection corre‐

sponding to  \sigma_{0}(x) by  \Pi_{0}(x) and assume Rank  (Ran\Pi_{0}(x))=k<1 . Let  (u_{1}(x), \ldots, u_{k}(x))
be the smooth orthonormal basis of  Ran\Pi_{0}(x) .

Sordoni [21] constructed for any cutoff function  \chi  \in  C_{0}^{\infty}(\mathbb{R}) , a projection  \Pi such
that  \Pi-\Pi_{0}  =  \mathcal{O}(h) , where  \Pi_{0}  :=   \int  \Pi_{0}(x)dx , and  [P, \Pi]\chi(P)  :=  (P\Pi-\Pi P)\chi(P)  =
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 \mathcal{O}(h^{\infty}) , and therefore as in the adiabatic theory we have

 t

 e^{-itP/h}\Pi\chi(P)=\Pi\chi(P)e^{-itP/h}+i e^{-isP/h}[\Pi, P]\chi(P)e^{i(s-t)P
/h}ds
 0

 =\Pi\chi(P)e^{-itP/h}+\mathcal{O}(h^{\infty}|t|) .

Thus, Ran  (\Pi\chi(P)) is almost invariant.

Using  \Pi Martinez and Sordoni proved the following theorem.

Theorem 2.1 (Martinez‐Sordoni  [15],[16] ). There exist a  h ‐admissible operato
with operator valued symbol  W :  L^{2}(\mathbb{R}^{3(n+N)})  arrow  (L^{2}(\mathbb{R}_{x}^{3n}))^{\oplus k} and  G :  (L^{2}(\mathbb{R}_{x}^{3n}))^{\oplus k}  arrow

 (L^{2}(\mathbb{R}_{x}^{3n}))^{\oplus k},  k\cross k self‐ad
 \cdot

oint matrix of  h ‐admissible operators on  L^{2}(\mathbb{R}_{x}^{3n}) such that

the following are satis ed.

The restriction  U of  W to  Ran\Pi :

 U:Ran\Piarrow(L^{2}(\mathbb{R}_{x}^{3n}))^{\oplus k}

is unitary. If  \varphi_{0}  \in Ran\chi(P) , the

 e^{-itP/h}\Pi\varphi_{0}=U^{*}e^{-itG/h}U\Pi\varphi_{0}+\mathcal{O}
(|t|h^{\infty}\Vert\varphi_{0}\Vert) .

The symbol  g(x, \xi) of  G has the following for

 g(x,  \xi)=\xi^{2}I_{k}+\mu(x)+\sum_{i\geq 1}h^{j}g_{j}(x, \xi) ,

where  \mu(x) is the matrix of  \Pi_{0}P_{e}(x) in  (u_{1}(x), \ldots, u_{k}(x)) .

This theorem means that the motion of all the particles is reduced to the motion

of only the nuclei.

§3. Some preliminaries

We suppose the magnetic field is pBrallel tc the third axis, so that the vector

potential is written as

 A(x)= (\begin{array}{ll}
0-b0   
b0   0
00   0
\end{array}) x.
where  b>0 is a constant. We also suppose that the total charge of the particles is zero

i.e.  e_{1}+Ne=0 . Setting the mass of electrons to 1/2 and denoting  m/m_{e} by  m again,
we introduce new coordinates  (x, y2, :::, y_{N+1})=(x, y)  \in \mathbb{R}^{3}  \cross \mathbb{R}^{3N} by setting
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  N\sum_{+1}
(3.1)  x=  \underline{1} (mx_{1}+\sum_{i=2}^{N+1}x_{i}) , M=m+N

 y_{i}=x_{i}-x_{1}, 2\leq i\leq N+1.

Here  M is the total mass,  x is the position of center of mass and  y_{i} is the position  0

the electrons relative to the nucleus. With this choice of coordinates, the Hamiltonian
is transformed into another Hamiltonian

  \tilde{P}=h^{2}D_{x}^{2}-2h^{2}e\sum_{i=2}^{N+1}A(y_{i})D_{x}+\sum_{i=2}^{N+1}
\tilde{L}_{i}(x)^{2}+h^{2}\tilde{Q}+V(x, y)
where  h^{2}  =   \frac{1}{M},  \tilde{L}_{i}(x)  =  D_{y_{i}}  -  eA(y_{i} +x) , and writing  f  =   \sum_{i=2}^{N+1}y_{i},  V(x, y) and

 \tilde{Q}=\tilde{Q}_{1}+\tilde{Q}_{2} are as follows:

 V(x, y;h)= \sum_{i=2}^{N+1}V_{1i}(-y_{i})+\sum_{2\leq i<j}V_{ij}(y_{i}-y_{j})
 +V_{1}(x-h^{2}f)+ \sum_{i=2}^{N+1}V_{i}(x+y_{i}-h^{2}f) ,

 \tilde{Q}_{1}  =   \frac{1}{1-Nh^{2}}  ( \sum_{i=2}^{N+1}\tilde{L}_{i}(x))^{2},
 \tilde{Q}_{2}=   \frac{1}{1-Nh^{2}}  [2 \sum_{i=2}^{N+1}\tilde{L}_{i}(x) (\sum_{i=2}^{N+1}eA(y_{i}+h^{2}f)) + (\sum_
{i=2}^{N+1}eA(y_{i}+h^{2}f))^{2}]

 +2 \sum_{i=2}^{N+1}e\tilde{L}_{i}(x)A(f)+Nh^{2}e^{2}A(f)^{2}
Applying the unitary transformation  \mathcal{V}  := \exp(-ieA(x)\sum_{i=2}^{N+1}y_{i}) and its inverse to  \tilde{P}

we have

 P=\mathcal{V}\tilde{P}\mathcal{V}^{*}

 =h^{2}D_{x}^{2}+P_{e}-4h^{2}e \sum_{i=2}^{N+1}A(y_{i})D_{x}+h^{2}Q
Here,  P_{e}(x)= \sum_{i=2}^{N+1}L_{i}^{2}+V_{0}(x, y) and  Q=Q_{1}+Q_{2}+h^{-2}(V(x, y;h)-V_{0}(x, y)) , where



Born‐OPPenheimer approximation for an atom in constant magnetic fields 7

 L_{i}=D_{y_{i}}  -eA(y_{i}) and

 Q_{1} =  \frac{1}{1-Nh^{2}} (\sum_{i=2}^{N+1}L_{i})^{2},
 Q_{2}=  \frac{1}{1-Nh^{2}} \lfloor^{2\sum_{i=2}^{N+1}L_{i}}\lceil (\sum_{i=2}
^{N+1}eA(y_{i}+h^{2}f)) + (\sum_{i=2}^{N+1}eA(y_{i}+h^{2}f))^{2}]

 +2 \sum_{i=2}^{N+1}eL_{i}A(f)+(3+Nh^{2})e^{2}A(f)^{2},
 V_{0}(x, y)= \sum_{i=2}^{N+1}V_{1i}(-y_{i})+\sum_{2\leq i<}.V_{ij}(y_{i}-y_{j})
+V_{1}(x)+\sum_{i=2}^{N+1}V_{i}(x+y_{i}) .

Note that  V_{0}(x, y) is the zeroth order terms with respect to  h of formal Taylor expansion
of  V(x, y;h) .

We suppose interaction potentials  V_{ij} and the external potentials  V_{i} satisfy the

following assumptions.

(H1) (i)  V_{ij} are real valued function  \triangle‐bounded with relative bound smaller than 1.

(ii)  V_{i}  \in  C^{\infty} are real valued function and for any  \alpha  \in  \mathbb{N}^{3} there exist a constant
 C_{\alpha} such that

 |\partial^{\alpha}V_{i}(r)|\leq C_{\alpha}.

We also suppose that

(H2) The spectrum  \sigma(P_{e}(x)) is the union of two disjoint components  \sigma_{j}(x) ,  j=0 , 1, such
that  \sigma_{0}(x) is a part of discrete spectrum of  P_{e}(x) with the corresponding subspace

of  L^{2}(\mathbb{R}^{3N}) being finite dimensional and there exists a number  d>0 such that

 x\in \mathbb{R}^{3}in dist  (\sigma_{0}(x), \sigma_{1}(x))  \geq d.

Remark. Since by the assumption (H1)  V_{i} is uniformly continuous, the dimension
of the subspace associated with  \sigma_{0}(x) is independent of  x by [Kato [12], IV Theorem
3.16].

We denote by  \Pi_{0}(x) the spectral projection of  P_{e}(x) corresponding to  \sigma_{0}(x) . We

also suppose the following assumption.

(H3)  Ran\Pi_{0}(x) is spanned by a orthonormal basis  (u_{1}(x, y), \ldots, u_{k}(x, y))  \in C^{\infty}(\mathbb{R}^{3};L^{2})
such that

 |u_{i}(x, y)|^{2}e^{2\alpha|y|}dy<C,
 \mathbb{R}^{3N}
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(3.2)  |\partial_{x}^{\beta}u_{i}(x, y)|^{2}dy<C_{\beta},  \forall\beta\in \mathbb{N}^{3}
 \mathbb{R}^{3N}

where constants  C>0,  \alpha>0 and  C_{\beta} do not depend on  x.

§4. Main results

Our main results are concerned with the almost invariant subspace which is close

to electronic eigenspace. In the following theorem,  a  =  \mathcal{O}(h^{\infty}) means  a  =  \mathcal{O}(h^{K}) for

any  K\in \mathbb{N}.

Theorem 4.1. Assume (H1 ‐ H3) hold true. Then for any  \Phi  \in  C_{0}^{\infty}(\mathbb{R}) such
that  \Phi  =  1 on some interval there exists  a orthogonal projection  \Pi(h) on  L^{2}(\mathbb{R}^{3(N+1)})
such that

 \Vert\Pi-\Pi_{0}\Vert_{L^{2}(\mathbb{R}^{3(N+1)})} =\mathcal{O}(h) ,

and, for any  \chi\in C_{0}^{\infty}(\mathbb{R}) such that  \chi\Phi=\chi , we have

 \Vert\chi(P)[\Pi, P]\Vert_{L^{2}(\mathbb{R}^{3(N+1)})}+\Vert[\Pi, P]\chi(P)
\Vert_{L^{2}(\mathbb{R}^{3(N+1)})} =\mathcal{O}(h^{1})_{:}

Using  \Pi we have the following theorem.

Theorem 4.2. If  \varphi is the solution of   ih\partial_{t}\varphi=P\varphi with initial data  \varphi_{0} satisfyin

 \chi(P)\varphi_{0}  =  \varphi_{0} for some  \chi  \in  C_{0}^{\infty}(\mathbb{R}) such that  \chi\Phi  =  \chi where  \Phi is as in Theorem 4.1,
the

(4.1)  \varphi=e^{-itP_{1}/h}\Pi\varphi_{0}+e^{-itP_{2}/h}(1-\Pi)\varphi_{0}+
\mathcal{O}(|t|h^{\infty}\Vert\varphi_{0}\Vert) ,

where  P_{1}  :=\Pi P\Pi and  P_{2}  =  (1-\Pi)P(1-\Pi) are self‐adjoint on a domain containin

 D(P) .

We can reduce the evolution  e^{-itP_{1}/h} to an evolution on the  L^{2} space of only nuclear

variables. To state the next result we use  h‐admissible operators.

Theorem 4.3. There exist a  h ‐admissible operato

 W:L^{2}(\mathbb{R}^{3(N+1)})arrow(L^{2}(\mathbb{R}_{x}^{3}))^{\oplus k}

with operator valued symbol and a  k\cross k self‐adjoint matrix  G of  h ‐admissible operators

on  L^{2}(\mathbb{R}_{x}^{3}) such that the restriction  U of  W to  Ran\Pi :

 U:Ran\Piarrow(L^{2}(\mathbb{R}_{x}^{3}))^{\oplus k}

is a unitary operator which satis es

 UP_{1}\Pi=GU\Pi,
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so that   e^{-itP_{1}/h}\Pi=U^{*}e^{-itG/h}U\Pi . The symbol  g(x, \xi) of  G has the following form:

(4.2)  g(x,  \xi)=\xi^{2}I_{k}+\mu(x)+\sum_{\geq 1}h^{j}g_{j}(x, \xi) ,

where  I_{k} is the  k ‐dimensional identity matrix and  \mu(x) is the matrix of  \Pi_{0}(x)P_{e}(x)  i

 (u_{1}(x), \ldots, u_{k}(x)) . The component in the jth low and mth column of  g_{1}  i

 (g_{1})_{jm}=-2i \sum_{n=1}^{3}(u_{j}(x), \partial_{x_{n}}u_{m}(x))_{L_{y}^{2}}
\xi_{n}
(4.3)

‐  4e \sum_{n=1}^{3}(u_{j}(x), (\sum_{\ell=2}^{N+1}A(y_{\ell}))_{n}u_{m}(x))
_{L_{y}^{2}}\xi_{n},
where  ( \sum_{\ell=2}^{N+1}A(y_{\ell}))_{n} is the nth component of   \sum_{\ell=2}^{N+1}A(y_{\ell}) , and  g_{j}  \in S^{0}(\mathbb{R}^{3}\cross \mathbb{R}^{3}) ,   j\geq
 2 , so that  Op_{h}^{w}(g_{j})  \in \mathcal{L}(L^{2}(\mathbb{R}^{3(N+1)})) ,  j\geq 2.

Remark. Terms including the vector potential of the nucleus such as  -2heA(x)\xi
do not appear in  g . In particular if the external potentials do not exist (i.e.  V_{i}\equiv 0 ),  P_{e}

and  u_{i} are independent of  x , so that the first term of (4.3) vanishes and the second term
is independent of  x . Actually higher order terms are also independent of  x in this case

since the Hamiltonian  P does not include terms depending on  x . Thus, the Hamilton

flow of  g is a straight line. This is not obvious because the internal and external motions

are not separated in magnetic fields.

The next result is concerned with more explicit expression of the solution of the

Schrödinger equation for a special initial data. We assume  k  =  1 and set ũ1(x)  :=

 \mathcal{V}^{*}u_{1}(x) . Then ũ1(x)  \in Ran\tilde{\Pi}_{0}(x) where

 \tilde{\Pi}_{0}(x) :=\mathcal{V}^{*}\Pi_{0}(x)\mathcal{V},

which is the spectral projection of  \tilde{P}_{e}(x)  =   \sum_{i=2}^{N+1}\tilde{L}_{i}(x)^{2}+V_{0}(x, y) corresponding to

 \sigma_{0}(x) . Let  \alpha_{t}=  (x_{t}, \xi_{t}) be the solution  0

(4.4)  x_{t}=  \frac{\partial g}{\partial\xi}(x_{t}, \xi_{t}) , \xi_{t}=-
\frac{\partial g}{\partial x}(x_{t}, \xi_{t})
starting from initial data  \alpha_{0}  =  (x_{0}, \xi_{0}) . Let  (\eta_{n}, \zeta_{n}) ,  n  =  1 , 2, 3 be the independent
solutions  0

(4.5)  (\begin{array}{l}
\dot{\eta}
\dot{\zeta}
\end{array}) =JM_{t} (\begin{array}{l}
\eta
\zeta
\end{array}) ,

with initial data

 (\eta_{n})_{j}|_{t=0}=\delta_{jn}, (\zeta_{n})_{j}|_{t=0}=i\delta_{jn},
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where  (\eta_{n})_{j} is the jth component of  \eta_{n},

 J= (\begin{array}{l}
I0
-I0
\end{array}) ,

I being the unit matrix and  M_{t} is the Hessian of  g at  \alpha_{t}.

Theorem 4.4. Let  k=1 and  \tilde{\varphi}_{0}  \in L^{2}(\mathbb{R}^{3(N+1)}) be as follow

 \tilde{\varphi}_{0}=(\pi h)^{-3/4_{\Pi}^{\sim}}\chi(\tilde{P}) (  e^{ix\xi_{0}/h-(x-x_{0})^{2}/2h} ũ1  (x) ),

where  \tilde{\Pi}  =  \mathcal{V}^{*}\Pi \mathcal{V} , and  \chi  =  1 near  \xi_{0}^{2}+\mu(x_{0}) . Then there exists  C  >  0 such that fo

any integer   J\geq  1 one has

 e^{-it\tilde{P}/h}\tilde{\varphi}_{0}=(\pi h)^{-3/4} (  e^{ix\xi_{t}/h-(x-x_{t})^{2}/2h} ũ1  (x) )

(46)  +h^{1/2}e^{i\delta_{t}/h} \sum_{\mu=0}^{\ell_{J}}c  (t;h)\phi_{\ell,t}\tilde{v}_{\ell}(x)+\mathcal{O}(h^{J/4}) ,

where

 c_{\ell}(t;h)= \sum_{j=0}^{j_{\ell}}h^{j/2}c_{\ell}, (  t ) ,

 c_{\ell,j} are given by the polynomials with respect to  \partial^{\gamma}g(x_{t}, \xi_{t}) and  {\rm Re}\eta_{n},  {\rm Im}\eta_{n},  {\rm Re}\zeta_{n},  {\rm Im}\zeta_{n},
 1  \leq  n  \leq  3,  \delta_{t}  :=   \int_{0}^{t}(\dot{x}_{s}\xi_{s}-g(x_{s}, \xi_{s}))ds+(x_{0}\xi_{0}-x_{t}
\xi_{t})/2,  \tilde{v}_{\ell}  \in  C^{\infty}(\mathbb{R}^{3};L_{y}^{2}(\mathbb{R}^{3N})) and

 \phi_{\ell,t} is a generalized coherent state centered at  (x_{t}, \xi_{t}) . The estimate is uniform with

respect to  (t, h) such that  h>0 is small enough and  t<C^{-1} \ln\frac{1}{h}.

§5. Sketch of the proof of Theorem 4.1

We sketch the proof of Theorem 4.1. We denote by  p(x, \xi;h)  = \xi^{2}+\sum_{i=2}^{N+1}L_{i}^{2}-
 4h^{2}e \sum_{i=2}^{N+1}A(y_{i})\xi+h^{2}Q+V(x, y) the symbol of  P and by  p_{0}(x, \xi)  := \xi^{2}+\sum_{i=2}^{N+1}L_{i}^{2}+
 V_{0}(x, y) its principal symbol. Then we have

 (p(x, \xi;h)-z)\# q_{0}(x, \xi;z)=1-r(x, \xi;h, z) ,

where  q_{0}  :=(p_{0}-z)^{-1} and  r(x,  \xi;h, z)=\sum_{j\geq 1}r^{j}(x, \xi;z)h^{j} . Here

 a(x,  \xi)\# b(x, \xi)=\sum_{\alpha,\beta}\frac{h^{|\alpha+\beta|}(-1)
^{|\alpha|}}{(2i)^{|\alpha+\beta|}\alpha!\beta!}(\partial_{x}^{\alpha}\partial_{
\xi}^{\beta}a(x, \xi))(\partial_{\xi}^{\alpha}\partial_{x}^{\beta}b(x, \xi)) ,

at a formal series level. We define

 q(x,  \xi;h, z)=\sum_{j\geq 1}q_{j}(x, \xi;z)h^{j},
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by

 q:=q_{0}+q_{0} \#\sum_{j\geq 1}r^{\# j}.
Here  r\# j  =r\#\cdots\# r where the number of  r is  j.

Let us set

 \Gamma(x, \xi) :=\{z\in \mathbb{C};z-\xi^{2} \in\gamma(x)\},
and let us define

(5.1)   \wedge j(x, \xi)= \frac{i}{2\pi} \Gamma(x,\xi)^{q_{j}(x,\xi;z)dz}.
Then we have the following Lemma.

Lemma 5.1. For any  j  \in \mathbb{N} and  r,  s\in \mathbb{R},   \bigwedge_{j}(x, \xi)  \in S^{j}(\mathbb{R}^{3}\cross \mathbb{R}^{3};\mathcal{L}(L_{y}^{2,r}, L_{y}
^{2,r+s}))
where  L^{2,s}  :=\{u: (1+|y|^{2})^{s/2}u\in L^{2}\}  and\wedge(x, \xi)  \in S^{m}(\mathbb{R}^{3} \cross \mathbb{R}^{3};\mathcal{L}(\mathcal{H}_{1}, 
\mathcal{H}_{2})) means

(5.2)   \sup \Vert\partial_{x}^{\alpha}\partial_{\xi}^{\beta}\wedge(x, \xi)
\Vert_{\mathcal{L}(\mathcal{H}_{1},\mathcal{H}_{2})}(1+|\xi|)^{-m+|\beta|} <1,
 (x,\xi)\in \mathbb{R}^{3}\cross \mathbb{R}^{3}

for any  \alpha,  \beta\in \mathbb{N}^{3}.

We define

  \hat{\Pi}_{j}u(x)=Op_{h}^{w}(\bigwedge_{j}(x, \xi))u(x)

 =  \frac{1}{(2\pi h)^{3}} ( e^{i(x-y)\xi/h}\pi_{j}(\frac{x+y}{2}, \xi)u(y)dy)
d\xi.
The operator  \hat{\Pi}_{j} is not bounded but by a localization in energy we obtain a bounded

operator.

Lemma 5.2. For any  \Phi  \in  C_{0}^{\infty}(\mathbb{R}) such that  \Phi  =  1 on some interval,  \Phi(P)\hat{\Pi}_{j}
is bounded in  L^{2}(\mathbb{R}^{3(N+1)}) .

We resum in a standard way

  \hat{\Pi}\Phi(P) :=\Pi_{0}\Phi(P)+\sum_{j\geq 1}\Pi_{j}\Phi(P)h^{j}\wedge,
  \Phi(P)\hat{\Pi}:=\Phi(P)\Pi_{0}+\sum_{j\geq 1}\Phi(P)\hat{\Pi}_{j}h^{j}.

We define

 \hat{\Pi}_{\Phi} :=\Phi(P)\hat{\Pi}+(1-\Phi(P))\hat{\Pi}\Phi(P)+(1-\Phi(P))\Pi_
{0}(1-\Phi(P)) .

Since   \sum_{j\geq 0}q_{j}h^{j} is formally the symbol of  (P-z)^{-1} , we have the following lemma as

in Sordoni [21].
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Lemma 5.3. Let  \chi\in C_{0}^{\infty}(\mathbb{R}) satisfy  \chi\Phi=\chi where  \Phi is as in Lemma 5.2. The

for all  N\in \mathbb{N}

 \Vert\chi(P)[\hat{\Pi}_{\Phi}, P]\Vert+\Vert[\hat{\Pi}_{\Phi}, P]\chi(P)\Vert =
\mathcal{O}(h^{N}) ,

 \Vert\chi(P)(\Pi_{\Phi}^{2}-\hat{\Pi}_{\Phi})\Vert+\Vert(\Pi_{\Phi}^{2}
^{\wedge}-\hat{\Pi}_{\Phi})\chi(P)\Vert\wedge =\mathcal{O}(h^{N}) .

Since  \hat{\Pi}_{\Phi}-\Pi_{0}=\mathcal{O}(h) , for sufficiently small  h the spectrum of  \hat{\Pi}_{\Phi} is concentrated

near  0 and 1, so that the set  \{z \in \mathbb{C};|z- 1| = 1/2\} is in the resolvent set of  \hat{\Pi}_{\Phi} for

sufficiently small  h . We define

 \Pi:=   \frac{i}{2\pi}  |z-1|=1/2(\hat{\Pi}_{\Phi}-Z)^{-1} dz:

Then as in Sordoni [21] weIhave

 \Pi-\hat{\Pi}_{\Phi}=   \frac{i}{2\pi}(\Pi_{\Phi}^{2}^{\wedge}-\hat{\Pi}_{\Phi})  (\hat{\Pi}_{\Phi}-z)^{-1}(2\hat{\Pi}_{\Phi}-1)(1-\hat{\Pi}_{\Phi}-z)^{-1}(1-z)^
{-1} dz:

 |z-1|=1/2

Theorem 4.1 follows from this formula and Lemma 5.3.
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