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The Cauchy problem of Hartree and pure power type
nonlinear Schrodinger equations

By

SHINYA KINOSHITA*

Abstract

This paper is concerned with the Cauchy problem of Hartree (HNLS) and pure power
nonlinear Schrédinger equations (PNLS) with L?-subcritical regularity. It is known that the
global well-posedness in the scale invariant homogeneous Sobolev space with radial symmetry
or some angular regularity was established provided that the initial data have small norm. We
generalize these results by new weighted Strichartz estimates.

§1. Introduction

We consider the Cauchy problem of Hartree type nonlinear Schrodinger equations
(HNLS):

(1) iug(t, x) + Au(t,z) = F(u(t,z)), in R xR",
. u(0,2) = ¢(x), in R™.

Here u; = Ou/0t, A is the Laplacian in R™. F(u) is a nonlinear functional of Hartree

type:

F(u) = (Alz| ™« [ul*)u, A€ C\{0}, 0<vy<n,

where * denotes the convolution in R”. From Duhamel’s formula, the solution u of (1.1)

can be written as

(1.2) u(t,z) = U(t) (e + O¢)(2),
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where

Ut) = e, &, = = —z/ U(— (t)at'.

By the following scaling transformation:

+2—

up(t,x) =n" 2 un*t,nz), n>0,

we see that (HNLS) has the scaling invariance in H® with the critical index s, = 77_2

There are lots of works on the Cauchy problem of (HNLS). Almost all of them
discussed the problem for ¢ € H*, s > max(0, s.). As a fundamental result, Miao, Xu
and Zhao [16] proved the local well-posedness in H® where s > s., s > 0. Furthermore
for s > 1, by the energy conservation law, they proved the global well-posedness for
0<y<2 v<n, A>0andfor 0 <+ < min(2,n), A < 0, and in particular, for
s = 1, the global well-posedness was established for 2 < v < 4, vy <nand A > 0. In
addition, the smallness condition of [|¢|| ;:- can ensure the global existence in H®, s > s
for 2 < vy < mn, n > 3. In [10], Hayashi and Ozawa proved the global well-posedness
in L2 for 0 < v < min(2,n) (see [2] for general nonlinearities). For the critical case,
s = s. > 0, (HNLS) is locally well-posed in H*¢ for 2 < < n, and globally well-posed
and the solutions behave like linear ones in H?c for 2 < v < n, n > 3 under the smallness
condition of [[¢]| gs (see [16, 3, 2]). If initial data ¢ has finite energy, it is known that
(HNLS) is globally well-posed in H' for v =4, A >0, n. > 5 (see [17], and see also [15]
for radially symmetric initial data).

As opposed to the case s > max(0,s.), we have few results for s, < s < 0 .
Miao, Xu and Zhao [16] proved some ill-posedness results for s < max(0, s.), while Cho,
Hwang and Ozawa [4] proved the global well-posedness for radially symmetric small
data p € Hs, 8n=2 <<

7 6n—

Theorem A ([4] Theorem 5).  Let n > 2, §2=2 < v < 2. Then there exists a
positive constant € = e(n,v) such that if o € H% (R™) is radially symmetric and satisfies

[[V]*@llL2 <&, then (1.2) has a unique radial solution
u € Cy(R; H*(R™)) N L3(R; L™ (R™).
Here r satisfies = 3 — 2 — £. In addition, u scatters in Hs<(R").

They also discussed the problem of global well-posedness without assuming radial
symmetry:

1

Theorem B ([4] Theorem 2). Letn > 3, 2 — <y <2 8 =22 — 77_1

and

2+2

5n—3 1 3n  3(n—1)
max vy — on +2 2 < 89 < min 7_2n+2’ 9 + 2 .
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Then there exist a positive constant € = £(n,vy) and a1, as € [2,0], B1, B2 € R, 71,
Y2 € (0,00) such that if ¢ € H*HZ 2 (R™) satisfies |||V|* D3 +52¢|| 12 < e, then (1.2)
has a unique solution

u € Cy(R; HS HE T52(R™)) N L (R; || L2HY) N L2 (R; || L2 H]?).
In addition, u scatters in H® H?1+52(R™).

The main goal of this paper is to widen the range of v in Theorems A and B in

the case n > 3. That is, we improve the conditions gz:g < v < 2 in Theorem A
4

and 2 — 2n?3rz < 7 < 2 in Theorem B to 3 < v < 2. To describe it precisely, we

should introduce some function spaces. We denote by H® and H 5 s € R, the usual

inhomogeneous Sobolev spaces and homogeneous Sobolev spaces, respectively, and we
define the norm

HfuLm:(/ ([ 1rea) d) Cl<pg<eo

We also define the modified Sobolev space HH > and its norm by

HHS ={f € S'\P: Ifllgeggoe <0}, s,a€R,
11l g gzea = WV 1D Fll L2 -

Here S is the Schwartz space, P denotes the totality of polynomials. |V| = v/—A, and
D, = +/1— A, for the Laplace-Beltrami operator A,,. We refer to [13], Appendix, [12]
and [22] for the details of D,,. We denote H'H% and H*H%? by L2H®9 and H*H®,
respectively.
We denote the space L(R; X) by L{X and its norm by || - || s x for some Banach space
X, and also L4([0,T]; X) by L X and its norm by || - ||L‘}TX. We use the notation
Ch(R; X) = C(R; X) N L>(R; X).

Our results are the following. The first one is radially symmetric case, and the

second is general case:

Theorem 1.1.  Let n > 3, % < v < 2and § = §(n,y) be sufficiently small.
Then there exist a positive constant € = e(n,~y) and exponents qi,q2,0 € [2,00] such that
if ¢ € H%(R") is radially symmetric and satisfies [IV]*cpll2 < e, then (1.2) has a

unique radial solution
u € Cy(R; H*(R™)) N L (R; |z|*~° L2(R™)) N L% (R; |=|* L*(R™)).

Theorem 1.2. Letn > 3, % <7y <2andd=d(n,vy) be sufficiently small. Then
there exist a positive constant € = e(n,~y) and exponents q1,q2,¢,0 € [2,00| such that if
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. 3(9_ 3 (9
@€ Hoe g2 satisfies H]V|SCD£(2 7)+5g0||,;3 < g, then (1.2) has a unique solution

we CyR; B HAE ) Ape Ry a3 2 @)
N L% (R; [z LEHA GV TE=R0y

Remark 1. Actually, the solutions of Theorems 1.1 and 1.2 scatter in H**(R")
. 3 (9
and 5 Hz2® 7)+6, respectively. See [4] for the details.

Next, we consider the subcritical case, s, < s < 0. The following two theorems

show the local well-posedness in time for large initial data. The important difference

from the critical case is that they include the case n = 2 and 0 < v < % under the

restriction —7 < s.
Theorem 1.3. Letn>2,0<vy<2,

max (sc, —%) <s< 0,

and suppose that 6 = §(n, s,) is sufficiently small. Then there exist a positive time T
and exponents a € R, q1,q2,0 € [2,00] such that if ¢ € HS(R”) is radially symmetric
then (1.2) has a unique radial solution

we C([0,T); H*(R™)) N L ([0, TT; |=[*~° L*(R™)) N L% ([0, TT; |=[* L*(R™)).
Theorem 1.4. Letn>2,0<vy<2,
max (sc, —%) < s < 0,

and suppose that § = 6(n, s,7) is sufficiently small. Then there exist a positive time T
. _3g

and exponents o, € R, q1,q2,0,0 € [2,00] such that if ¢ € H*H,, ? +5(R”) then (1.2)

has a unique solution

. _3g _ _38g43
we C([0,T); HoH, 2>y 0 L9 ([0, T); ||~ L2HS 2°F2%) (L9 ([0, T); || * LEHE ).

Remark 2. If —s is sufficiently close to 0 then the necessary angular regularity for
 is sufficiently small. This seems to be natural since we do not need angular regularity
assumption if s > 0.

Next, we study the Cauchy problem of pure power type nonlinear Schrodinger
equations (PNLS):

iug + Au = G(u), in R xR"™,
u(0,z) = p(x), in R™.
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Here G(u) is a nonlinear functional of pure power type:
G(u) = NulP~tu, AeC\{0}, 1<p.
Similarly to (HNLS) case, the following scaling transformation
AT Tu(A%,Az), A >0,

shows that (PNLS) has the scaling invariance in H®>» with the scale critical index
Sep = § — p%l. There exist a lot of works on the Cauchy problem of (PNLS). See
(23, 3, 8, 20, 18, 19].

In [11], Hidano proved the global existence for radially symmetric small initial

data ¢ € H» if n > 3 and 1 + ni—i—l <p<l1l+ %. After that, Fang and Wang [9]

) 1
proved the global existence for small initial data ¢ € H%»H5 " if 3 < n < 6 and
1+ % <p<l+ %. We relax the conditions of n and p in the general case. Our
result is the following;:

Theorem 1.5. Let3<n <14, po <p <1+ 4/n where py is a unique solution
of
1+ 25 <po<1+2,
2p3 4+ 6(n — 2)p2 + (n? — 13n + 10)pg — n(n — 3) = 0,
and suppose that 6 = d(n,p) is sufficiently small. Then there exist a positive constant
e =e(n,p) and exponents a € R, q,l,0 € [2,00] such that if ¢ € H5>» H*°(R") satisfies
[[V]*<» D l|L: < e where

21(7T—3p) +6 (if n = 3),

So = ‘
2(pil)2 (~(n+Dp*+(n+7p—2)+d (ifn>4),

then the integral equation

(1.3) u(t, z) = U(t) (o + @) (2),
where .

Bup = By 0) = =i [ UC)G()(E)d,
has a unique solution O

u € Cy(R; H*>» H50) N LY(R; |z|*LEHO7).

Remark 3.  Similarly to (HNLS) case, the solution of Theorem 1.5 scatters in
Hser H S0(R™), and if n = 3,4 the necessary angular regularity for ¢ gets close to 0 as
—S¢,p approaches 0.
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The paper is organized as follows. In Section 2, we introduce some estimates as
preliminaries. In Section 3, we consider the Cauchy problem of (HNLS). To avoid
redundancy, we only establish Theorem 1.4. In Section 4, we establish Theorem 1.5.
Lastly as appendix, we consider the Cauchy problem of inhomogeneous power type
nonlinear Schrodinger equations.

§2. Preliminaries

In this section, we introduce some estimates which will be used for the proof of the
main results. Throughout the paper, we use the notation a < b to denote the estimate
a < Cb for some positive constant C'.

First, we introduce weighted Strichartz estimates for U (t).

Lemma 2.1 ([9] Theorem 1.15, [4] Lemma 2). Letn > 2, 2 < ¢ < cc.
(i) If ¢, 61 satisfy

n n n-—1 n n-—1
——<c< ——+ , 0 < ——+ —c,
q q 2 q
then we have
c n+2 _ n
(2.1) x|V "2 DR U porare S ol
(i) If ¢, o satisfy
1
——<c<——, < —c— -,
q q q

then we have
2
21V |“"a D2 U )@l oz S llellzz-

By interpolating between the inequality (2.1) and the classical Strichartz estimates,
we immediately get the following weighted Strichartz estimates.

Lemma 2.2. Letn>2,2<0c</{< o and

s-i<ici+i -2 (if n =2),
3G-D<i<ieio) (29
If d, § satisfy
n2 n? n 1 n-1 n-2
_— = = — d<—___ Y
4 q 20 4 q l 20
n 1 n—-1 n-2
0 —d+ —— - —
+4 q 14 20’

then we have

_n 2, n
(2:2) 2|V |42 2 DU ¢l ererg S ez
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Proof. Suppose that

2 (1 1

a=r(z )

1 1(1 n(1 1
5_5(5_5(5_5))'

111

It follows from the classical Strichartz estimates and Lemma 2.1 that

(2.3) U@l oo S llellez,
nt2 n
(2.4) ||V 0" "2 DR U o g g2 S ol
if
n n n—1 n—1 n
——<c<——+ , 01 < —c+ - —
q1 q1 2 2 q1

By the complex interpolation between (2.3) and (2.4), we get (2.2).
The following lemma is necessary to handle the nonlinear term.

Lemma 2.3 ([5] Lemma 4.3).  Let p,q,q1 € [1,00], 0 < <~

0% 1 1

q P

+

1 1
> _ ’
Q- p n—1 n—1

<=

Then we have
2[° (2~ % Allpzrg S M2l fll g

where LLY is the Lorentz space on the unit sphere.

The following lemma will be utilized for the time restriction ¢’
case was proved in [6], and see also [21].

Lemma 2.4 ([6] Theorem 1.1).
If

<(n-1)/1,

< t. The general

Let1l <r < q < oo, and X,Y be Banach spaces.

IU®ellsvy S llellz  and II/ U(=t)g@)dt ||z < llgllzycx),

then we have

t
|| / Ut~ )g(t)dt | avy < Nollzgcx)-
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§3. (HNLS)

In this section, we consider the Cauchy problem of (HNLS). For convenience, we
restate Theorems 1.1-1.4 with the explicit exponents.

Theorem 3.1.  Let n > 3, % < v < 2and d = §(n,y) be sufficiently small.
Then there exists a positive constant € = e(n,v) such that if ¢ € H*(R™) is radially

symmetric and satisfies |||V|*<pl||L2 < e, then (1.2) has a unique radial solution

u € Cy(R; H(R™)) N L2%1se (R; |z[*° L2(R™)) N L9235 (R; ||* L (R™))

where
1 v 0
= —2s.+9, =—=—-,
QLSC ¢ Q2,sc 4 2
1 _1,2 3 .9
G 2 n 2n7 n
Theorem 3.2. Let n > 3, % < v < 2and d = d(n,7y) be sufficiently small.

: 3 (2
Then there ezists a positive constant € = £(n,~y) such that if o € H%<HJ @=)+

(9
H|V|SCDJ§(2 7)+6g0||L926 < g, then (1.2) has a unique solution

satisfies

= Cb(R, HSCH§(2*7)+5)HL2¢]1’SC (R, ‘x’sc—éL%H§(2*’Y)+%5)

N L32.sc (R |.ZE|SCL£1HE(Q_’Y)—H%_%)&’M)

where
1 v 0
= —25.+ 0, =— - —,
qdi,s, c q2,s. 4 2
11,2 3 .46 1 1.2 3 2
‘2 n om ! T op 2 n om ' TR

Theorem 3.3. Letn>2,0<vy<2,
max (sc, —%) < s < 0,

and suppose that 6 = d(n, s,~y) is sufficiently small. Then there ezists a positive time T

such that if ¢ € H*(R") is radially symmetric then (1.2) has a unique radial solution

w € C(0,T); H* (R"))  L7a77 ([0, T); 2]*~° L*(R™)) 1 L% ([0, T; || L (R™)),

where
y o)
—=1—=—s5+46, — =L,
q1 2 @ 4 2
s—0 (ifn=2), 5—F—s+96 (if n = 2),
a = _— =
s (if n>3), f2 12 2540 (ifn>3)
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Theorem 3.4. Letn>2,0<vy<2,
Y
max SC’_Z <s< 0,

and suppose that § = 6(n, s,~) is sufficiently small. Then there exists a positive time T
.3
such that if p € H°H,, 2S+§(R”) then (1.2) has a unique solution

o _3g 4q _ _ 3443
we C(0,T); HH, ") 0 L7aez—= ([0, T]; |z|* 0 L2H, 2*72%)
NL%= ([0, T]; x> Ly2 HY ),

where
gl v 0
—=1—= -5+, )
Q1 2 2 4 2
s—06 (ifn=2), 3 —3s+ 25 (if n = 2),
o = =
s (if n > 3), —3s+ 25 % (if n > 3),

Since the proofs of Theorems 3.1, 3.2 and 3.3 are analogous to that of Theorem 3.4,
here we establish only Theorem 3.4. We should mention that if n = 2, as Theorems 3.1
and 3.2, we cannot prove the small data global existence for ¢ € H?®(R™). See Remark
4 below for the details.

Throughout the section, we assume n > 2 and use the explicit exponents

1 1 1 o )
T Ty T = 14_3__’1_1_34_571__ )
¢ @1 g 4 2 2 4 2
(1 1 1)_ (3-2+62+s-251—-2—5+9) (if n = 2),
O] \G-Frniris-iog-g-fstq) (n>3),
1 1 ~ 2 2
—-z_1_Z b
oo 2 2n n8+n’
n—1_J3+5-3 (if n = 2),
o nely 4 85— 25— 55435 (ifn>3),

with sufficiently small § = §(n, s,7). Here ¢’ and ¢’ are given by 1/¢+1/¢' = 1 and
1/¢4+1/¢" =1, respectively. Note that

1_ 11 111
Qg U by by
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Lemma 3.5.  Let max(s.,—v/4) < s < 0. Then we have
s—Ss+6
IV D= U (0@ | e 12 + Wi (U(0)R,) + Wa (U (1)P1) S TO[Wh () Wa(u)

where

_242s—1vy
S

_ 3413
Wi(u) = ||lz[* 2 Do 2" 20 .

PR Cre e B
—a1 5= 12
LIT Lz

6

S —Ss+36 .
|||3:‘|s 6Dw28 : UHL(};L?LZ,O (lfn:2>7
Fs+30-2

|||x|sD¢,,_; n u”L? L2120 (if n > 3).
T

Proof. (I) (n > 3)
First, we assume n > 3 and prove

s ~—Ss5+0
(3.1) I|V]* D 2*" Ut)®illpee 2 S TOIW1 (u)]*Wa(u).
Let us set
n— 2 n— 2 n+4 n+ 2
§1 = — s+ 0, Sg = — s+ 0.
n 2n 2n 2n

it follows from Lemma 2.2 that
[z IVIPDZU el Larero S llellrz-

By the dual estimate, we have

32 [ UEOR@E | S 1D F Wy,
where 1/00" =1 —1/00. By applying Lemma 2.4 to |[U(t)p|lrecr2 = [l¢llz2 and (3.2),

we have

IVIPDET*2U )Pl se 2 < Nl2l* D F ()

’ ol .
q Va4 0
LIT LY L,
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By Leibniz rule and Sobolev embedding on the unit sphere (see Appendix in [13]), we
have

llel" D Pl 1y 1y
T TY

SIDZ (™7 * [ul)l o1 por po M2l *ull pas 2y
Ip=r w Ip—r w

— 2 S S2
Fllal™ el o e D2l e
T

(n=1)(-1+2Z+7)
£1L5|l|x‘sDw ¢

SIDZ (™7 u*) | s e
T

u|‘L§2TL£2Lgo .

Here the exponents «, [ satisfy

We deduce from Lemma 2.3 that

— _l_ﬂ
i e S el D (Jul)| o E—
r o Lan—l—('y—nTl—%)
rlw

(3.3) 1DZ2 (o] = s [l )]l .

To estimate the right hand side of (3.3), we utilize Leibniz rule and Sobolev embedding
in the Lorentz spaces on the unit sphere:

(3-4) 1DZ ()| o S 1DGull pro-2 lull o1 2,

for s € (0,1), p, po, p1 € (1,00) and 1/p =1/po +1/p1.
(3.5) lull p2 S 1DSullzz,

n—1 __ n—1
for —t =8 - i,

the arguments in Appendix [13] and the general Marcinkiewicz interpolation theorem
(Theorem 5.3.2 in [1]), (3.4) and (3.5) are easily transferred from the Euclidean case.
Thus it suffices to prove the followings:

s > 0. The above two estimates are verified as follows. From

(3.6) VP (ua)ll e S NIVIPull pro2[lull o1 2,
for s € (0,1), p, po, p1 € (1,00) and 1/p = 1/pg + 1/p1, and
(3.7) [ull pae S VIPullrz,

for - =s—35,5>0. (3.6) is immediately verified by the proof of Leibniz rule in the

Lebesgue spaces (see Proposition 3.3 in [7]), the simple inequality

HijLg’l 5 HUHLgoﬂ HUHLglﬂ,
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and the general Marcinkiewicz interpolation theorem. Similarly, (3.7) is proved by (real)
interpolating Sobolev embedding in the Lebesgue spaces. By using (3.4) and (3.5), we

get
-5

=2 D2 (Jul?)]| et
L :L—l—(w— = _K)

S |l =’ D2l 2(n=1) Mz~ ul| 2(n=1) )
n—1—(y= 21 L 55y’ n—1—(y= 21— L 455y’

LIL, ! L2L, 1
5 (saty—2t—))2

Szl Dy” |7

Then we have

_ S —2s+36
1D (||~ * Jul?) b S Ml Dy> T

“L?TLT L2
S —2s+38
STl 000 2 0u)?
L2—q1(2+2s—7) Li

I

This completes (3.1) if n > 3.

(I) (n = 2)

Next, we assume n = 2 and establish (3.1). The strategy is almost the same as in the
case of n > 3 above. We set

S3 —

1) 3 +(5
— Sg=—=5+ —.
9’ 4 2° "9

We deduce from Lemma 2.2 that
—s5—5
Nz IVIEDZ U@ el aens S llellzz-
By the similar argument as above, we get

— 3546 5
191023 U@ 12 S el DI F @y 0o
T
—l++3

S Ml D (= [l s poa g 7 D ull paz g2 g0+
T w T

It follows from Lemma 2.3 that

—y+ £ 428
b e S Ml DE ()| .

170 ~0 —_——a—,1"
"L T
LLL,

(3.8) el Dg (" = [ul*)],

By Leibniz rule and Sobolev embedding in the Lorentz spaces on the unit sphere, we

have (ss49—1— 12
_ _ saty—5— 7

>~ Dt (Jul?) | oty S el *D., |2

i, | ° &
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Then we have

s - —5y—55+36
22 D2 (= ) gy g1 S 2l DG ™ 2u|ri§?%
S5 —2s+36
STON|2)5=° Do 2 u)?
L27q1(2+

R
This completes (3.1).

Remark 4.

It should be noted that to get the estimate (3.8) above we need the

condition 1/¢; > v—1. This causes the exception of n = 2 in the scaling critical (s = s.)
results, that is Theorems 3.1 and 3.2.

(ITI) Lastly, we prove

(3.9) Wi (U (t)®) + Wa (U ) ®:) S T (W1 (w)]*Wa(u),

which completes the lemma. Here we only consider the case for n > 3. The same
method can be utilized for n = 2. Since

n 2+ 2s—7 1 2425 —7
T e A < —— gy 2T

%0 + 1 n<s < 20 + 1 )
we deduce from Lemma 2.1 (ii) that

(3.10) 2>~ V| > DU (t)]|

S E— S ||<P||L§
L, —q1(2+2s—7) L2

Applying Lemma 2.4 to (3.2) and (3.10), we have

S
"=V~ DU (£) 4|
L

< S —S71)—Ss1
%Lz ~ H‘l" ’V‘ Dw F(U)HL(}/TLgLZé’
I T
which implies
s—8y—55+36 < D22
|lz|°~° Do U(t)@llﬁ_qlég%_w < ||z Dg; F(u)||L§;L£/L56.
T xT

As above, this estimate implies
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we deduce from Lemma 2.2 that

1)

s
(3.11) el (V17 DE A WO s o S e
Applying Lemma 2.4 to (3.2) and (3.11), we have

sp—3st30-3 < 5 )s2
||lz|° Do, Uil a2 2 pg0 S lllz" D> F(w)l]

/ ol
q ’
LY LY L

which gives
Wo(U(H)®:) < T [Wh(w)* Wa(u).

This completes (3.10). O

Proof of Theorem 3.4. We prove the existence by Banach’s fixed-point theorem.

Fix a positive constant p and a positive time 7', to be chosen later, and we define a
complete metric space (X, r,dx) by

X, 7 ={u e C(0,T); H*H; > """ (R™) s+ Wa(u) + Wau) < pl,

lull
L3 HeH,
dx (u,v) = [lu— UHL?;HsH;%s-&-é + Wi(u —v) + Wa(u — v),

and the mapping
NX(U) = U(t)(QO + (Dt) on Xp,T~

Our strategy is to prove that Ny is a contraction mapping on X, r for sufficiently small
T.
It follows from [[U(t)p| =r2 = [l¢llz2, (3.10) and (3.11) (if n =2, (3.10) and
)
|20V |=* D2 [U(t)y] | a2 200 S llpllL2) that there exists a positive constant Oy such
t r w x
that

(3.12) HU(t)SOHL?;HSH;gSH + Wi(U)g) + Wa(U(t)e) < ClHSDHHsH;%s+6-

For u € X, 7, we deduce from Lemma 3.5 that there exists a positive constant C such
that

1U ()@ | 3ors T WU )P) + Wa(U (1) @) < CoT[Wi (w) Wa(u)

Lge H*H,, *

(3.13) < CoT?p3.
For u, v € X, 7, we have

dx (Nx (u), Nx (v) =[[U(#)(P:(u) — P:(v))]] §ots

L HeH,, 2
T

+Wi(U () (Pe(u) — De(v))) + Wa(U(t)(Pe(u) — Pe(v))).
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By the arguments similar to the proof of Lemma 3.5, we have

dx (Nx (u), Nx (v)) S |||2[*DZ (F(u) = F(v))]]

Ly, 1 120
It follows from the following equality

F(u) = F(v) =A(|2] 7 [ul*)u = M|z * [v]*)v
=277 % (w(@ = ) + (u = 0)0))u + M) ™7 * [vf*) (u — ),

and the same estimates as in Lemma 3.5 that

dx (Nx(u), Nx(v))
ST (Wi (u)+Wa(u) + Wi(v) + Wa(v)? (Wi (u — v) + Wa(u — v)).

Then there exists a positive constant C'3 such that
(3.14) dx (Nx (u), Nx (v)) < CsT? p*dx (u,v).

Now we define C' = max(C1, Cy,C3) and choose p, T' such that

p 1
Cllell ,, ,-ge+s < 5 CT?p? < 5
Then, from (3.12)-(3.14), Nx is a contraction mapping on X, 7. 0

§4. (PNLS)

In this section, we establish Theorem 1.5. We then consider the problem in the

scaling critical homogeneous Sobolev space H®» (R™). Let us recall that Sep = 5 — p%l.

For convenience, we restate Theorem 1.5 with the explicit exponents.

Theorem 4.1. Let 3<n <14, pg < p < 14 4/n where py is a unique solution
of
14+ 45 <po<1+1%,
2p3 + 6(n — 2)p2 + (n? — 13n 4+ 10)pg — n(n — 3) =0,

and suppose that § = d(n,p) is sufficiently small. Then there exists a positive constant
e = £(n, p) such that if ¢ € H» H* (R™) satisfies [IV[*»DZ0l|2 < & where

=1(7T—3p) +6 (if n = 3),

So — '
sir (O VP + (i Tp—2) +6 (ifn > 4),
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then (1.3) has a unique solution

u € Cy(R; Hor H20) N LPY (R; |z|“LPY HZ07)

where
. I A 420D (ifn=3),1_ P70 (if n=3),
n n—4)(p—1 . 2(p—1 :
Fo o2 OO a1 \1-5+ 250 ra> )
R e e R UL
S EIEE (if n = 3),
o\ mg (- 2+ n+10)+ 2206 (ifn > 4).

Similarly to (HNLS) case, by using weighted Strichartz estimates, we establish the
following crucial estimate.

Lemma 4.2. Let 3 <n <14, ps < p < 1+4/n where ps satisfies the following:

3
(ifn=3) ps=24+(ps—1) ﬁ&
(if n > 4)

1+ 4 < <1+4
n+1 Ds ’I’L,

2p3 +6(n — 2)p3 + (n® —13n 4 10)ps — n(n — 3)

2(p —1)?
= %(—3%}?5 + 8ps + 8n — 8)4.

Then we have

[V DU )P pll Lo 2 + [ DU () Pyl

’ /
pa’ rpl
Ly" L™ Lg

S [

where the exponents q, £, o, sg, o are same as in Theorem 4.1.

Remark 5. Since § is sufficiently small, it is easy to see that the above ps exists
and is unique.

Proof. (I) (n=3)

First, we assume n = 3 and prove

(4.1) IIVPe» DU @) @eplleerz S Il D ull?

/ / .
pq’ 7 pl
Ly" L™ LS
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Let us set that

4 2
=-3+——=(p—1)6
p—1 1 8—p
) =— (7-3 —4.
S1 7 9 52 p—].( p)+ 7
Note that s1 + so = sg. Since 2 </ < g < oo and
3 1 2
<l =2,
q qg !

we deduce from Lemma 2.2 that

[V DU @)@ pgrere S llellez-

By the dual estimate, we have

(4.2) H/ U(=t)G(u)(")dt ||z < (|||~ V|~ D G(u)|

Ly L'z
By applying Lemma 2.4 to ||U(t)p||Ler2 = [[¢]/z2 and (4.2), we have

19172 DU @)1l 1enz S = D2l )y o

Since 0 < sy < min([p|(= 2), p%l(% — 1)), where [p] denotes the integral part of p, it

follows from Moser type estimates and Sobolev embedding on the unit sphere that
1D (JulP~ )|z, < 1D ullf -
S IIDZ ullg, -

Here we have used the exponent

1 1
— = —(1 —1 .
7 Qp( +(p—1)s2)

This gives
_ <o
IV DRU@) s pllLger2 S lzl™ 7 DZull]

Lr? 12t e’
which completes the proof of (4.1) if n = 3.

(II) (n > 4)

Next we assume n > 4 and obtain (4.1). Similarly to the n = 3 case, we set

2 2 p—1 5 5n

n I (=4p-1)

=——p+2 - J

C1 2p—|— +p_1 5 )
p n 3 4 2 4 3(p—1) 8(p—1)

== ——4+-—— — 5 — J

=L T3ty n+p—1 n(p—l)+ 5 5n.
1 2 5) ) 2 8—3 8(p—1

822—(—%—2p+ﬁp—ﬁ+—+ )+ Ps+ (b )5.
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Note that s1 + so = sg. Since 2 </ < ¢ < oo and

we deduce from Lemma 2.2 that

[z [V[*r DU @)l grerz S llellcz-

By the dual estimate, we have

@3) 1| UOG@IER | S el DE Gy

which gives

V1522 DU @)1l 1enz S = Dl )y

Since 0 < sp < min([p](= 1), ZT_}(g — 1)), it follows from Moser type estimates and

Sobolev embedding on the unit sphere that
IDZ ([P~ )z S 1Dl

which completes (4.1).
(I11)
Lastly, we establish

(4.4) [[z[*DZU () Pyl S el D ull?

’ /
pq’ rpL / / .
Ly L Ly L' e Lo

To avoid redundancy, here we assume n > 4. We can prove (4.4) in case of n = 3 by
the same way as below. Since 2 < o < pl’ < oo,

n (1 1 1 1 1 1
pq’ 2 pl' o

n? n n? cq < 1 n—1 n-—2
4  pq 20 4  pq pl! 20
we deduce from Lemma 2.2 that
(45) el 1915 U@l ot e S llplica:

By applying Lemma 2.4 to (4.3) and (4.5), we have

l[z[* DU (t) @+, p < M= D (Jul"~ )

’ /7
’ prq pl o~
LP? LY Lo

Iy peree-

By the same argument as above, this completes (4.4). O
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Proof of Theorem 4.1. Obviously, pg in Theorem 4.1 is less than ps in Lemma 4.2,

and if 6 = d(n,p) is sufficiently small then ps is sufficiently close to pg. Thus it suffices
to prove Theorem 4.1 for any p such that ps < p < 1+ 4/n. Similarly to the (HNLS)
case, we prove Theorem 4.1 by the contraction mapping theorem. Let the exponents
S0, S1, @, Cg, ¢1 be the same as in Lemma 4.2. Fix a positive constant &, to be chosen
later, and we define a complete metric space (X.,dx) by

Xe ={u€ CRH* " HZ): |ull oo jrec.n grzo + |21 D ull g e, < €3,

Lg,
dX(uaU) = ”u - UHLfOHScm + |||m|a(u - U)Hqu/L‘r’ng’

and the mapping
Nx(u) =U(t) (e + Dy p) on X..

We show that Nx is a contraction mapping on X, for sufficiently small . It follows
from (4.5) and Lemma 4.2 that there exists a positive constant C' such that

IUO@l Lo preer mzo + 12 DEU@ RN ppar prer o < Cllol e mrzos
1T Pepll poe fracw o + [|2[*DIU @) e,

<

’qu/Lféng
Cllal* Dl
Next, we prove

dx (Nx (u), Nx (v))
(4.6) < (ll=*Dul,, + |||z *Doll?, )dx (u,v)

/ ’ ’ /
P L Lo P’ Y e
for any u, v € X..
Similarly to the proof of Lemma 4.2, we have

dx (Nx (u), Nx(v))
S H|V|s”(/0 Ut —t")(lu@)P ut’) — [o@)[P~ o(t)dt)|| oo L2

+ IIIOCI"(/0 Ut = ) ([P~ ut) = )P~ o@)d) o o

_ -1 —1
S Mz PDZ (julP = u = [P )| or e -

Note that pa satisfies
—Cp (lf n = 3),
pa =
—C1 (lf n Z 4)

By Sobolev embedding on the unit sphere, we have

P Dg= (lulP ™ = P~ o)l o por o S 2P (ul”™ + 0P (= )] o por 0
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where Uio = % + 5. By Holder’s inequality with
1 /1 N S1 1 n 1
o) S \2 n-1 o o’
we have

P (Jul = + [P~ (w = v) | g0
= [ll2| =D (ulP ™ + o)l (w = v)|l Lo

S Ml =D (ul? = + o) g 2] (u = o) g

-1 -1
S (IIISI?I"‘UII’LZI@_U + |||96|°‘v||i51<p_1))||leo‘(u —)|zg,
where
1 1 S1 1
- = + -
o1 2 n—-1 o
Since
n—1 n—1
- —  — 8y — —
o1(p—1) 0 o’

Sobolev embedding on the unit sphere gives

ez ull por -1 S [[|2|* DZullg,

~Y

which completes (4.6).
From (4.6), there exists a positive constant C’ such that

dx (Nx(u),Nx(v)) < C'eP " rdx (u,v).

Now we choose € and an initial data ¢ such that

1
max(C, C")eP~! < 5 Cllel groewmzo <

Y

| ™

then the functional A’y becomes a contraction mapping on X.. U

§5. Appendix

We consider the Cauchy problem of nonlinear Schrodinger equations with inhomo-

geneous nonlinearities:

iug(t, ) + Au(t, r) = w(z)|u(t, z)|P " u(t,z), in R xR"

(5.1)
u(0,2) = ¢(x), in R™.
Here we assume that |w(z)| < |z|~%. Note that if |w(x)| = |z|~%, the scale critical index
for (5.1) is
n 2-a
Sc,a = T .

2 p-1
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We prove that there exists a solution of (5.1) for s., < 0 and ¢ € H%«(R™). In [4],
the small data global well-posedness was established for each a and p if an initial data
@ is radially symmetric or under some angular regularity assumption. The following
theorem shows that we can get the small data global well-posedness without angular
conditions if the exponent a is positive.

Theorem 5.1. Letn>3,0<a<2 and

po<p<1l+ 12 If0<a<1+ 2321y
144220 o p o4 4220 (Ip 14 221 < < 2),

where pg € (1,1 + 4_7%) satisfies
n(n — 2)po? — 2(n — 4 — 2an + 4a)py — n* — 4n + 4a = 0.

Then there exists a positive constant € = e(n,p,a) such that if p € Hsee satisfies
[[V[*¢a¢l[r2 < e, then the integral equation

(5.2) u(t,x) = U(t) (¢ + Ptq0)(2),
where .
Dio = Dpalu) = —i / U(~) (w(@)[u(t) " u(t)dt,

has a unique solution

2—a n+4

u e C(R; H o) N LY (R; |z| "5 (Ho— 3=t =55 oy,

Here q satisfies the condition in Lemma 5.3 below.

Remark 6.

(i) It should be noted that if a is sufficiently small then py is sufficiently close to 14 4=2¢

==
(i) If we try to estimate the nonlinearity w(x)|u[P~1u with a < 0, loss of regularity on
the sphere arises and we need some angular regularity condition for ¢ to get the well-
posedness. Precisely, the estimate (5.3) in Corollary 5.2 below for positive values of d

does not hold. Therefore, we assume a > 0 in Theorem 5.1.

Since we do not have to mind an angular condition, the proof of Theorem 5.1 is
simple relatively. First we restate Lemma 2.2 with ¢ = ¢ = ¢ for convenience.

Corollary 5.2. Letn > 2 and

2 2
L<1<1, n__ﬂ<d<ﬁ_n+2_
2n+2) —q ~ 2 4 2q 4 2q
Then we have
_n_nt2
(5.3) |V~ 2 5 U]l pors S llellze-
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The following lemma can be established by simple calculation. We omit the details.

Lemma 5.3. Letn>3,0<a<2 and

(5.4) po<p<1l+i2a If0<a<1+ 231,
I+ 22 <p<l+32 (1421 <a<2).

Then there exists q such that
max L,l—z—) glgmin 1,1—Lp ,
2(n+2) 2 q 2 2(n+2)
1
q

2 n? +2—a L 2 n +n—2+ 2—a
— | —n+— — | = a— :
n2 —4\ 4 p—1 nt2\4P" 9 p—1

Lemma 5.4. Letn >3, 0 < a < 2. Suppose that p and q satisfy the condition

(5.4) and the conditions in Lemma 5.3, respectively. Then we have

_atc
VP U@) @t allLgerz + 2l UB)Prall ppor o S| IIIzpq Lpa’
where ¢ =n — 2= i”—"—“.
p— q
Proof. (I) First, we prove
(5.5) 191U @@z S Nl 5wl
If ﬁ (%2 —n+ f}%cl‘) < é, the following inequality
n?  n?+4+2n ce< n n+2
_— C [E——
4 2q 4 2q
holds. Then we deduce from Corollary 5.2 that
lz[“[V]*eUt)ellrare S lellrz-
By the dual estimate, we have
(5.6) II/ @) [u)P~ u@))dt || L2 < M|~V (w(@)ulP " u)] o o

which means

IV [ U (8)@sall ooz < Hrxr*“*c)lurp‘lu!uggq

P

qu qu
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This completes the proof of (5.5).
(IT) Next, we prove

_ate _ate
™7 U Prall par oo S Nlwl™ 7 ]

Lra'ppd’”

From the inequalities 1 — § < % <1 Q(n”+2) p and

1 < 2 (n n n—2 n 2 — a)

J— [ — a/ —

g “nt2alT T p—17
we have 2(7{3—2) < ﬁ < % and

n®>  n?+2n a+c n n+2

4 2pq’ p 4 2pg
Then we deduce from Corollary 5.2 that

_ate .

(5.7) [zl V722 U@l oo S llepllzz-

Applying Lemma 2.4 to (5.6) and (5.7), we have

_ate e _
[z~ U) 1. < e~ w(@) ulP~ u]

_ate
S lllel= "l

’ ’ / ’
’ rq’ 1 pq q' rq
LP LY LY LY

p
’ /.
qu qu

This completes the proof. Ol

From Lemmas 5.3 and 5.4, Theorem 5.1 is established with the contraction mapping
argument. The way of the proof is the same as in that of Theorems 3.4 and 4.1. We
leave the details to the readers.
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