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Quantization condition of resonances
at energy-level crossing

By

Setsuro FUJIIE* André MARTINEZ ™ and Takuya WATANABE***

Abstract

We study the asymptotic distribution of semiclassical resonances near an energy-level
crossing of the one-dimensional Schrodinger operator with a 2 X 2 matrix-valued potential.
Assuming that this level is in a simple well of one of the eigen-potentials, we deduce a Bohr-
Sommerfeld type quantization condition, and show in particular that the width of the reso-
nances is of order A%/ in case of an elliptic interaction while it is of order A”/? in case of a
vector field interaction.

§1. Introduction

This is a short survey of the papers [FMW1] and [FMW2].

They are concerned with 2 x 2 semiclassical Schrodinger operator in dimension one,
whose matrix-valued potential has eigenvalues crossing transversally at a point, and the
aim is to compute the quantization condition of resonances near this crossing level.

This problem comes from the study of diatomic molecular predissociation reso-
nances in the Born-Oppenheimer approximation, at energies close to that of the crossing
of the electronic levels. The imaginary part (width) of the resonances corresponds to
the inverse of the life-time of the molecule.

The small parameter h stands for the square-root of the inverse of the mass of the
nuclei. The Born-Oppenheimer approximation permits to reduce the study to that of a
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semiclassical system of Schrodinger-type operators (see, e.g., [KMSW, MaMe, MaSo]),
and the size of the system depends on the number of electronic levels that are involved.

In the system case with multiple electronic levels, only few results are available.
One may quote [Ba, Na, FLN, GrMal]|, where very particular potentials are considered,
and [Kl, GrMa2, MaBr|, where the potentials are much more general, but the energy
considered is lower than that of the crossing. Actually, in this last situation the width
of the resonances can be estimated by a tunneling effect through a potential barrier,
and it is exponentially small (in the parameter h). In our case, on the contrary, it is
expected that the width of resonances is much larger and of polynomial order of h.

The key point will be the connection problem at the crossing point of the asymptotic
solutions defined on the right and left of this point respectively.

However, the recently developed techniques, such as complex exact WKB method
(see for example [Vo]) or microlocal method (see for example [HeSj, Ma]), are not
easily applied to such a problem because of the degeneracy at the crossing point. More
precisely, the determinant of the principal symbol of our operator is of type &4 — z2
(¢ denotes the dual variable to the independent variable x), and two bicharacteristic
curves intersect at (0,0) tangentially.

We make use of the global solutions constructed in [Ya] for the scalar equations to
construct resolvents to our system. By a careful estimate of these operators, we can
construct solutions to the system by iteration on the left and the right of the crossing
point. Then the resonances will be the zeros of the wronskian of these solutions. The
advantage of Yafaev’s solutions consists in the knowledge of the asymptotic behavior at
the crossing point.

In this note, we sketch only the process of the computations. For the sake of
simplicity, we assume that the derivatives of the two potentials at the crossing point are
1 and -1 (see assumption (A3) of the next section). For the results in the general case
and for the proof of the estimates used in this note, we refer the readers to [FMW1]
and [FMW2].

8§ 2. Assumptions and results

We consider a 2 x 2 Schrodinger operator of the type,

P, hW>

(2.1) Pu = FEu, P=
hW=* Py

where P; = h?D2 + Vj(z) (j = 1,2) with D, = —i-L, W = W (x, hD,) is a first order
semiclassical differential operator, and W* is the formal adjoint of W.

We suppose the following conditions on the potentials Vi (z), Va(z) and on the
interaction W (z, hD,):
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(A1) Vi(x), Va(x) are real-valued analytic functions on R, and extend to holomorphic

functions in the complex domain,
I'={zeC; |[Imz| <df(Rex)},

where 6y > 0 is a constant, and (t) := (1 + |¢[?)/2.
(A2) For j = 1,2, V; admit limits as Rexz — +oo in I, and they satisfy,
lim Vi(z)>0; lim Vi(z)>0;

Rexz——oc Rexz——oc

lim Vi(z) >0; lim Vi(z)<O.
Rexz—+o0 Rex—+o00
xzel’ zel

(A3) There exists a negative number z* < 0 such that,
e V1 >0and V5 >0 on (—oo,z*);
o V1 <0< V5on (z*0);
e V5, <0< Vjon (0,+00),

and one has,
Vi) <0,  V/(0)=1,  V50)=-1.

(A4) The interaction W (x, hD,) is a differential operator of the form,
W(z,hD,) = ro(x) + iri(x)hD,,
where 7o(x) and r1(z) are bounded analytic functions on I', and ro(z) is real on R.

Notice that, in a neighborhood of EF = 0, the scalar operator P; has eigenvalues,
while P, has only essential spectrum. Hence, if the interaction W is absent, the matrix-
valued operator P has, of course, embedded eigenvalues in the essential spectrum. But if
W is present, it is expected that there exist, instead of embedded eigenvalues, resonances
close to them in the lower half complex plane of the energy.

The resonances of P are defined, e.g., as the values F € C such that the equation
Pu = FEu has a non-trivial outgoing solution u, that is, a non-identically vanishing
solution such that, for some 6 > 0 sufficiently small, the function z — u(ze?) is in
L?(R)® L*(R) (see, e.g., [AgCo, ReSi]). Equivalently, the resonances are the eigenvalues
of the operator P acting on L?*(Rg) @& L*(Rg), where Ry is a complex distortion of R
that coincides with e”?R for x > 1 (see, e.g., [HeMa]). We denote by Res(P) the set of
these resonances.

For E € C small enough, we define the action,

:rl(E

A(E) = o V(1) dt,

27 (E)
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where z3(FE) (respectively z1(E)) is the unique solution of Vi(x) = E close to z*
(respectively close to 0), and it is well-known that, in this situation, A(F) is an analytic
function of E near 0.

We also fix Cy > 0 arbitrarily large, and we study the resonances of P lying in the
set Dy (Cy) given by,

(22) Dh(CO) = [—Cghz/g, Coh2/3] - Z[O, Coh]
For h > 0 and k € Z, we set,

—A(0) + (k+ 3)mh

(2.3) M(B) = ==

Recall that the Bohr-Sommerfeld quantization condition of eigenvalues for the scalar
operator P; reads

A(E) = (k+ %)ﬂh +O(h?).

Then the Ay (h)h?/%’s are approximate eigenvalues of Py near 0. We will find resonances
close to these real values.

Theorem 2.1 ([FMW1]).  Assume (A1l)-(A4). For h > 0 small enough, one
has,
Res (P) N Dh<00) = {Ek(h); ke Z} N Dh<00),

where the Ex(h)’s are complex numbers that satisfy,

;A0

(2.4) Re Ej(h) = As(h)h3 A 0) Ae(h)2h5 + O(h3),
72rp(0)? ) 2 2 s 5
(2.5) Im Ej,(h) = _22/30—,4/(0) <A1(—23)\k(h))> hs + O(h?),

uniformly as h — +0, where Ai stands for the Airy function.

Theorem 2.2 ([FMW2]).  Assume moreover that ro(x) = 0 and () is real on
R. Then for h > 0 small enough, one has,

Res (P) N Dp(Co) = {Ek(h);k € Z} N Dp(Ch),

where the Ey(h)’s are complex numbers that satisty,

_ 2 A"(0) 21 AP(0) s z
(2.6) Re Ex(h) = Ap(h)hs — 2A/(O)Ak(h) hs — 64 (0) Me(h)?hE 4+ O(h3),
72r1(0)? 7

(2.7) Im E,(h) = (Ai’(—zixk(h)))z hs + O(h3),

T 243 4/(0)

uniformly as h — +-0.
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§ 3. Outline of the proof

We fix a sufficiently small 6 > 0. Let
I, = (—00,0] = R_ ; T4 := Fy([0, +0)) = Fy(Ry) ; Fy(x) :=z + iff ()

where f € C* (R4, R,), f(x) = x for x large enough, f(x) =0 for = € [0, x| for some

Too > 0, and f is chosen in such a way that, for any = > x.,, one has,

Fg (m)
(3.1) Im/ VE — Va(t)dt > —Ch,

with some positive constant C' (see [FMW1]).

The linear space V of solutions to the system (2.1) is of dimension four. The
outgoing solutions on R, i.e. solutions in L?(I%) @ L?(I%) form a two dimensional
subspace Vg = V N (L2(1%) & L?(I1%)), and the outgoing solutions on Iy, also constitute
a two dimensional subspace Vf.

Then FE is a resonance if and only if the intersection Vz NV}, is at least one dimen-
sional. In other words, the quantization condition of resonances can be written in the

form
(3.2) Wo(E) == W(wr,1, ws,1,w1,r, W2,r) = 0,

where the couple (wi r,wsr) (resp. (w1 gr,war)) is a basis of Vi (resp. Vg) and
W(w1 1, wa, 1, w1, R, W2, r) s the wronskian, i.e. the determinant of the 4 x 4 matrix

w1, W2, W1,R W2R
8ar:U)l,L a:U'LU2,L 6mw1,R a:cu)Z,R
We will construct such solutions wy r,ws 1, w1 r, w2, g and compute the asymptotic

formula of their wronskian. This formula will give the precise estimate of the location

of resonances given in the above theorems.

§3.1. Solutions to the scalar equations

Before constructing bases of solutions to the system, we need to study the funda-
mental solutions to the scalar operators P; — F, j =1, 2.

First we construct solutions to the homogeneous equation (P;—E)u = 0. Employing
a classical method as in [Ya], we obtain four solutions uI—L R,uI—L, ; to(Pr—E)u =0
satisfying the asymptotic behavior

o=

h

uf p(@) ~ (14 O(h) == (Vi(z) — B)~Fet Jram VIOTEA/R o),

Q‘

™
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h% 1 x i _
uip (@) ~ (1+0(Mm) 7= () _E) T am VnOmEdh ),

and four solutions u2i R u2jE ; to (P; — E)u = 0 satisfying the asymptotic behavior

hs ™ —
() ~ (L4 O(0) Z= (B = Vaa))~heFH e VETROWR, (o o),

hs : R)—F
w5 () ~ (L O() = (Vale) — B)HeT Fratm VEOTEA, (g o),
where z;(E) is the zero of Vj(z) — E near 0 and x7(E) is the zero of V;(z) — E near x*.

Yafaev’s method consists in the reduction to the Airy equation near the turning

points: for example near z1(F), we define for E real and a point z( inside the well
(2*,0),

. 2/3

&(x E) = <; - VVit) — Edt) when z > z1(E);
(3.3) ‘“
3 IIJl(E)

2/3
&(z; E) = — <§ VE—Vi(t) dt) when zg < x < z1(F).

Thanks to the analyticity, this change of variable extends to complex z and E. Setting
t:=h2/3¢(x) and f(t) := & (z)"/?u(x), the equation (P; — E)u = 0 becomes,

(3.4) —f"(t) +tf(t) = R(t) f(t),

with,

R(t) = hip(hit);
(3.5)

1

p() = (1) 4] € @)% = 00 + e ()) >

The advantage of this method is to know well the asymptotic behavior as h — +0 of
the solutions near the turning points. For example, for uf r» We have, as h — +0,

up (@) = 26 ()72 AL (36 (@) (14 O(R)

on [zo, +00) N{Re & (z) > 0};
up (@) = 2(€) () T2 AL (A 361 (2)) + O(h(1+ h~2/31g1(x)]) 7))

on [z, +00) N {Re s () < 0};
uf (@) = (€1(2)2Bi(h™ 361 (2))(1+ O(R))

on [zg,+00) N {Re& (z) > 0};
ui () = (6(2)7FBi (k™56 (2)) + O(h(1+ b6 (2)]) 7))

on [zg,+00) N {Re&(z) < 0}.
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We have similar formulae for other solutions. For uét 1, we have

1. _2 _ _1,. _2
Ug 1, ™~ (&) 2Bi(—h"3&); Uy 1, ™ 2(&) "2 AL (—h 3 &).
The solutions uét r can be expressed in terms of ugt L

_ 1, 1 _ .
~ \/_em/4( UQ Lt ZU;L) Ug g~ _em/4<§u2,L - WIL)v

V2

+ : +
and also uy7; can be expressed in terms of Ul R

1

qu ~ i(cos E)ul_’R — (sin E)uiR; uy g~ (sin )uiR + 2(cos E)uiR’

h
Remark that the action A appears here (notice that the phase of u% ; has its base point
at 7 (F)). N

It is also easy to compute the wronskians between these solutions: Let W(f, g)
stand for h?/2 det(f, g) for two column vectors f, g of degree 2.

W(”j_,L7UIL> ~ _?2 ; W(u;R,qu) ~ %9
VNV(uiL,uiR) ~ _?4 cos% ; VNV(u;L,u;R) ~ %eil;
VV(qu,u1 R) = sm%;

W(UZ_,L7u;_R) ~ _2i\/§€i% 3 VNV(UELL? 2 R) ™~ : et

§3.2. Resolvents to the scalar equation

Using the solutions defined in the previous section, we construct fundamental so-
lutions K 1, 7= 1,2 0on Iy and K; g, j = 1,2 on [%:

ul (x z
Kjplv)(z) := h2W{’L( : ] / uj (tu(t) di
(3.6) J’L -
h2W jL’ jL]/ »
u; p(z) z
K plv(n) = o 2 uF p(8)o(t) dt
(37) h W[ ]R’ ]R] /
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where the integral runs over I; and I% respectively.

Let CP(Ir) and CP(I%) be the space of bounded continuous functions on I, and
I% respectively. The above operators act on these function spaces, and satisfy (P; —
E)K; 1 = Id and (P; — E)K; r = Id respectively. Moreover one can prove the following

estimates:
Proposition 3.1.  As h goes to 0, one has uniformly,
* 1 * 2
| RE2 LW || eco(ryy= O(h%); | B2 Ky LW Ko t W™ || zicor, )= O(h3);
1 N 2
| AE1 W | 2 oo (10,y)= O(h3); | B> Ko gW* K1 gW lzecocrgy= O(h3).

If moreover ro(x) = 0, one has

* 2 *k
| hK2 W Hﬂ(Cg(IL)): O(h3); | h2K1,LWK2,LW ||L(cg(1L)): O(h);
2 *
| hEK1L /W | 2co,y)= O(h3); | B2 Ko gW* K1 gW || £(co(18,))= O(h).

§3.3. Solutions to the system

Set My, = hQKLLWKg’LW* and Mg := h2K27RW*K1,RW. Thanks to Proposi-
tion 3.1, we can define the following four vector-valued functions as Neumann series for

small enough h;

(38) wq 1, 1= ZJZO Miul_,L .
’ —hEK tW* 3 oo Mjuy
(3.9) wo 1, ‘= - Z]ZO Mi (hK17LWUE,L)
’ uy y + hEo WS o My (WKt Wy ) )
7 =0 Mp(hKa RW*uy 1)
’ 220 Mpus g

It is easy to see that they are solutions to the system (2.1) and that
wir € L*(I) @ L*(It) 5 wjp € L*(I%) @ L*(I%).

In order to get the leading term of the imaginary part of resonances, it will be
necessary to compute the asymptotics of these solutions up to errors of O(h) in the
case of elliptic interaction and of O(h®/3) in the case of vector field interaction (i.e.
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ro(x) = 0). This means to compute, for example for w; r,, two terms uy g+ MLuiL for
the first element, and one term —hK>, LW*ui ;, for the second element.

Substituting = 0 to these solutions or their derivatives, we obtain the following
asymptotic formulae.

Proposition 3.2. For j =1,2 and S = L, R, we have, uniformly as h — +0,

Ky +
wy5(0) = | 05O T Astis O] o,
(3.12) L a1 sty g(0)
| O [ u; (0) + B1,59u; 4(0)
Juis(O) = |0 7 5o O(h
U)l,S( ) al,sauis(o) + ( )7
[ -
a2,5Uq S(O)
v 0) = — ' + O(h);
(3.13) st | uz,5(0) + Ba,5u3.(0) (R)
| 0 _ s, 50uf ¢(0)
Qw2s(0)= | 5 Cos +O(h).
2,5(0) | 9uy 5(0) + Ba,s0ug (0) (h)

Here, O stands for h2/39 and aj s and s are complex numbers defined by

0o _ .
o — _f_oo u2,L(t)(W ul,L)(t)dt B, =
1,L = - ;o PiL =
hW(u;:L>u2,L)

vy = Tt Oz (Od [ us (O T2n) (Bt

hW(uiL,uiL) hW(uiL,u;’L) ’
— [T ug g () (W g ) (£)dt I Uy g () (W g) (1)dt

0
Q1R = — ) 51,R = — ;
hW(“Q,R? “;R) ’ hW(“l,R’ “T,R) ’

— [T g () (Wug ) (t)dt Jo7% ug () (Wrra, p) (t)dt

Q2 R = — ) ﬁz,R = —
hW(“l,R’ “tR) ’ hW(u2,Rvu§L,R) ’

S ur )Wy ) ()dt
hW(uiL, ul_L) ’

where we have set, for S = L, R,
r1,s = hKQVSW*ul_’S, T2, s = hKl’SWUQ_’S,

and where, in the case S = R, the integrals run over I %.
If moreover ro(z) = 0, then the remainder terms in (3.12) and (3.13) are O(h5/3).

For the constants appearing in the previous proposition, we have the following
estimates, which are necessary and sufficient to get Theorems 2.1 and 2.2. Let E =
ph?/3 € Dy (Cy). We see that they are expressed in terms of functions of t = Rep
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defined as integrals of Airy functions:

palt) = / T Ay DAI(—y - Dy, ps(t) = / " Ai(y — 1)Bi(—y — 1)dy.
va(t) := /000 Ai'(y — t)Ai (—y — t)dy, VL(t) = /OOO Ai(y — t)Ai’(—y — t)dy,

vp(t) = /000 Ai'(y — t)Bi(—y — t)dy, IJTB(t) = /000 Ai(y — t)Bi'(—y — t)dy.

These integrals are all well defined thanks to the exponential decay of Ai(y — t) and
Ai’(y—t) and the polynomial growth of Ai(—y—t), Ai’(—y—t), Bi(—y—t), Bi('—y—t)
as y — +oo.

Among these quantities, those with suffix A will play an important role in the
asymptotics of the imaginary part of resonances. As is easily seen, they are related with

each other by identities
va(t) + V() = —pa(), va(t) = vi(t) = —Ai (-1).
Furthermore, p(t) can in fact be written explicitly by
pa(t) =2743Ai(—2%/3¢).

Hence we also have

va(t) = 2753 A1 (=2%/3¢) — 271 AQ (—t)?,
i () = 2703 A1 (=22/3) + 271 Ai (—t) 2.

Proposition 3.3.  Let E = ph?/3 € D;,(Cy). As h — +0, one has,

20 = —2h (0 (” aRep)sin 2 4y (Rep) cos A(hE)> + O,
h1/37mr(0)ets ' .
= T (ualRep) ~ips(Rep) + OGP, (=1,2)

Im 31 g = 7279(0)2h*? (ua(Re p)* + up(Re p)?) + O(h),
Im B =0O(h), Bjs=0OmY?, (j=1,2,8=L,R).
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If moreover ro(x) = 0 and ry(z) is real-valued on R, one has, as h — +0,

67”/4

(8% =
1,R /3

1 (0)R2/3 (I/A(Re p) —ivp(Re p)> +O(h),

Qg R = 7 71 (0)R%/3 (I/L(Re p) — iVL(Re p)) + O(h),

ay.p = 2771 (0)h?/3 { (sin %) vl (Re p) + (cos %) v (Re p)} +O(h),

(o.p, = 2711 (0)12/3 { (sin %) va(Rep) + <Cos %) v5(Re p)} +0(h),

Im By g = w21 (0)2h4/3 (VA(Re p)uL(Re p) +ve(Re p)l/;;(Re p)) + O(h°/?),
Im By, = O(R*3), Bjs =03, (j=1,2,5=L,R).

§3.4. Wronskian and quantization condition

Now we are ready to compute the wronskian Wy(E, h). Since it is independent of
x, we compute it at x = 0. In terms of the constants defined in Proposition 3.2 and
wronskians of solutions to the scalar equations, we can write the wronskian Wy(E, h)

as follows.

—~

Wo(E, h) =Wy 1wy )Wt 105 5)
+ BQ,RW(UI,L7 ul_,R)W(UQ_,L7 U;R)
+ 52,LW(U1_,L7 ul_,R)W(u;—,L’ Us )
+ al,Rag,RW(u;’L, uiR)VV/(u;R, uZ_L)
+ ozLRozg,LW(uiL, uiL){/\V/(u;’R, UIR)
+ 51,RW(U1_,L7 UIL,R)W(uz_,Lv Uy p)
+ al,LalRVN\/(u;L, uQ_’L)VN\/(uiR, ul_’R)
+ 041,L062,LW(UZL, u;’R)W(uiR, qu)
+ 51,LW(UT,L, ul_’R)VV/(u;’L, Uy p) + O(h).
In particular, if 7(z) = 0, the remainder term is of O(h°/3).
This wronskian formula together with (3.2), Proposition 3.3 and the wronskian
formulae in Section 2.1 lead to the quantization condition of resonances.

Notice here that the first term on the right hand side gives the principal term. It

consists of two wronskians:

— —4  A(E) — iv/2
W(“l,L’ul,R)N7COS n ) : : T
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The first one concerns the scalar operator P; and the condition that this wronskian is
zero is the well-known Bohr-Sommerfeld quantization rule of eigenvalues of ;. The
same way, the second one gives the quantization condition of resonances of P, but it
never vanishes reflecting the fact that Ps is non-trapping.

All other terms are of O(h?/3) (resp. O(h*/3) in the case ro(x) = 0). The imaginary
part of these errors will give the precise asymptotics of the imaginary part of resonances.

Proposition 3.4. E = ph?/3 € D},(C)) is a resonance of P if and only if,

(3.14) cos ALE) = h%/3 <sin @) F(E,h),
with

Re F(E, h) = O(1),
Im F(E, h) = 47%r(0)? 14 (Rep)? + O(h/3).

If moreover ro(z) = 0 and 7, (x) is real-valued, then F(E,h) = h*/3G(E,h) with

Re G(E, h) = O(1),
Im G(E, h) = n%r1(0)%1/4 (Rep)? + O(hY/3).

Theorems 2.1 and 2.2 are direct consequences of this proposition.
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