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Two-weight Morrey norm inequality and the
sequential testing

By

HiTtosHI TANAKA®

Abstract

Two-weight Morrey norm inequalities for the Hardy-Littlewood maximal operators are
characterized in terms of the sequential testing.

§1. Introduction

The purpose of this paper is to develop a theory of weights for the Hardy-Littlewood
maximal operator on Morrey spaces. Our key tool is the sequential testing, which was
introduced by Hénninen, Hytonen and Li in [3].

Morrey spaces, which were introduced by C. Morrey in order to study regularity
questions which appear in the Calculus of Variations, describe local regularity more
precisely than Lebesgue spaces and widely are used not only in harmonic analysis but
also in partial differential equations (cf. [1]).

We shall consider all cubes in R™ which have their sides parallel to the coordinate
axes. We denote by Q the family of all such cubes. Let 0 < p < oo and 0 < A < n be
two real parameters. For f € LY (R"), define
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where |Q| denotes the volume of the cube Q. The Morrey space LP**(R") is defined
to be the subset of all L? locally integrable functions f on R™ for which || f||1r.x®n)
is finite. It is easy see that || - || r.r(rn) is the norm if p > 1 and is the quasi norm if
€ (0,1). The completeness of Morrey spaces follows easily by that of Lebesgue spaces.
Let f be a locally integrable function on R™. The Hardy-Littlewood maximal
operator M is defined by

= Sup][lf ) dy 1o (),

QeQ

where fQ x) dzr stands for the usual integral average of f over the cube ) and 1g
denotes the characterlstlc function of the cube Q.
By weights we will always mean non-negative, locally integrable functions which
are positive on a set of positive measure. Given a measurable set E and a weight w,
E):= [Lw(z)dx
Let 0 < p < 0o and w be a weight. We define the weighted Lebesgue space LP(w)
to be a Banach space equipped with the norm (or quasi norm)

flzvcor = ([ @Put d:c)l/p.

Let 0 < p <00, 0 < A< nand w be a weight. We define the weighted Morrey
space LP*(w) to be a Banach space equipped with the norm (or quasi norm)

1 ) 1/p
Hf“LP»*(w) = Sg% (W /Q ‘f(af)‘ w(w) dx) .

For the Hardy-Littlewood maximal operator M and p > 1, B. Muckenhoupt [9]
showed that the weighted inequality

M £l Loy < ClfllLe(w)

holds if and only if

s, = sup 1) (]é w(a) /D dx) <o,

QeQ |Q|

For p > 1 one says that a weight w on R™ belongs to the Muckenhoupt class A, whenever
[w]a, < oo.

A description of all the admissible weights similar to the Muckenhoupt class A, is
an open problem for the weighted Morrey space LP*(w) (see [11]). In [2], we gave the
following partial answer to the problem.
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Proposition 1.1 (]2, Theorem 2.1]). Let1 < p < 00, 0 < A < n and w be a
weight. Then, for every cube Q € Q, the weighted inequality

_ - l/p 1/p
(i [ psteratras) ™ < s (i [, 15 wtoras)

QD@
holds if and only if

HA/n p—1
wp U@ QT ( ][ wm_l/(p_ndgc) < .
0.0'co QM Q| '

QCQ’

This proposition says that the weighted inequality

(1.1) I M fll oy < ClfllLea )

holds if
QP r
(1.2) sup [|wlg|piamn)—ra7— (][ w(z)~Y P dm) < 0.
QeQ |Q| Q

One sees that the power weight w = | - |* belongs to the Muckenhoupt class A4, if and
only if —n < a < (p — 1)n. Meanwhile, the power weight w = | - |* satisfies (1.2) if and
onlyif \—n<a<(p—1)n.

Let H be the Hilbert transform defined by

1

1o oo)(lx —
Hf(z):= lim _/R (e.00) (1T = Y])

T —y

f(y) dy.

e—+0 71

For 1 < p<ooand 0 < A <1, N. Samko [10] showed that the weighted inequality

IH fllzoawy < CllfllLear@), w=1]-]%

holds if and only if A\—1 < a < A+ (p—1). Thus, our sufficient condition (1.2) seems to
be quite strong. In [14], the author introduced another sufficient condition and another
necessary condition for which (1.1) to hold. The conditions justify the power weight
w =[] fulfills (1.1) if and only if A\ —n < a < A+ (p— 1)n.

Let w and o be locally finite Borel measures. Let K: Q — (0, 00) be an appropriate
map. The maximal operator M* is defined by

M*f(z) = supK /|f\dalQ

For 1 < p < ¢ < oo, Eric T. Sawyer [12] essentially showed that the weighted
inequality

(1.3) M fll Loy < CNfllze o)
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holds if and only if

1/
(/ (M*IQ)W) "< Co(QY7 < .
Q

holds for every cube Q) € Q. This type checking condition is called “the Sawyer testing
condition” which appears quite basically many branchs of harmonic analysis.

We notice that, if w = udz, o = v=/PVdz, K(Q) =|Q|™" and g = |flo~1/ (=),
then (1.3) implies two-weight inequality

Mgl < Cllgllzrw)-

In [3], introducing a new sequential testing characterization, Hénninen, Hytonen
and Li extend Sawyer’s [12, Theorem A] in the case ¢ > p to the case 1 < ¢ < p.

In this paper we extend further Sawyer’s two-weight theory to Morrey spaces and
give a characterization of two-weight Morrey norm inequalities for the (general) Hardy-
Littlewood maximal operators in terms of the sequential testing characterization.

The remainder of this paper is organized as follows: Main results can be found in
Section 3 (Theorems 3.1 and 3.2). In Section 2 we introduce a description of the Kéthe
dual of Morrey spaces (Proposition 2.2) and discuss the basic facts of dyadic systems.
Finally, in Section 4 we apply the description of the Kéthe dual of Morrey spaces to our
sequential testing characterization (Theorem 4.2).

Throughout this paper all the notations are standard or will be defined as needed.
The letter C will be used for constants that may change from one occurrence to another.

§ 2. Preliminaries
In what follows we introduce some basic facts.

§2.1. Kothe duals of Morrey spaces

In this section we shall verify the dual equations of Morrey spaces (see [8] for
details).

Let (92,%, 1) be a complete o-finite measure space and let L°(x) denote the space
of all equivalence classes of real-valued measurable functions on 2 with the topology
of convergence in measure on p-finite sets. A quasi-Banach (function) lattice X on
(92,%, 1) is a subspace of L°(u), which is complete with respect to a quasi-norm || - || x
and which has the property: whenever f € L°(u), g € X and |f| < |g| p-ae., f € X
and || fllx < |lgllx. Moreover, we will assume that there exists u € X with u > 0 p-a.e.

A quasi-Banach lattice X is said to have the Fatou property whenever 0 < f,, T f
p-a.e., fr, € X, and sup,,> || fnllx < oo imply that f € X and || fnl|x — [[f|x-



TWO-WEIGHT MORREY NORM INEQUALITY AND THE SEQUENTIAL TESTING 161

The Kéthe dual space X’ of a quasi-Banach lattice X on (2,3, ) is defined as the
space of all f € L°(u) such that [, |fg|du < oo for every g € X. It is a Banach lattice
on (,%, 1) when equipped with the norm

Ifllx = sup /Q ol du.

lgllx <1

Notice that a Banach lattice X has the Fatou property if and only if X = X" :=
(X")" with equality of norms (see, e.g., [6, p. 30]).

Let LS)F(M) be a cone of all non-negative py-measurable functions on €2. Fix a count-
able subset B = {b;}, j € N, of L (u). For 1 < p < oo, we denote by LP5(y) the
Morrey type space of all f € L°(u) supported in Uj supp b; and equipped with the

1/p
T mp— ( [ 15 du) |
JeN @)

To describe the Kéthe dual space of the Morrey type space LPB (1), we need the following

norm given by

definition.

Definition 2.1.  We define the class B C LY () associated with B = {b;} by the
minimal set (with respect to inclusion) that satisfies the following conditions:

(i) {bj} € B LY (n);

(ii) If {w;} C B, then, for any non-negative sequence {c;} with ||{c;}|la@y < 1, one
has Y- cjw; € B;

(iii) For all w € B,

swp [ [fuldu<
”f”Ll,B(H)Sl Q

(iv) (the Komlés property) If {w;} C B, then there exists a subsequence {v;} of {w;}
such that
1O -
nh_)rréo - Zvj =w p-a.e. and w € B.
j=1
Remark.  The Komlds theorem (see [7, Theorem lal) states: If (2,%,u) is a
measure space, then for every bounded sequence {f,} in L*(u) there are f € L*(u) and
a subsequence {gn} of {fn} such that the sequence of arithmetic means { = 3"/, gi
converges to f p-a.e. Moreover, the conclusion remains true for every subsequence of
{gn}-
Since for every Banach lattice X on (€,%, 1) the inclusion X — X" has a norm
less than or equal to one, it follows that [, |z|wdu < ||z x, for any 2 € X and w € X’
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with ||w]|xs < 1. So, X < L'(v) with dv = wdu. Here, we a priori assume that there
exists w > 0 p-a.e. such that w € X’ and ||w|x < 1, which is a consequence of the

fact that there exists u > 0 p-a.e. such that u € X.
This simple observation allows us to apply the Komlés theorem for any bounded

sequence in X.

To discuss the Kéthe duality for Morrey type spaces, we define HPB(u) by the
space of all f € LY(u) such that

1/p
e = int ([ 10t au)  <oe, for 1<p<
w Q

and
I f |l e 8y = ifelewa_lHLoo(u) < oo, for p=oo0.

Given 1 < p < o0, p’ such that 1/p + 1/p’ = 1 will denote the conjugate exponent
number of p. The following proposition gives a description of the Kéthe dual of Morrey

type spaces.

Proposition 2.2. Let1l < p < oc.

(I) Suppose that B fulfills the condition (ii). Then HP"B(u) is a Banach space;
(IT) Suppose that B fulfills the condition (iv). Then HP®(u) has the Fatou property;

(IIT) Suppose that B fulfills the conditions (i) and (iii). Then the following Kdthe duality
formulas hold with equality of norms:

HPB (1) = LPP ();

(IV) Suppose that B fulfills the conditions (i)-(iv). Then the following Kéthe duality

formulas hold with equality of norms:

HPB () = L5 ().

§2.2. Dyadic systems
Let D be a countable collection of measurable subsets of R™ with the following
property:

(2.1) VP,ReD; PNRe{P,R,0}.
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We will refer to the elements of D as the dyadic cubes. The main example to keep in
mind is the standard dyadic cubes given by

DO = {275([0,1)" +m); k€ Z,m € Z"}.

The dyadic maximal operator M7 adapted to a dyadic grid D and a locally finite Borel
measure o is defined by

M3 f(z) = sup][\f]dalQ

QeD

Lemma 2.3 ([4]). Letl <p < oco. Let o be a locally finite Borel measure. Then
IMB fll e (o) < PN fllLe(o)-
For a € {0, 5}", we define the 2" dyadic systems by
DY = {270, )"+ m +a); k€ Z,mec Z"}.
It is not difficult to verify that each of these satisfies the dyadic property (2.1).
Proposition 2.4 ([4]). IfQ € Q, then there ezist o € {0,5}" and Q' € D

such that @ C Q" and £(Q") < 64(Q). Here, £(Q) denotes the sides length of the cube
Q.

Let

1
MO f(z) = sup ][ fldylo(z), e {0, 2,
Qe'Da 3

be the dyadic maximal function related to D*. The following corollary links our anal-

ysis (real world) to dyadic analysis (dyadic world) for the Hardy-Littlewood maximal
operator.

Corollary 2.5 ([4]).  We have the pointwise estimate for the Hardy-Littlewood
mazimal operator:

max M*f(z) < Mf(x) <6 max M*f(x).
aef0,}r wef0.1}n

Fix a collection D of dyadic cubes. For a family 7 C D and F € F, we denote

chy(F):={maximal F' C F; F' € F}, Ef(F):=F\ |J F.
F’ECh]:(F)
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The sets Ex(F') are pairwise disjoint.
Let o be a locally finite Borel measure. We say that F is o-sparse if

or equivalently

N < oF)
Z o(F") < 5

F'echr(F)

For Q € D, we denote

77 (Q) :=min{F D Q; F € F}.

§3. Two-weight estimates for linearized maximal operators

In this section we shall investigate two-weight estimates of maximal operators in
(general) Morrey spaces.

§3.1. Linear case

Let o be a locally finite Borel measure and fix a collection D of dyadic cubes. Let
F C D be a o-sparse family. Let 0 < p < oo and A\: D — (0,00) be a map. For

o-measurable function f, define

1 1/p
[ fllze (o) == Slé]% (TQ) /Q | fIP d0> )

The (generalized) Morrey space LP* (o) is defined to be the subset of all LP locally
o-integrable functions f on R™ for which [|f|[1».x(,) is finite. We always assume that
there exists u € LP* (o) with u > 0 o-a.e. for the restriction of a map \.

For the sequence {ap}per, define

1/p

1
H{aF}HZPv\(}') =Sup | ooy Z lap|?
sep | AS) f=
FCS

The (sequence) Morrey space (P*(F) is defined to be the subset of all sequences
{aF}FGf for which H{OéF}ng,A(]:) is finite.

In what follows we assume that all functions are non-negative.

Let K: D — (0,00) be another map. The maximal operator M* is defined by

M* f(x) := sup K(Q)/Qfda 1g(z).

QeD
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Let £ :={E(Q) C Q; Q € D} be a collection of pairwise disjoint sets. The linearized
maximal operator Mg and its localized version Mg r, R € D, are defined by

Mef(z) =) K(Q /fdalE(Q)

QeD

and

Mg Rf Z K / de'lE(Q)

QeD
QCR

We notice that, if the collection D is finite, for each function f there exists a collection
& of pairwise disjoint sets E(Q) C @ such that M*f(x) = Mg f(x). For example, we
can choose

EQ) = {er, M*f /fda}
VU {we@ M@ = KQ) [ faa.

Q'eD
Q'2Q
This implies
| M* ||Lw(a)—>Lq(w) = Sl;p ||M5||LP7>‘(U)—>L‘1(UJ)7

where the supremum is taken over all collections & of pairwise disjoint sets E(Q) C Q.

Let F C D be a o-sparse family. The (small) linearized maximal operator Mg r.g,
R € F, is defined by

Me 7.rf(z) == Z K(Q)/Qde 1) ().

QeD
Tr(Q)=R

The following is our first theorem.

Theorem 3.1. Let w and o be the locally finite Borel measures. Let 0 < q < 00,
1<p<ooand \: D — (0,00) be a map. Consider the following two statements:

(a) There exists a constant ¢; > 0 such that
[ Me fllLaw) < el fllzer(o)
holds for every function f € LP*(a);

(b) There exists a constant co > 0 such that

1/q
<Z (aFnMg,f;FanLq(w))‘l) e
1 <
Fer o(E)/e




166 H. TANAKA

holds for any o-sparse family F C D, where the nonnegative sequence {ap}per
satisfies

(3.1) H{artlerrr) < 1.
Then, for the least possible constants ¢1 and ca,
(I) (b) implies (a) with ¢c; < Cea;

(IT) (a) implies (b) with co < Ccy, provided that

A(S)o($) -
(3.2) I;E()\(F)—la(F)) <C foral SeD.
FJS

Proof. First, we prove (II). It follows that, by letting 8 = apo(F)~1/?,

S Mo rr el = 3 S (K(@Q0(Q)8r) w(EQ)
FeF FEF Q€D
Tr(Q)=F
= > (K(@Q0(Q)Brr@) " w(EQ)
QeD
25 <K(Q) / (Z 5F1F> da) (E(Q))
QED Q@ \Fer
:/ (Mg (Z 5F1F>> dw,
" FeF

where we have used the uniqueness of the parent. By the statement (a),

q/p
q q
> IMe 7p[Br1E] o) < € <§1€111)) NG [5 (Z BFlF) d0> -

FeF FeF

For S € D and the function g with supp (g) C S and ||g||;» () <1,

Zﬁp/mgdo—: > br [ gdo+ Y pr [ gdo

FEF FeF FEF S
FCS FOS

=: (i1) + (i2).



TWO-WEIGHT MORREY NORM INEQUALITY AND THE SEQUENTIAL TESTING
For (i),

=3 8r f gdoa(F) <2 3 b f gdoo(Es(P)

FCS FCS
1/p 1/p'
(/zwd) ([ o)
S Fcs S
1/p
<2p <Z a’}) :
FCS

where we have used Lemma 2.3.
For (iy), thanks to the condition (3.2),

(ia) < (%)W > Br

Thus, by duality and (3.1) we obtain

10| do<c,
s (S o) oo

FeF

which proves (II).
Next, we prove (I). Fix (large) Qo € D. We shall estimate

(#0) := [[Me,o fllLa(w)-

It follows that

167

iy = 3 (r@ / fdcf)qW(E(Q)): ) (]{2 fda>q(K(Q)o(Q))qw(E(Q))-

QCQo QCQo

We now employ the argument of the principal cubes (cf. [5, 13]).
We define the collection of principal cubes

f:@%
k=0
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where Fy = {Qo},

-Fk:—i—l: U Ch]—"(F)
FeFy

and chz(F') is defined by the set of all maximal dyadic cubes @ C F' such that

]éfd0>2]ifda.

> a(F’)§(2][Ffda)1 > /lfd < 2

F'echr(F) F’echz(F)

Observe that

and, hence,

o(Er(F))=c|F\ |J F'|=>
F’Ech;(F)

where the sets Ex(F) are pairwise disjoint. Thus, F is o-sparse. For Q € D, we further
define the stopping parents

Tr(Q) =min{F D Q; F € F}.

We notice that, when 7x(Q) = F

]éfda§2]ifda.

This fact and the uniqueness of the parent yield

DS (]{2 o) (K(Qu(Q)rw(E(Q)

FeF Q€D
Tr(Q)=F

<oy (frr) X ®@o@ruEQ)

FeF QeD
TF(Q)=F

q
=0 S (f fdo) 10tesetel,

FeF

Me 7.p1p| L) \?
— 2q 1/1)][ do H
2 (e fL oo T

Thus, we have

1/q
Z a ||M€,J-‘;F1F||LCI(W) ? ||f|| N
F O'(F)l/p IJp7 (O’)’

FeF

weef



TWO-WEIGHT MORREY NORM INEQUALITY AND THE SEQUENTIAL TESTING 169

where

F)t/p ][ /
afF = do.
CHf”LP Ao)
To prove (I), we need only verify that {ar}rcr satisfies (3.1). For S € D, we have

o (oo f 1) - S (1)

FeF
FcCS FcCS

which means that ap satisfies (3.1) and completes the proof. 0

Remark.  In the statement (b) of Theorem 3.1, for the case ¢ > 1, the linearized
maximal operator Mg r.p can be replaced by the (big) linearized maximal operator
Mg r. Indeed, we need only verify then (II) holds. There holds

D IMe pBrllta =D D (K Q)Br)! W(E(Q))

FeF FeF QCF
< Y (K(Q)o(Q) w(E(Q)) (Z B%)
QED FeF

By the use of || - ||;x > || - || ¢a,

> 1 Me,pBF | 7oy < > (K(Q)o (@) w(BE(Q)) (Z 5F>

= Oep FeF
= Z (K(Q)/ (Z 5F1F) dU) w(E(Q))
QeD Q@ \rer
:/ Mg (Z 5F1F> dw
" FeF

Remark.  The analysis of the sequential testing, like as Theorem 3.1, is first due
to Hanninen, Hytonen and Li in [3]. They extend Sawyer’s [12, Theorem A] in the case
q > ptothecase 1 < g <p.



170 H. TANAKA

§3.2. m linear case

In what follows we assume that all functions are non-negative. Let o;,7=1,...,m,
be the locally finite Borel measures and fix a collection D of dyadic cubes. Let K: D —
(0,00) be a map. The m linear maximal operator M* is defined by

M*[(fi)](x) := sup K(Q) (H/sz dm) 1g(x).

QeD

Analogous to the linear case, we can also define the collection £ and the corresponding
operator Mg and its localized version Mg r, R € D.

Let the symmetric group S,, be the set of all permutations of the set {1,...,m},
that is, the set of all bijections from the set {1,...,m} to itself.

Fori=1,...,m, let F; C D be a og;-sparse family. For Q) € D, define

77, (Q) ;== min{F D Q; F € F;},
Q) = (77, (Q), ..., 77, (Q))-

We recall the elementary fact that, if P,R € D, then PN R € {P,R,(}. This fact
implies, if 7(Q) = (F1,..., Fy), then

(3.3) Q C Fd)(l) c---C F(z,(m) for some ¢ € 5,,.
Moreover,
(34) 7T]—"¢(j)(F¢)(Z‘)) = F¢(j) forall 1<i<j<m.

From these observations, we define (F;) to be the set (F;) € []/~, F; that satisfies (3.3)
and (3.4).
For (F;) € (Fi), the m linear operator Mg (r,).(r,) is defined by

M&(}—z‘);(Fi)[(fi)]('T) = Z K(Q) (H/sz dUi) 1E(Q)<$)-

QEeD
m(Q)=(F%)

The following is an m linear version of Theorem 3.1.

Theorem 3.2. Letw and o;, i =1,...,m, be the locally finite Borel measures.
Let 0 < g < o0 and 1 < p; < c0. Let A\j: D — (0,00) be a map. Consider the following
two statements:

(a) There exists a constant ¢; > 0 such that
[Me[(fi)lllLaw) < e H | fill Lpiori (o)
i=1

holds for every function f; € LPi*i(0;);
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(b) There exists a constant co > 0 such that

m g\ /4
3 I]o Mg (7.y;F) (1Rl La(w) <,
" [TZy ou(F3) /P -

(F)e(Fi) i=1

holds for any o;-sparse family F; C D, where the nonnegative sequence {a's} e,

satisfies

(3.5) {e% Hlgpini(ry <1, i=1,...,m.
Then, for the least possible constants ¢1 and ca,
(I) (b) implies (a) with ¢; < Ceg;

(IT) (a) implies (b) with co < Ccy, provided that

-1 1/1%'
(3.6) Z (i\l(s) ai(S)) < C forall SeTD.

Proof. 'The proof of Theorem 3.2 follows in the same manner as that of Theo-
rem 3.1. We show only the necessary modifications. First, we prove (II). Let 8% :=
a0 (F)~1/Pi. There holds by the uniqueness of the parent

> Mgy Brllfewy = D D K@ (Hm(@)ﬁa) w(EQ))

(Fi)e(Fi) (Fy)e(Fi) QeD
m(Q)=(F;)

= Y K(Q) (Hax@)ﬁ:}ﬂ(@) W(E(Q))

QeD

- Y K@©Q (H | <Z ﬁFlF) daz) W(E(Q)

QeD FeF;

Ll el

Pi q/pi
Z | Me (7. (F)[(ﬁF (w) <o H (;161% o /S (Z 5F1F> dai) .

(Fy)e(Fq) i=1 FeF;

By the statement (a),

The remainder estimates of this part are the same as that of the proof of Theorem 3.1

and we omit them here.
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Next, we prove (I). Fix (large) Qo € D. We shall estimate

(1) = [[Me Qo [(fi)lll La(w)-

It follows that

@)=Y K(Q) (H/ fidai> w(E(Q))
QCQo j
(H][fzd0’2> K(Q)1 <H0¢(Q)) w(E(Q)).

In the same manner as the above, we define the collection of principal cubes F; for the

QCQo

pair (f;,0;), i =1,...,m. Then F; is o;-sparse. We notice that, when 7z, (Q) = F,

][ fido; < 2][ fido;.
Q F

This fact and the uniqueness of the parent yield

=3 > (H]f) fidai) K(@Q) (Hai@)) “(E(Q)

(Fi)E(Fs) (QeD
‘J<Hai<cz>> w(E(Q))

Q)=(Fy)

< omd (H ][ f; dol>

(F))€(F:) Q<P
~(Q)=(Fy)
— gma (H][ fzdaz> 1Me (7.2 [(LEDN T 0
(F)EFy)
q
e (( ryin f fl.dm) | HMg,mm[<1f;>mm<w>>
(Fi)e(Fs) F, [Li i ()1

Thus, we have

q\ /4
; i ||Mg:<}—i>;(Fi)[(1Fi)]||Lq(w)
W= Z <(];[an) Hiaz’(Fi)l/Pi '1:[”]01'”[,171-»%(01,)7

(F)E(Fi)

where

; 1/1% ][ £
Q. i A05.
e CHszLPz i (o4)

To prove (I), we need only verify that {a% } e 7, satisfies (3.5). But, this is done in the
same way as that of the proof of Theorem 3.1. So, we finish the proof. O
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8§4. Application of Kothe duals

The statement (b) of Theorem 3.1 is expressed by the dual form. In this section,
for some cases, we shall investigate another expression of the quantities in terms of the
description of the Koéthe dual of Morrey type spaces introduced in Subsection 2.1.

Let o be a locally finite Borel measure. Fix a collection D of dyadic cubes and a
o-sparse family F C D. Let 0 < p < oo and A: D — (0,00) be a map. For S € D,
define the sequence 1(S)p with the index set F by

1, when F CS,

0, otherwise.
Let b(S)r := 1(S)r/A(S) and define By := {b(S)r; S € D}. Then, for the sequence

{ar}rer, we have

1/p
1 1/
a . =sup | — ap|? = su ar|Pb(S L
{erHlena ey = sup A(S)é; | sup [{]or|"b(S)r} i ()
FcCS
1
= sup  {larPb(S)rHIHEy).

{b(S)r}eBA

The Kothe dual space (P2 (F)" of the space (P*(F) is the space of all sequences
{ar}rer equipped with the norm

[{artlerrFy == sup [{arBrHleF)-
||{BF}||EP,A(]:)S1

We wish to give a description of /7*(F)’ by applying Proposition 2.2. To this end, we
first let By denote the set of all sequences {ar}pcr such that

ap =Y c(S)(S)F,
SeD
where c¢: D — [0,00) is any map that satisfies ) g1, c(S) < 1. We notice that, for any
{CLF} c B)\,

(4.1) sup [{arBr}laF < 1.
H{BF}”@I,A(}-)S:{

The class B, is defined to be the subset of all sequences {ar}rer for which there
exists {agﬁ)} € By, j € N, such that

arp = lim ag) forall F € F.

Jj—o0

We can easily check the following conditions:
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(i) By C By;
(i) If
(o} By, jeN,

then, for any non-negative sequence {c;};jen with |[{c;}||s vy < 1, one has

> cjady € By;
J

(iii) For all {ar} € By,

sup {arBr}leF < 1.
H{/BF}”gl,A(]:)Sl

(This fact can be verified by the use of (4.1) and the Fatou theorem.)

We now check the following condition:

(iv) (the Komlés property) If {ag)} C By, then there exists a subsequence {bg)} of
{ag)} such that

RN —
nl;ngoﬁj;bls —ap, forall FeF,and {ap}e By .

By Remark 2.1, it suffices to show that there exists up > 0 such that {up}rcr €
2 F).

Recall that we always assume that there exists u € LP* (o) with u > 0 o-a.e. Let
p > 1 and u > 0 such that ||ul|z».» ) = 1. Define

wup = o(F) (ﬁudo)p.

Then it follows that up > 0 and, for any S € D,

LS)FGZ}-UF = ﬁ > o(F) (]iud(I)p < %1;: (ﬁud(f)pU(Ef(F))
FCS Fcs

FeF
FCS

/

2p
< )\ /MD ulgl’do < X(S) / uP do < QPIHUHI,;;,,A(U) =2p’.

This means that the condition (iv) is fulfilled.
Let 1 < p < co. We define h?*(F) by the space of all sequence {ar}rer such that

. 1
Har} ) == nf__[{lapPap "} ,{m < 00, for 1<p<oo,

ap GBA
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and

[{arHpen(F) = i?f?’|{|aF’a}_71}”£°°(.F) < oo, for p=oo.

ap b

By Proposition 2.2, we have the following.

Proposition 4.1.  Let 1 < p < co. Then the space h?*(F) is a Banach space
with the Fatou property. Moreover, the following Kéthe duality formulas hold with
equality of norms:

WPMNF) = 1PNF)  and  hPANF) = PN (F)'
The following is our last theorem.

Theorem 4.2.

(I) Let1 < qg=p < oo. Then the statement (b) of Theorem 3.1 is equivalent to

H{ (||M5 ]—"F;SU)LP(W)> }

(IT) Let 0 < g < 00, 1 <p < oo and q < p. Then the statement (b) of Theorem 3.1 is

equivalent to

1/p

S Co.
hoos M (F)

1
H{< | Me, fFanLq(w )‘J} A
>~ €2,
)1/;0 hr/ X (F)
where q/r + q/p = 1.
Proof. The theorem is the direct consequences of Proposition 4.1. Ol

Remark.  For the remender case 1 < p < ¢ < oo, we have had no mathematical
language to express appropriately.
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