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Abstract

By studying some basic examples in micro‐analytic  S‐matrix theory we show how the trials
toward the better understanding of Sato’s postulates on the  S‐matrix lead us to find novel and
intriguing problems in microlocal analysis. For the convenience of a microlocal analyst who has
become interested in Sato’s postulates we have included in Section 2 an illustrative example
which shows how to use Landau‐Nakanishi diagrams to detect singular points such as cusps in
the Landau‐Nakanishi surface.

§0. Introduction

The purpose of this article is to try to elucidate Sato’s postulates on the  S‐matrix

([S]) by the detailed study of concrete examples. The renaissance of the interest  0

mathematical physicists in the resurgent theory enhances the value of studying the

detailed analysis of Feynman integrals, which appear as the coefficients of perturbation

series of the  S‐matrix in the power of the coupling constant, and at the same time
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we try in this paper to call the attention of young specialists in microlocal analysis

to the pregnant and suggestive paper [S] of Sato. (We are most grateful to Professor
O. Costin and Professor D. Sauzin who have kindly called our attention to the conference

“Resurgence and Transseries in Quantum, Gauge and String Theories” held in 2014 at

CERN as an evidence of the “renaissance of the interests in resurgent functions  0

physicists ) The plan of this paper is as follows:
In Section 1, we recall some basic notions and notations we use in this paper.

In Section 2, by using the simplest example of the sort, i.e., a triangle Feynman

graph, we concretely show how to use the Landau‐Nakanishi  (=LN) diagram to find

the concrete shape of the LN surface. Although the discussion in this section is an

elementary one we believe that it will convince the reader of the nice chemistry between

the LN diagram and microlocal analysis.

In Section 3, we recall Sato’s postulates focusing on the points to be polished up

in this paper and in our future studies. Together with them we briefly describe some  0

our previous results which are immediately related to Sato’s postulates.

In Section 4, we show how a complemented graph ([HK3]) can be effectively used
in analyzing phase space integrals associated with non‐external graph such as T3 (cf.
[HKS]). Here a non‐external graph means a Feynman graph which contains a non‐
external vertex, that is, a vertex upon which no external line is incident, and a comple‐

mented graph  \tilde{G} of a non‐external graph  G is, by definition, the graph obtained by the

addition of an external line to each non‐external vertex of  G . We hope that introducing

complemented graphs into our study fits in with Sato’s philosophy to the effect that

the dynamical completeness should be attained through the analysis of non‐observable

quantities.  ([S, p. 15])
In Section 5, we list up several problems which we hope to be useful for further

developing the research in micro‐analytic  S‐matrix theory and related problems in mi‐

crolocal analysis. At the end of this section we briefly describe what are bubble diagram

functions and how they are related to the results in this paper.

§1. Preliminaries

In order to make this paper a self‐contained one for specialists in microlocal analysis,

we recall the definition of Feynman graph  G , Feynman integral  F_{G} and phase space

integral  I_{G} associated with  G , and the Landau‐Nakanishi equations determined by  G.

In what follows we normally abbreviate “Landau‐Nakanishi” to LN, like LN equations,

LN diagrams, LN surfaces, LN varieties, etc.

Definition 1.1. (i) A Feynman graph  G is a graph consisting  0

(1.1) finitely many points  V_{1},  V_{2},  \cdots ,  V_{n'} , which are called vertices,
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(1.2) finitely many line segments,  L_{1},  L_{2},  \cdots ,  L_{N} , which are called internal lines,

and

(1.3) finitely many half‐lines  L_{1}^{e},  L_{2}^{e},  \cdots ,  L_{n}^{e} , which are called external lines,

which satisfy the following conditions (1.4), (1.5) and (1.6):

(1.4) each end point  W_{l}^{+} and  W_{l}^{-} of  L_{l}  (l=1,2, \cdots , N) coincides with some  0

 V_{j} (j=1, \cdots n') ,

(1.5)  W_{l}^{+} \neq W_{l}^{-} (l=1,2, \cdots , N) ,

(1.6) the (unique) end point of  L_{r}^{e}  (r = 1,2, \cdots , n) coincides with some of  V_{j}
 (j=1, \cdots n') .

We further assume

(1.7) a  \nu‐dimensional vector  p_{r}  =  (p_{r,0},p_{r,1}, \cdots , p_{r,\nu-1}) is attached to each ex‐
ternal line  L_{r}^{e},

(1.8) a strictly positive constant  m_{l} is attached to each internal line  L_{l},

and

(1.9) each internal line and each external line is oriented, and the orientation is
designated by an arrow like  arrow- . (To simplify the figures we often omit
the arrow.)

(ii) The incidence number  [j : l] for a pair of a vertex  V_{j} and an internal line  L_{l} is given
by the following:

 \{
 +1 when  L_{l} ends at  V_{j}

(1.10)  [j : l]  =  -1 when  L_{l} starts from  V_{j}
 0 otherwise.

The incidence number  [j : r] for a pair of a vertex  V_{j} and an external line  L_{r}^{e} is defined
in the same manner.

(iii) It follows from (1.4) and (1.5) that, for each internal line  L_{l} there uniquely exists a
vertex  V_{j_{0}} such that  [j_{0} : l]  =+1 , and such  j_{0} shall be denoted by  j^{+}(l) . Similarly we
define  j^{-}(l) and  j(r) .
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Example 1.1. Triangle Feynman graph  T_{1} is given by the following:

 p_{1} p_{5}

 V_{1} m_{3} V_{3}

(1.11)  p_{2} p_{6} m_{1} m_{2}

 V_{2}

 p_{3} p_{4}

Definition 1.2. (i) The Feynman integral  F_{G}(p) associated with a Feynman graph  G

is formally (i.e., being set aside its well‐definedness as a hyperfunction) given by the
following:

(1.12)  F_{G}(p)=F_{G}(p_{1},p_{2}, \cdots , p_{n})

  \prod\delta^{\nu}(\sum^{n'}[j:r]p_{r}+\sum[j:l]k_{l})n
 = \int . . .

  \frac{j=1r=1l=1}{\prod_{l=1}(k_{l}^{2}-m_{l}^{2}+i0)}\prod_{l=1}d^{\nu}k_{l}.
Here, and in what follows,  \delta^{\nu} stands for the  \nu‐dimensional  \delta‐function, and, for a  \nu-

dimensional vector  k=  (k_{0}, k_{1}, \cdots , k_{\nu-1}) its square  k^{2} always means

(1.13)  k^{2}=k_{0}^{2}- \sum_{\mu=1}^{\nu-1}k_{\mu}^{2}.
(ii) The Feynman amplitude  f_{G}(p) associated with a Feynman graph  G is the function
obtained by factorizing out the over‐all conservation  \delta‐function  \delta^{\nu}  ( \sum_{j,r}[j : r]p_{r}) from

 F_{G}(p) ; that is,

(1.14)  F_{G}(p)= \delta^{\nu}(\sum_{j,r}[j : r]p_{r})f_{G}(p) .

(iii) The phase space integral  I_{G}(p) associated with a Feynman graph  G is formally
given by the following:

(1.15)   I_{G}(p)= \int . . .   \int\prod_{j=1}^{n'}\delta^{\nu}(\sum_{r=1}^{n}[j : r]p_{r}+\sum_{l=1}[j : l]
k_{l})\prod_{l=1}\delta^{+}(k_{l}^{2}-m_{l}^{2})\prod_{l=1}d^{\nu}k_{l},
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where  \delta^{+}(k_{l}^{2}-m_{l}^{2}) stands for  \delta(k_{l}^{2}-m_{l}^{2}) multiplied by the Heaviside function  Y(k_{l,0})
of the 0‐th component of  k_{l} , i.e.,

(1.16)  \delta(k_{l}^{2}-m_{l}^{2})Y(k_{l,0}) .

We also denote by  I_{G}(p) the function obtained by factorizing out the over‐all  \delta-

function  \delta^{\nu}  ( \sum_{j,r}[j : r]p_{r}) from  I_{G}(p) , if there is no fear of confusion.

Remark 1.1. In what follows, we use the definition (1.13) of  k^{2} to identify  grad_{k}k^{2} with
 k ; for example, the vector  k_{l} in the right‐hand side of (1.19) below is  grad_{k_{l}}k_{l}^{2} if we
think over its origin.

Definition 1.3. (i) Landau‐Nakanishi  (=LN) equations for  (p;u)=(p_{1}, \cdots , p_{n};u_{1}, \cdots , u_{n})
 (\in \mathbb{R}^{2\nu n}) determined by a Feynman graph  G are given by the following set of equations

 (1.17)\sim(1.20) , where  k_{l}  (l = 1,2, \cdots , N) ,  V_{j}  (j = 1,2, \cdots , n') and  a are in  \mathbb{R}^{\nu} and

 \alpha_{l}  (l=1,2, \cdots , N) is a real number (called a LN constant) with   \sum_{l=1}|\alpha_{l}|  >0 :

(1.17)   \sum_{r=1}^{n}[j:r]p_{r}+\sum_{l=1}[j:l]k_{l}=0 for  j=1 , 2,  \cdots ,  n',

(1.18)  \alpha_{l}(k_{l}^{2}-m_{l}^{2})=0 with  k_{l,0}  >0 for  l=1 , 2,  \cdots ,  N,

(1.19)  V_{j^{+}(l)}-V_{j-(l)}  =\alpha_{l}k_{l} for  l=1 , 2,  \cdots ,  N,

(1.20)  u_{r}=  [j(r) : r](V_{j(r)}+a) for  r=1 , 2,  \cdots ,  n.

(ii) Landau‐Nakanishi  (=LN) diagram is, by definition, a Feynman graph whose internal
line  L_{l} is equipped with  (\alpha_{l}, k_{l})(\in \mathbb{R}^{1+\nu})

Example 1.2. Triangle LN diagram  T_{1} is given by the following:

 p_{1} p_{5}

 V_{1}  (\alpha_{3}, k_{3})  V3

(1.21)  p_{2} p_{6} (\alpha_{1}, k_{1}) (\alpha_{2}, k_{2})

 V_{2}

 p_{3}  p_{4}
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Here, and in what follows, we omit  m_{l} attached to  L_{l} in a Feynman graph, as we

assume in this paper that all  m_{l} ’s are supposed to be equal to 1 unless otherwise stated.

(However we sometimes use the redundant expression such as “  m_{l}^{2}  =1 ” to emphasize
that the number 1 is actually a special value of  m_{l}^{2}. ) In this paper we usually omit  \alpha_{l}

for the technical simplicity in preparing figures which are needed in our reasoning.

Remark 1.2. The existence of a free vector  a in (1.20) implies that an LN diagram
may be translated arbitrarily as a whole in  \mathbb{R}^{\nu} . As a specialist in microlocal analysis

will imagine, this fact is a counterpart of the fact that  F_{G}(p) contains the over‐all

conservation  \delta‐function as its factor, i.e.,  F_{G}(p)  =

  \delta^{\nu}(\sum_{j,r}[j : r]p_{r})f_{G}(p) . In view  0

these facts we normally consider the problem on  \mathbb{R}^{\nu(n-1)}  =

  \{p\in \mathbb{R}^{\nu n}; \sum_{j,r}[j : r]p_{r}=0\}
or  T^{*}\mathbb{R}^{\nu(n-1)} without so mentioning explicitly.

Remark 1.3. The vector  k_{l} attached to the internal line  L_{l} in an LN diagram has a dual

meaning;  k_{l} in (1.19) is  grad_{k_{l}}k_{l}^{2} , which is a dual (with respect to the Minkowski metric)
vector of  k_{l} in (1.17) and (1.18). Hence LN equations define a subvariety  \mathscr{L}(G) of  T^{*}\mathbb{R}_{p}^{\nu n}
which is conical, that is, homogeneous with respect to the cotangential component  u.

We call the variety as the LN variety associated with  G , and we call its projection to

the base manifold  \mathbb{R}^{\nu n} as the LN surface with some slight abuse of the language. (We
note that some component of an LN “surface” is actually of higher codimension as is

pointed out in [HK1 .) In what follows we let  L(G) denote the LN surface associated
with  G . We introduce the subsets of  \mathscr{L}(G) and  L(G) by Definition 1.4 below, where  \pi

denotes the canonical projection from  T^{*}\mathbb{R}_{p}^{\nu n} or  T^{*}\mathbb{R}_{p}^{\nu(n-1)} to  \mathbb{R}_{p}^{\nu n} or  \mathbb{R}_{p}^{\nu(n-1)}.

Definition 1.4. (i) The leading part  \mathscr{L}^{\cross}(G) of  \mathscr{L}(G) is, by definition, the totality  0

solutions  (p;u) of LN equations with  \alpha_{l}  \neq 0  (l=1, \cdots , N) .

(ii) The positive  -\alpha part  \mathscr{L}^{+}(G) of  \mathscr{L}(G) is, by definition, the totality of solutions  (p;u)
of LN equations with  \alpha_{l}  \geq 0  (l=1, \cdots , N) (and  \alpha_{l_{0}}  >0 for some  l_{0} ).

(iii) The leading  positive-\alpha part  \mathscr{L}^{\oplus}(G) of  \mathscr{L}(G) is, by definition, the totality of solu‐
tions of  (p;u) of LN equations with  \alpha_{l}  >0  (l=1, \cdots , N) .

(iv) The leading part  L^{\cross}(G) , the positive  -\alpha part  L^{+}(G) and the leading  positive-\alpha part
 L^{\oplus}(G) of  L(G) are respectively defined by  \pi(\mathscr{L}^{\cross}(G)) ,  \pi(\mathscr{L}^{+}(G)) and  \pi(\mathscr{L}^{\oplus}(G)) .

Remark 1.4. In what follows we often use the abbreviated wording “a leading  positive-\alpha

LN surface” etc. instead of “the leading  positive-\alpha part of a LN surface” etc.

Remark 1.5. The relevance of LN equations to the cotangent bundle was first recognized

by H. P. Stapp and his collaborators ([CS], [IS]) through the Fourier transformation  0

the macroscopic causality condition.
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Remark 1.6. In this paper we restrict our consideration to the case where  \nu=2 unless

otherwise stated, so that we may make full use of figures prepared with the help of a

computer. We believe the core part of our reasoning below should be also validated

when  \nu  =  4 , although we have not yet tried seriously to think over this point. In

what follows we also assume that all  m_{l} ’s are equal to the same positive number  m (in
most cases 1). Concerning this restriction we imagine that it would be an interesting
problem to study the situation where  m_{l} ’s are not necessarily mutually equal, or rather

the situation where  m_{l} ’s are regarded as independent variables.

§2. An example of how‐tos for locating singular points

of a Landau‐Nakanishi surface with the help

of the relevant Landau‐Nakanishi diagram

In this section we concretely show how an LN diagram is effectively used in finding

singular points of an LN surface. Although computer‐assisted study is much more

powerful and far‐reaching (e.g. [HK2]), we hope the reasoning in this section will be
helpful for a specialist in microlocal analysis (hereafter abbreviated as a microlocal
analyst) to become familiar with LN diagrams and LN surfaces, which are essential
languages in explaining Sato’s postulates.

In what follows we consider the following simplest example of the sort: we consider

the LN surface associated with triangle LN diagram  T_{1} given in Example 1.2. In order

to simplify the figures and explanations in our discussion below we introduce following
notations:

(2.1)  A=V_{1}, B=V_{2}, c=V_{3},

(2.2)  p_{A}=p_{1}+p_{2}, p_{B} =p_{4}-p_{3}, p_{C}=p_{5}+p_{6},

(2.3)  u_{A}=-V_{1} =-A, u_{B} =V_{2}=B, u_{C}=V_{3}=C.

As the over‐all energy‐momentum conservation entails that  p_{B} is equal to  p_{A}  p_{C},

the LN surface  L(T_{1}) is described in  \mathbb{R}^{4}
 (p_{A},pc)

.

Our main concern in this section is  [L^{\cross} (T1)] , the (topological) closure of  L^{\cross} (T1),
and hence we may assume

(2.4)  k_{l}^{2}=m_{l}^{2}=1, k_{l,0}>0 (l=1,2,3)

in what follows. Then by using an appropriate Lorentz transformation we may assume

without loss of generality the following:

(2.5)  p_{A}=(x, x) , pc=(y, z)
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(2.6)  k_{3}=(s, s^{-1}) , k_{1}=(s^{-1}, s) , k_{2}=(t, t^{-1}) (s, t>0) .

In particular, we have

(2.7)  x=s+s^{-1}, y=s+t, z=s^{-1}+t^{-1}

Here we emphasize that the assumption  \nu=2 is essential in giving the parametrization

(2.6), which is substantially useful in our computer‐assisted works ([HK1 , [HK2]). In
order to simplify the figures we label  k_{1},  k_{2} and k3 respectively by  s^{-1},  t,  s (i.e., the first
component in the parametrization (2.6)). Thus the LN diagram is labelled as follows:

 (y, z)

 (x, x) C
 s

 A

 t
(2.8)  s^{-1}

 B

 (x-y, x-z)

We now change  (s, t) and trace the point  (p_{A},p_{C}) determined by the LN diagram by

(2.8), and in our discussion we use the following reduced symbol as a simplified form  0

(2.8):
 s  C

 A

(2.9)  t

 s^{-1}

 B

that is, we often omit the external lines if there is no fear of confusions. Here we call

the attention of the reader to the relation (2.7). We also note that, when we use the
reduced symbol (2.9), we normally let  \alpha_{AB},  \alpha_{BC} and  \alpha_{AC} respectively denote the LN
constant attached to internal lines  L_{1},  L_{2} and  L_{3} . In accordance with this notation, we

use  k_{AB},  k_{BC} and  k_{AC} to denote  k_{1},  k_{2} and k3 respectively.

As a microlocal analyst readily finds,  [L^{\cross} (T1)] describes the location of singular

points of  I_{T_{1}} , the phase space integral associated with  T_{1} , and, with the notations

given by (2.2) and (2.3), the  u‐vector  (u_{A}, u_{B}, u_{C}) describes the cotangential component
of S.S.IT1 (p) , the singularity spectrum of  I_{T_{1}}(p_{A},p_{B},p_{C}) . It will be also easy for a



An invitation to Sato’s postulates in micro‐ANALYTiC  S‐matrix theory 31

microlocal analyst to observe the following:

(2.10)  L^{+}(T_{1}) describes the location of singular points of  f_{T_{1}} , the Feynman am‐
plitude associated with  T_{1} ;

(2.11) in particular,  f_{T_{1}} may be singular on the LN surface associated with the
so‐called contracted diagram of  T_{1} , that is, the diagram with some LN

 A  C

constant being  0 like with  \alpha_{BC}=0.
 B

In order to visualize (2.10) and (2.11) rather symbolically, physicists normally use
the following figure:

 2PT

  C_{1} - - \sim
 \gamma_{1}

(2.12)  \gamma_{0}

 C_{2} - -  \gamma_{2}

 2PT

Among several (possibly symbolic) messages we find in figure (2.12), we emphasize the
following:

(2.13)  L^{\oplus}(T_{1}) is given by a smooth surface  \gamma_{0} ;

(2.14) At  C_{1} (resp.,  C_{2} ) in  [\gamma_{0}] , the closure of  \gamma_{0} , LN constant  \alpha_{BC} (resp.,  \alpha_{AB} )
vanishes;

(2.15)  [\gamma_{0}] ∪  \gamma_{1} (resp.,  [\gamma_{0}] ∪  \gamma_{2} ) is a smooth surface near  C_{1} (resp.,  C_{2} ) and touches

with  2PT (  =2 particle threshold) given by  L^{\oplus}  (A   ss^{-1}   CB)
(resp.,  L^{\oplus}  (A   B   s   t   C) ) at  C_{1} (resp.,  C_{2} );

(2.16) LN constant  \alpha_{BC} (resp.,  \alpha_{AB} ) is negative in  \gamma_{1} near  C_{1} (resp., in  \gamma_{2} near
 C_{2}) and  f_{T_{1}} is not singular there,
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(2.17) Although  \gamma_{1} and  \gamma_{2} are drawn by dotted lines in conjunction with the
non‐singular property of  f_{T_{1}} there,  I_{T_{1}} may be singular on  \gamma_{1} and  \gamma_{2} ; the

singularities originate from some of  (k_{l}^{2} -m_{l}^{2} - i0)  -1Y(k_{l,0})  (l = 1,2,3)
contained in  \delta^{+}(k_{l}^{2}-m_{l}^{2}) in the integrand of  I_{T_{1}}.

Now having in mind these messages from (2.12), a symbolic figure of a 2‐dimensional
slice of  L^{+} (T1), we raise the following questions:

(2.18) Is there any interaction of  \gamma_{1} and  \gamma_{2} if we consider the problem in the
3‐dimensional space  \mathbb{R}_{(x,y,z)}^{3} ?

(2.19) Are there any singular points in  [L^{\cross}(T_{1})] outside  \gamma_{0} ?
 s

 C A

In what follows we answer these questions by “playing with LN diagram  s^{-1}
 t .

 B

We begin our discussion by noting the following fact, which can be readily confirmed:

(2.20)  \gamma_{0} consists of two parts  \gamma_{0}^{1<} and  \gamma_{0}^{<1},

where

(2.21)  \gamma_{0}^{1<} consists of points in  L^{\oplus}(T_{1}) with  1  <s<t,

and

(2.22)  \gamma_{0}^{<1} consists of points in  L^{\oplus}(T_{1}) with  t<s<  1.

We note that (2.7) entails

(2.23)  y>z on  \gamma_{0}^{1<},

and

(2.24)  y<z on  \gamma_{0}^{<1}

Let us begin our journey in  [L^{\cross} (T1)] starting from a point  \sigma_{0,+} in  \gamma_{0}^{1<} which is

determined by the following LN diagram  \Sigma_{0,+} :

 s

 A
 C

(2.25)  \Sigma_{0,+} :
 s^{-1}

 t with  1  <s<t.

 B
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We first decrease  s to reach 1 so that we encounter  C_{1} , where  [\gamma_{0}] touches with  \{p_{A}^{2}=4\} ;

the LN diagram corresponding to  C_{1} is
 s=1

 C

(2.26)  A with  \alpha_{BC}=0.
 B

 s^{-1} =1

In order to continue our journey to  \gamma_{1} we further decrease  s to find the following

LN diagram  C_{1}^{+} :
 B

 s^{-1}

(2.27)  C_{1}^{+} :  t
 A

 s

 C

where

with  s<  1  <s^{-1}  <t,

(2.28)  \alpha_{AB}, \alpha_{AC}>0, \alpha_{BC}<0.

Here, to realize the LN diagram we have to assume (2.28) as the relative location of  B

and  C in (2.27) is different from that in (2.25). As a microlocal analyst readily sees,
the relation (2.28) indicates that the singularity of  I_{T_{1}} there comes from  (k_{BC}^{2}-  1-

 i0)-1Y(k_{BC,0}) in  \delta^{+}(k_{BC}^{2}-1) in the integrand of  I_{T_{1}}.

We next fix  s  (< 1) and let  t decrease in (2.27) to realize the following diagram  D_{1} :

 s^{-1}  B

(2.29)  D_{1} :
 A  t

 C

with

(2.30)  t=s^{-1} > 1,

(2.31)  \alpha_{AB} >0, \alpha_{AC}=0, \alpha_{BC}<0.

We also denote by  D_{1}^{-} (resp.,  D_{1}^{+} ) the configuration which we encounter just before
(resp., after) finding  D_{1} , that is,

 B

 s^{-1}

(2.32)  D_{1}^{-} :
 A

 t

 s

 C
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with

(2.33)  1<s^{-1} <t,

(2.34)  \alpha_{AB} >0, \alpha_{AC}>0, \alpha_{BC}<0,

and

 B

 t

(2.35)  D_{1}^{+} :  s^{-1}
 C

 s

 A

with

(2.36)  1<t<s^{-1},

(2.37)  \alpha_{AB} >0, \alpha_{AC}<0, \alpha_{BC}<0.

Although the diagrammatic structure of  D_{1} and those of  D_{1}^{\pm} might look quite

different, the associated LN geometry smoothly changes. Since this fact is a starting

point of our study below, we summarize the situation as follows:

Lemma 2.1. Let  \mathscr{L}^{\cross}(T_{1})|_{\Omega_{1}^{+}(\varepsilon)}  (0 < \epsilon \ll 1) denote the set of solutions  (p, u)
associated with  T_{1} and which satisfy the following conditions:

(2.38)  \alpha_{AB} >0, \alpha_{BC}<0, \alpha_{AC}\neq 0,

(2.39)  |st-1| <\epsilon,

(2.40)  0<s< 1.

Then its closure  [\mathscr{L}^{\cross}(T_{1})|_{\Omega_{1}^{+}(\varepsilon)}] is smooth. Furthermore its projection to the base man‐

ifold  \mathbb{R}_{(x,y,z)}^{3} is also non‐singular.

Proof. Let  (P_{0}, U_{0}) denote the solution of LN configuration  D_{1} . Then it follows from

(2.7) and (2.30) that

(2.41)   x=y=z>2\neq
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holds at  P_{0} . Hence

(2.42)  s=s_{-}(x)_{def}=(x-\sqrt{x^{2}-4})/2
is biholomorphic between  s and  x . We note that  s_{-}(x) is a solution  0

(2.43)  s^{2}-xs+1=0,

which is smaller than 1 near  P_{0} . Then it is clear that

(2.44)  \varphi_{1}(x, y, z)=z- (s_{-}(x)^{-1}+(y-s_{-}(x))^{-1})

is holomorphic near  P_{0} with  grad_{(x,y,z)}\varphi_{1} being different from  0 . Since the projection

of  [\mathscr{L}^{\cross}(T_{1})|_{\Omega_{1}^{+}(\varepsilon)}] is given by  \{\varphi_{1} = 0\} for sufficiently small  \epsilon , the non‐singularity

of this set is clear. To confirm the non‐singularity of  [\mathscr{L}^{\cross}(T_{1})|_{\Omega_{1}^{+}(\varepsilon)}] we construct

holomorphic functions  \alpha_{AC}(s, t) and  \alpha_{BC}(s, t) for  (s, t) satisfying (2.39) and (2.40) so
that the following closed loop condition may be satisfied:

(2.45)  \alpha_{AC}(\begin{array}{l}
s
s^{-1}
\end{array}) =\alpha_{AB}(\begin{array}{l}
s^{-1}
s
\end{array}) +\alpha_{BC}(\begin{array}{l}
t
t^{-1}
\end{array})
with the normalization

(2.46)  \alpha_{AB}=1.

One can then easily find

(2.47)   \alpha_{AC}= \frac{t^{2}s^{2}-1}{t^{2}-s^{2}} ,

(2.48)   \alpha_{BC}= \frac{ts^{-1}(s^{4}-1)}{t^{2}-s^{2}}.
Using these results we find

(2.49)  u_{B}= (\begin{array}{l}
s^{-1}
s
\end{array}),

(2.50)  u_{C}= ( \frac{t^{2}s^{2}-1}{t^{2}-s^{2}})(\begin{array}{l}
s
s^{-1}
\end{array})
by setting  u_{A}  =  0 , which realize configuration  D_{1} and  D_{1}^{\pm} , together with (2.7). Thus
we find  [\mathscr{L}^{\cross}(T_{1})|_{\Omega_{1}^{+}(\varepsilon)}] is non‐singular. This completes the proof of the lemma.
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We now try to find the counterpart of the above journey when we start from a

point  \sigma_{0,-} in  \gamma_{0}^{<1} , that is, when we start from a point where the following configuration
is realized:

 B

 s^{-1}

(2.51)  \Sigma_{0,-} :  A with  t<s<  1.
 t

 s

 C

Here we choose  s close to the value of  s in (2.27) to fix the situation. This time we let
 t increase to attain

 B

 A  t

(2.52)
 s  C

with

(2.53)  t=s< 1,

(2.54)  \alpha_{AB}=0.

Then we encounter  C_{2} , where  [\gamma_{0}] touches with  \{p_{C}^{2}=4\} . After reaching  C_{2} we continue

our journey to enter  \gamma_{2} by letting  t increase, and we find

 t

 A

 s^{-1}

(2.55)  C_{2}^{+} :  B

with

 s

 , s<t.

 C

(2.56)  \alpha_{AB} <0, \alpha_{AC}, \alpha_{BC}>0.

By keeping  s intact, we further increase  t in (2.55) to realize the following diagram  D_{2} :
 A

 s^{-1} C

(2.57)  D_{2} :
 t

 B

with

(2.58)  1<s^{-1} =t,
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(2.59)  \alpha_{AB} <0, \alpha_{AC}=0, \alpha_{BC}>0.

Just after (resp., before) meeting the point determined by  D_{2} , we find  D_{2}^{+} (resp.,  D_{2}^{-} )
given below:

 C

 s

 A
 t

(2.60)  D_{2}^{+} :
 s^{-1}

 B

with

(2.61)  1<s^{-1} <t,

(2.62)  \alpha_{AB}, \alpha_{AC}<0, \alpha_{BC}>0,

and

 A

 s

 C

(2.63)  D_{2}^{-} :
 s^{-}

 t

 B

with

(2.64)  1<t<s^{-1},

(2.65)  \alpha_{AB} <0, \alpha_{AC}, \alpha_{BC}>0.

As the constraint (2.61) is the same as (2.33), we may assume that  D_{1}^{-} and  D_{2}^{+} are
realized by the same set of parameters  (s, t) ; actually it suffices to choose the value  0

 s at the starting point  \sigma_{0,-} of the current journey to be the same as the value  s in

(2.27). We note that in the current journey we change only  t , with  s being fixed. Then
it follows from (2.7) that the solution  (p, u) of LN equations for  D_{1}^{-} and that for  D_{2}^{+}
share the same value  p ; in order to compare the  u‐component of the solution  (p, u) of LN

equation for  D_{1}^{-} and that for  D_{2}^{+} , let us present the following figure (2.66) combining
figure (2.32) and figure (2.60): in figure (2.66) we set the vertex  A at the origin both for
 D_{1}^{-} and  D_{2}^{+} , and we let  (B(D_{1}^{-}), C(D_{1}^{-})) (resp.,  (B(D_{2}^{+}),  C(D_{2}^{+})) ) denote the location
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of vertices  (B, C) in  D_{1}^{-} (resp.,  D_{2}^{+} ).

 C(D_{2}^{+})
 s

 B(D_{1}^{-})
 s^{-1}

 t
(2.66)  t  A

 s

 s^{-1}
 C(D_{1}^{-})

 B(D_{2}^{+})

One immediately sees that  (B(D_{1}^{-}), C(D_{1}^{-})) and  (B(D_{2}^{+}), C(D_{2}^{+})) are located symmet‐

rically with respect to the origin. Otherwise stated, the  u‐component for  D_{1}^{-} and that

for  D_{2}^{+} are of the opposite sign. The situation is exactly the same for the pair  (D_{1}, D_{2})
and the pair  (D_{1}^{+}, D_{2}^{-}) , as the following figures indicate:

 s^{-1} B(D_{1})

 t
(2.67)  s^{-1} (Cf. (2.29) and (2.57)), C(D_{1})=C(D_{2})

 B(D_{2}) t

 B(D_{1}^{+})
 t

 s^{-1}
 C(D_{1}^{+})

 s

(2.68)  A

 s_{C(D_{2}^{-})}
 s^{-1}

 t

 B(D_{2}^{-})

(Cf. (2.35) and (2.63)).

We have thus found two paths in  [L^{\cross} (T1)] ; one that starts from a point  \sigma_{0,+}

in  \gamma_{0}^{1<} and ends at a point  p_{1} which is determined by LN diagram  D_{1}^{+} and lies in

 \{\varphi_{1}(p) =0\} , and one that starts from a point  \sigma_{0,-} in  \gamma_{0}^{<1} and ends at the same point

 p_{1} which is determined also by LN diagram  D_{2}^{-} . An important observation is that the
 u‐component of the solution of LN equations associated with  D_{1}^{+} is of the opposite sign

of that associated with  D_{2}^{-} . In order to visualize our argument we put the following
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rather symbolic labels to these paths. In what follows we call the path from  \sigma_{0,+} (resp.,
 \sigma_{0,-}) as the route  R_{1} (resp.,  R_{2} ).

(2.69)  R_{1} :  \Sigma_{0,+}  arrow C_{1}^{+}s\downarrow  arrow D_{1}^{-}t\downarrow  arrow D_{1}t\downarrow,

(2.70)  R_{2} :  \Sigma_{0,-}  arrow C_{2}^{+}t\uparrow  arrow D_{2}t\uparrowarrow D_{2}^{+}t\uparrow.
Here the mark  s  \downarrow ” etc. indicate that “we let  s decrease” etc. For the convenience

of the reader here we recall some characteristic features of LN diagrams in the above

labelling:

(2.71)  1<s<t in  \Sigma_{0,+},

(2.72)  s<  1  <s^{-1}  <t  in  C_{1}^{+},

(2.73)  1  <s^{-1}  <t and  \alpha_{AB},  \alpha_{AC}  >0 in  D_{1}^{-},

(2.74)  1  <s^{-1}  =t,  \alpha_{AB}  >0 and  \alpha_{AC}=0 in  D_{1} ;

(2.75) in  \Sigma_{0,-} we assume  t<s<  1 with  s close to the value of  s in (2.72),

(2.76)  s<t and  \alpha_{AB}  <0 in  C_{2}^{+},

(2.77)  1  <s^{-1}  =t and  \alpha_{AB}  <0 and  \alpha_{AC}=0 in  D_{2},

(2.78)  1  <s^{-1}  <t and  \alpha_{AB},  \alpha_{AC}  <0 in  D_{2}^{+}.

Using a similar labelling, we now consider another pair of routes  \tilde{R}_{1} and  \tilde{R}_{2} :

(2.79)  \sim 1 :\Sigma_{0,-} arrow\tilde{C}_{1}^{+}s\uparrow arrow\tilde{D}_{1}^{-}
t\uparrow arrow\tilde{D}_{1}t\uparrow arrow\tilde{D}_{1}^{+}t\uparrow,

(2.80)  \sim 2 :  \Sigma_{0,+}  arrow\tilde{C}_{2}^{+}t\downarrow  arrow\tilde{D}_{2}^{-}t\downarrow  arrow\tilde{D}_{2}t\downarrow  arrow\tilde{D}_{2}^{+}t\downarrow,
where

 C

 s

 A  t
(2.81)  \tilde{C}_{1}^{+} : with  1  <s,  \alpha_{BC}<0,

 s^{-1}

 B
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(2.82)  \tilde{D}_{1}^{-} :

 C
 s

 A

 t
with  \alpha_{AC}  >0,  \alpha_{BC}  <0,

(2.83)  \tilde{D}_{1} :

 s^{-1}

 B

 C

 A  t

with  t=s^{-1}  <  1,  \alpha_{AC}=0,
 s^{-1}

 B

(2.84)  \tilde{D}_{1}^{+} :

 A
 s

 C

 s^{-1}
with  \alpha_{AC},  \alpha_{BC}  <0,

(2.85)  \tilde{C}_{2}^{+} :

 t

 B

 C

 t

 s with  s^{-1}  <t<s,  \alpha_{AB}  <0,  \alpha_{AC},  \alpha_{BC}  >0,
 B

(2.86)  \tilde{D}_{2}^{-} :

 s^{-1}
 A

 B

 t

 s^{-1} with  s^{-1}  <t,  \alpha_{AB}  <0,  \alpha_{AC},  \alpha_{BC}  >0,

 C

(2.87)  \tilde{D}_{2} :

 s

 A

 B
 t

with  t=s^{-1}  <  1,  \alpha_{AB}  <0,  \alpha_{AC}=0,
 s^{-1} C

 A
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 B

 s^{-1}

(2.88)  \tilde{D}_{2}^{+} :  t

 A

 s

 C

with  t<s^{-1}  <  1,  \alpha_{AB},  \alpha_{AC}  <0.

The LN geometry determined by the triplet  (\tilde{D}_{1},\tilde{D}_{1}^{\pm}) (resp.,  (\tilde{D}_{2},\tilde{D}_{2}^{\pm}) ) resembles to that
determined by the triplet  (D_{1}, D_{1}^{\pm}) (resp.,  (D_{2}, D_{2}^{\pm}) ); actually, if we define  \Omega_{2}^{+}(\epsilon) by
the conditions (2.89), (2.90) and (2.91) to be given below and use  \Omega_{2}^{+}(\epsilon) as a substitute
for  \Omega_{1}^{+}(\epsilon) in Lemma 2.1, then we find that the projection of  [\mathscr{L}^{\cross}(T_{1})|_{\Omega_{2}^{+}(\varepsilon)}] to the base

manifold defines a non‐singular hypersurface  \{\varphi_{2}(p) = 0\} which passes  P_{0} for  (s, t)
 =(s, s^{-1}) :

(2.89)  \alpha_{AB} >0,

(2.90)  |st-1| <\epsilon,

(2.91)  1<s.

Furthermore the location of the vertex  B of  D_{1},  D_{2},  \tilde{D}_{1} and  \tilde{D}_{2} is as follows:

 B(\tilde{D}_{2}) B(D_{1})
 t s^{-1}

 s^{-1} t

(2.92)  A  C

 s^{-1}

 t

 B(D_{2})

 t

 s^{-1}

 B(\tilde{D}_{1})

Here  B(D_{1}) etc. denote the location of the vertex  B in  D_{1} etc., and  \alpha_{AB}  >  0 (resp.,
 \alpha_{AB}  <  0) for the labelling in the right (resp., left) half part of (2.92). This figure
indicates

(2.93)  \{\varphi_{1} =0\} and  \{\varphi_{2}=0\}

intersect transversally along

(2.94)  \triangle=\{(x, y, z) \in \mathbb{R}^{3};x=y=z>2\}.
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Thus, by following up on the movement of LN diagrams, we have concretely confirmed

that  [L^{\cross} (T1)] has self‐intersection points along  \triangle . Our argument also shows that each

point  P_{0} in  \triangle is relevant to both  \gamma_{1} and  \gamma_{2} . Actually paths  R_{1} and  \tilde{R}_{2} both start from

 \sigma_{0,+} and pass through a point  P_{0} in  \triangle ; the former passes  C_{1} , then moves in the region

 \gamma_{1} , satisfying

(2.95)  \alpha_{BC}<0, \alpha_{AB}, \alpha_{AC}>0,

and reaches  P_{0} , which is realized by the configuration  D_{1} ; whereas the latter passes  C_{2},

then moves in the region  \gamma_{2} , satisfying

(2.96)  \alpha_{AB} <0, \alpha_{AC}, \alpha_{BC}>0,

and reaches  P_{0} , which is realized by the configuration  \tilde{D}_{2} with an appropriately chosen

set of values  (s, t) . A similar situation is also observed for the pair  R_{2} and  \tilde{R}_{1}.
Thus we have answered questions (2.18) and (2.19) in a positive way by following

up on the movement of LN diagrams.

By the reasoning given so far, we have demonstrated how manipulation of LN

diagrams is helpful in understanding LN geometry. After such a study the reader will be

able to better appreciate the precise figure of  L^{\cross}(T_{1}) ([HK2, Section 1]), which is drawn
with the help of a computer. Actually the reader will notice Whitney’s umbrella near
 \triangle in the concrete visualization of  [L^{\cross} (T1)] . Furthermore the appearance of Whitney’s

umbrella in LN surfaces is, interestingly enough, a rather universal phenomenon, as

our computer‐assisted study ([HK2]) indicates. Still more important is the fact that
Whitney’s umbrella plays an important role in understanding the mechanism how an

acnode appears in  [L^{\cross} (T2)] , as is shown in [HK3, Section 4].

§3. Sato’s postulates

In this section we first recall Sato’s postulates on the  S‐matrix, and then we add

some comments to the original statement of Sato, which will be helpful to polish them

up. In this section we do not assume  \nu  =  2 . (What we have in mind is basically the
situation in  \nu=4. )

Sato’s postulates  ([S]) :

Postulate I. (i)  S.S.(S) , the singularity spectrum of the  S‐matrix  S , is contained

(3.1)   \bigcup_{G}\mathscr{L}^{+}(G) ,

where  G ranges over all possible Feynman graphs.
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(ii) At each point  (p_{0}, u_{0}) of the singularity spectrum of  S , excepting those points to be
specified by (3.5) below,  S satisfies a holonomic system which has

(3.2)   \bigcup_{G}\mathscr{L}^{\mathbb{C}}(G)
as its characteristic variety, where

(3.3)  \mathscr{L}^{\mathbb{C}}(G) denotes the complexification of  \mathscr{L}(G) ,

and furthermore

(3.4) This holonomic system is of the same nature as the one satisfied by the
corresponding Feynman integral. (The last part of the statement is not
satisfactory and need further clarification— this is a future problem.)

(3.5) In the above Postulate I(ii) one has to exclude those points where an infinite
number of  \mathscr{L}^{\mathbb{C}}(G) clusters.

Postulate II. The  S‐matrix  S satisfies the generalized unitarity relation in the sense  0

Nishijima ([N]).

The above postulates, particularly Postulate I is a challenging and substantially

novel proposal to shed a new light on the analytic  S‐matrix theory from the viewpoint

of microlocal analysis, that is, a proposal  0

Micro‐analytic  S‐matrix Theory.

Actually, in response to Sato’s proposal, [KS] validates that the  S‐matrix  S satisfies a
simple holonomic system at an invertible point ([KS, Definition 6]). But, at the same
time, it is evident that at  m‐particle  (m\geq 3) threshold points  (= m‐PT , for example

at  L^{\oplus} ( ) (  3PT (  =m-PT with  m=3)), the holonomicity
fails because of the arbitrarily higher powers of the logarithmic function contained in

the Feynman integrals having their singularity at m‐PT. Thus it is necessary for us

to polish up the above postulates, including the clarification of the proviso (3.5). The
comments we give below are the starting point of our study in this direction.

[I] Comments on Postulate I.(i).
(I.a) If we could confirm the Borel summability of the perturbation series expansion  0

 S in the coupling constants (in the energy‐momentum space), then Postulate I.(i) would
become a “theorem” that could be established through microlocal analysis of Feynman

integrals which appear in the coefficients of the perturbation series. In conjunction with

the Borel summability, we note that even if the Borel transform of the formal series
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contains singularities on the real (positive) axis, there is a big hope to be able to find
the path of integration defining an appropriate resummation so that the resulting sum

may satisfy the unitarity relation. Probably this is one of the important lessons we have

learned from the resurgent function theory.

(I.b) As we touched upon in Remark 1.5, the importance of the cotangent vectors in
describing the singularity structure of the  S‐matrix was first recognized by H. P. Stapp

and his collaborators ([CS], [IS]), independently of the advent of the theory of micro‐
functions. The starting point of their study is the macroscopic causality conditions on
the  S‐matrix.

[II] Comments on (3.3) and (3.5).
(II.a) As we have discussed in [HK3, Section 4], the meaning of  \mathscr{L}^{\mathbb{C}}(G) should be un‐
derstood as a local complexification at the present stage. If we consider the algebraic

complexification of LN varieties, the geometric situation becomes much more compli‐

cated. Hence we currently restrict our consideration to the local complexification of LN

varieties, although we wish the global complexification should be studied in some fu‐

ture. An important comment to be added here is that, as the reasoning in [HK3] shows,
noticing Whitney’s umbrella in LN surfaces is an important step in our consideration

of problems related to their complexification.

(II.b) Even if we restrict our consideration to the local complexification of LN varieties
and further ignore their multiplicity issues, the concrete content of the proviso (3.5)
is not clear. Hence, as the first trial, we have studied in [HKS] assuming  \nu  =  2 , the
concrete structure near  3PT of locally complexified LN surface  L^{\mathbb{C}}(h_{q}) for a Feynman

graph  h_{q} in some particular class of graphs called hooked 3‐lines, which is designed to

study the perturbation series expansion of the 3 to 3  S‐matrix element. And, we have

found that, outside a tiny exceptional set  N given by (3.6) below, in a small complex
neighborhood of  P_{0} in  (3PT)\backslash N , finitely many  L^{\mathbb{C}}(h_{q}) are relevant; otherwise stated, we

have proposed  N as the concrete exceptional set in the particular situation considered

in [HKS

(3.6)  N=N_{+}∪ N_{-} \subset\{(p_{1},p_{2}, \cdot \cdot \cdot p_{6}) \in \mathbb{R}^
{12}\},

where

(3.7)  N_{+}  =

  \bigcup_{k^{2}=m^{2}}\{(p_{1},p_{2}, p_{3})  \in  \mathbb{R}^{6} ;  p_{\sigma(1)}
 =  k and  p_{\sigma(2)}  +p_{\sigma(3)}  =  2k for a

permutation  \sigma of {1, 2, 3}},

(3.8)  N_{-}  =

  \bigcup_{k^{2}=m^{2}}\{(p_{4},p_{5},p_{6})  \in  \mathbb{R}^{6} ;  p_{\tau(4)}
 =  k and  p_{\tau(5)}  +p_{\tau(6)}  =  2k for a

permutation  \tau of {4, 5, 6}}.
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We also need

(3.9)  N_{0}=N_{+}\cap N_{-} \subset \mathbb{R}^{10}

 =\{ (p_{1},p_{2}, \cdot \cdot \cdot p_{6}) \in \mathbb{R}^{12};p_{1}+p_{2}+
p_{3}=p_{4}+p_{5}+p_{6}\}

in our discussion. Actually in our proof of the finiteness of relevant LN surfaces,  a

crucial step was to show

(3.10)  L^{\oplus}(T_{n})  \subset N_{0} for  n\geq 4,

where  T_{n} is a truss‐bridge diagram with  n trusses given below:

(3.11)  p_{1} p_{4}

 T_{n} :  p_{2}

 p_{3}

 p_{5}

 p_{6}

 n‐trzsses

Remark 3.1. It is clear that  T_{1} is the triangle Feynman graph (with equal mass) given
in (1.11).

Remark 3.2. To illustrate the role of   N\pm we note the following:

(3.12)  L^{\oplus} (\begin{array}{llllllll}
      m            m   p_{5}
p_{2}p_{3}   p_{1}m      m   m   m      p_{4}p_{6}
\end{array}) \subset N_{+},
(3.13)  L^{\oplus} (p_{1}p_{2_{p_{3}}}   m   m   m   m   m   p_{4}m   p_{5}p_{6}) 
\subset N_{-}.
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Remark 3.3. One noteworthy feature of the set  N is that at least one external line, i.e.,

 p_{\sigma(1)} or  p_{\tau(4)} , is automatically confined to the mass‐shell manifold.

[III] Comments on (3.4).
(III.a) (3.4) is a faithful copy of the original statement in [S], and it is encouraging to
find that Sato was highly interested in the analysis of Feynman integrals in the study

of micro‐analytic  S‐matrix theory. We believe what Sato wanted to propose here is to

study the hierarchical principle for the  S‐matrix (cf. [E] for example) in the framework
of microlocal analysis. Here the “hierarchical principle” means, in its most primitive

form, to relate the Feynman integral  F_{G} with  F_{\tau_{1}(G)} for the simple contraction  \tau_{1}(G)0
a Feynman graph  G near  [L^{\oplus}(G)]\cap L^{\oplus}(\tau_{1}(G)) , where  \tau_{1}(G) is, by definition, a Feynman

graph obtained from  G by deleting exactly one internal line  L_{l} (and re‐labelling in  \tau_{1}(G)
the remaining internal line if necessary) and identifying vertices  W_{l}^{+} and  W_{l}^{-} to define
a new vertex  \tilde{V} in  \tau_{1}(G) , as is illustrated by the following example:

(3.14) The simple contraction  \tau_{1}(T_{1}) of
follows:

 L_{1}
 V_{1}

 \tau_{1}(T_{1})

with  T_{1} labelled as below:

 p_{1}

 V_{1}

 T_{1} :

where  W_{3}^{+}  =V_{3} and  W_{3}^{-}  =V_{2}.

 p_{3}

 \tilde{V}

 L_{2} p_{2}

 p_{3}

 V
 L_{1}

 L_{3}
 L_{2}

 V_{2}

 p_{2} ,

We also note that  [L^{\oplus}(G)]\cap L^{\oplus}(\tau_{1}(G)) with  G=T_{1} corresponds to  C_{1} in (2.12) in this
case.

We want to further add the following two comments, which we hope to give us

some clues for our better understanding of the hierarchical principle in micro‐analytic
 S‐matrix theory.
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(III.b) Let us consider the following simple contraction  \tau_{1}(T_{2}) of  T_{2} :

 A

(3.15)  T_{2} :

 B

 p_{B}

 A

(3.16)  \tau_{1}(T_{2}) :

 p_{B}

In this situation we find that

(3.17)  co\dim L^{\oplus}(\tau_{1}(T2))  is 2,

and that

 p

 C

 D

,

 p

 D

.

(3.18) a pinch point of  [L^{\cross} (T2)] is contained in  [L^{\oplus}(T_{2})]\cap L^{\oplus}(\tau_{1}(T2)) .

We refer the reader to [HK3, Section 3] for the definition of a “pinch point” used
here. The pinch point referred to in (3.18) is (P3) in the notation of [HK3, Section
3.2]. We note that the appearance of a pinch point in a simple contraction is observed
rather universally where the LN surface associated with the simple contraction is  0

codimension 2. For example the pinch point (II.c) in  [L^{\oplus}(\tilde{T}_{3})] (cf. [HK3, Section 5.2])
is contained in

(3.19)  [L^{\oplus}(\tilde{T}_{3})]\cap L^{\oplus}(\tau_{1}(\tilde{T}_{3})) ,
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where

(3.20)  \tau_{1}(\tilde{T}_{3}) :

and

(3.21)  co\dim L^{\oplus}(\tau_{1}(\tilde{T}_{3}))  is 2.

A similar situation is observed for pinch point (III.a); this time  \tau_{1}(\tilde{T}_{3}) is given by

(3.22)

.

As far as we know, the relevance of a pinch point to the simple contraction has not

been realized before; we believe that the existence of such a pinch point should be the

main reason for the difficulty in analyzing the hierarchical relation when the leading

positive  -\alpha LN “surface” associated with the simple contraction is of codimension 2.

More detailed discussions will be given in our forthcoming paper ([HK4]).
(III.c) The geometric situation that is presented by the pair of  T_{1} and its simple con‐
traction  D_{1} given in (2.29) seems to be very intriguing. In this case we find that

(3.23)  co\dim L^{\cross}(D_{1})  is 2,
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and that

(3.24)  \mathscr{L}^{\cross}(D_{1})\backslash (\mathscr{L}^{\cross}(D_{1})\cap[\mathscr
{L}^{\cross}(T_{1})]) is not contained in S.S.IT1, i.e., the sin‐
gularity spectrum of  I_{T_{1}}.

In particular (3.24) implies that the singularities of  I_{T_{1}} along  \{\varphi_{1} =0\} and those along
 \{\varphi_{2} =0\} in the notation of (2.94) are microlocally disjoint near  \pi^{-1}(P_{0}) for  P_{0} in  \triangle,

where  \pi stands for the projection from  S^{*}\mathbb{R}^{3} to  \mathbb{R}^{3} . Here we note that  \triangle is the simplest

example of a cusp in Whitney’s umbrella. (Cf. [HK3, Section 3])

§4. Applications of complemented graphs

In studying LN geometry associated with a Feynman graph  G which contains a

non‐external vertex, we have encountered several unexpected but interesting phenom‐

ena even in  L^{+}(G) ; one important example is the relation (3.10) (cf. Remark 3.3),
and another important example is the existence of higher codimensional component in

 L^{\oplus}(T_{3}) for the truss bridge diagram T3:

 (x, x) (z, b)

 A

 s

(4.1)  T_{3} :
 t

 E

 C

 \overline{BD}

 (y, a)

Here, and in the rest of this section, we assume  \nu=2 , and use the symbols as in Section

2. For example, the symbol  s put on the internal line  AC means the vector associated

with the internal line is  (s, s^{-1})  (s>0) . The symbols  (y, a) and  (z, b) indicate that, as

is explained in [HK2], we use the slices with parameters  (a, b) of  [L^{\cross} (T3)] to visualize it.
A non‐external vertex is, by definition, a vertex upon which no external line is incident;

the vertex  C in T3 is one typical example. In order to understand pathological situations

relevant to the existence of non‐external vertices, we have introduced the notion of a

complemented graph  \tilde{G} in [HK3]. Here a complemented graph  \tilde{G} is obtained by adding
an external vector to each non‐external vertex of a graph  G containing non‐external
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vertices. For example, the complemented graph  \tilde{T}_{3} of T3 is given as follows:

 (x, x)

 A

 s

(4.2)  C

 t

 B

 (y, a)

 p_{C}=  (w, c)  (z, b)

 E

 v

 D \tau

.

We refer the reader to [HK3, Section 5] concerning the detailed information about the
relation of  L^{\cross}(T3) and  L^{\cross}(\tilde{T}_{3}) ; the most interesting result among them is the following:

(4.3) The higher codimensional component of  L^{\oplus}(T_{3}) is given by the restriction
to  \{p_{C}=0\} of a particular pinch points set called (I.a) in [HK3].

Now besides the geometric problems discussed in [HK3, we note that the so‐called
 u=0 points ([KS]) are relevant to Feynman graphs with non‐external vertices. Let us
recall that a point  p is, by definition, a  u=0 point if  (p, u)  =(p, 0) is a non‐trivial (i.e.,
some  \alpha_{l}  \neq 0 ) solution of LN equations associated with a Feynman graph  G . A typical
example of such a graph  G is given by the following:

 +  B

 +
 C

(4.4)  G :—

Here the symbol  +(resp.  , -) attached to an internal line indicates that the LN constant

associated with the internal line is strictly positive (resp., negative). We note that the
vertex  B of  G in (4.4) is non‐external. We also note that we encounter  u=0 points in
a natural manner when we deal with the unitarity relation for the  S‐matrix.

We now try to shed a new light upon the  u  =  0 point problem by using com‐

plemented graphs. To be more specific, we first show that  I_{T_{3}} is locally expressed as

 I_{\tau_{3}^{-}}|_{\{pc=0\}} under some geometric assumptions.

Let us consider a generic point  \tilde{p}=(p,p_{C}) of  L^{\cross}(\tilde{T}_{3}) , where  L^{\cross}(\tilde{T}_{3}) is locally given

by  \{\tilde{\varphi}(\tilde{p}) =0\} . Then by using the theory of holonomic (  = maximally over‐determined)
systems ([SKK]), we find that, near the point in question, say  \tilde{p}_{0}=  (p_{0},p_{C,0}) , the phase
space integral  I_{\tau_{3}^{-}}(\tilde{p}) has the form

(4.5) ã(p∼)  \delta (  \varphi∼(p)),
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where ã(p∼) is a real‐valued real analytic function defined near  \tilde{p}_{0} . Here we note that
we have used the fact that  \tilde{T}_{3} is free from non‐external vertices in confirming that

 I_{\tau_{3}^{-}}(\tilde{p}) satisfies a simple holonomic system of order 1/2. We also note that  I_{\tau_{3}^{-}}(\tilde{p}) is a
real‐valued hyperfunction. As  \tilde{p}_{0} is in  L^{\cross}(\tilde{T}_{3}) , we find

(4.6)  \alpha_{AB} \neq 0, \alpha_{DE}\neq 0.

Then it follows from (4.6) that

(4.7)  grad_{p}\tilde{\varphi}(p, 0)|_{p=p_{0}} \neq 0.

Therefore the restriction of  I_{\tau_{3}^{-}}(\tilde{p}) to  \{p_{C}=0\} is well‐defined and we obtain

(4.8)  I_{T_{3}} ( p )  = ã  (p, 0)\delta(\tilde{\varphi}(p, 0))

near  p=p_{0}.

The reasoning given above shows how effectively we can use a complemented graph
 \tilde{G} of  G in analyzing the phase space integral  I_{G} when  G contains non‐external vertices.

But one might raise the following question:

(4.9) By the successive contraction of internal lines  AB and  DE in T3 we find
the graph  G in (4.4). Doesn’t this cause a problem in restricting  I_{\tau_{3}^{-}}(\tilde{p}) to
 \{pc=0\} ?

It is true that the totality of  u  =  0 points for the graph  G covers an open set.

Actually the set of  u  =  0 points for the graph  G in (4.4) is the cusp for the triangle
graph  \hat{T}_{1} with non‐equal masses:

 p_{B}

 B

(4.10)  \hat{T}_{1} :
 m=2 m=2

A  m=1  C

 p_{A} p

The cusp (together with its endpoint, i.e., a pinch point) for  \hat{T}_{1} is given by

(4.11)  x=y=z\geq 3,

if we use a coordinate system  (x, y, z) such that

(4.12)  p_{A}=(x, x) , p_{C}=(y, z) .
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On the other hand a  u=0 point for  G in (4.4) is given by the following configuration:

 A
 B

 C(4.13) with  u_{A}\neq u_{B} ;

hence it is contained in the cusp of  \hat{T}_{1}.
Thus question (4.9) seems to be reasonable. However, concerning  I_{\tau_{3}^{-}} we know

(4.14) singular points of  I_{\tau_{3}^{-}} are contained in  [L^{\cross}(\tilde{T}_{3})].

This means, in particular, even  i

(4.15)  \alpha_{AB}  =0  in  [L^{\cross}(\tilde{T}_{3})]

we still find  \tau in (4.2) is given by

(4.16)  (s+a-t^{-1})^{-1} with  s=t,

i. e.,

(4.17)  t/[(t+a)t-1].

As we are considering the restriction of  I_{T_{3}^{-}}(\tilde{p}) to  \{p_{C}=0\} on a neighborhood of  L^{\cross}(\tilde{T}_{3}) ,
where  \tau is

(4.18)  t/[(s+a)t-1] with  s\neq t

the restriction procedure is legitimate. At the same time, if we consider the following

integral  \hat{F}(\tilde{p}) given by (4.19), the situation is completely different.

(4.19)   \hat{F}(\tilde{p})= \frac{1}{(2\pi)^{6}}\int\cdots\int(\prod_{j=1}^{5}
\delta^{2} (\sum_{r}[j :r]p_{r}+\sum_{l}[j :l]k_{r}))\delta^{+}(k_{4}^{2}-1)
  \cross (\prod_{l=1}^{3}\frac{1}{(k_{l}^{2}-1+i0)}\prod_{l=5}^{7}\frac{1}
{(k_{l}^{2}-1-i0)})\prod_{l=1}^{7}d^{2}k_{l},
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where the suffix  l corresponds to the labelling the internal lines of  \tilde{T}_{3} shown below:

 V_{1} V

 L_{1} L_{5}

(4.20) V3
 L_{2} L_{7} L_{3} L_{6}

 V_{2} L_{4} V_{4}

.

We note that by the decomposition of  \delta(k_{l}^{2}-1) into‐   \frac{1}{2\pi i}(\frac{1}{k_{l}^{2}-1+i0} -\frac{1}{k_{l}^{2}-1-i0}) in

the integrand of  I_{T_{3}^{-}}(\tilde{p}) we find  \hat{F} among several terms appearing after the decomposition

(except for the factor   \prod_{l\neq 4}Y(k_{l,0}) ).
In describing the singularities of  \hat{F} , we have to take into account the LN surface

associated with the contracted graph  \tilde{G} given in (4.21) below, as the “propagator”
 (k_{l}^{2}-1\pm i0)^{-1} does not vanish even when  k_{l}^{2}\neq 1 , making a clear contrast to  \delta(k_{l}^{2}-1) .

V3
 +

(4.21)  \tilde{G} :  +
 V_{1} V_{4}

 V_{2} V_{5}

Furthermore it follows from the hierarchical principle for Feynman integrals ([SW],  [S,
p.23])  \hat{F} contains a factor  F_{G^{-}} (with  \pm i0 in the “propagator” being chosen according as
 the\pm label in  \tilde{G} and with  \delta^{+}(k_{4}^{2}-1) being assigned to  L_{4} ). Thus the  u=0 points for
 G in (4.4) may cause the divergence of the integral when  p_{C} approaches to  0 , although
it might be cancelled by the background analytic functions in  \hat{F} . We also note that the

(logarithmic) divergence observed above is due to our assumption  \nu=  2 . Actually we
can confirm by the theory of holonomic systems that the singularity of  F_{G^{-}} has the form

 \varphi^{3}\log\varphi with  \varphi(p,p_{C})|_{pc=0} being  0 , if we consider the same problem assuming  \nu=4.

This means that we should be careful about the singularity of  \hat{F} in manipulating the

unitarity relation for the  S‐matrix when  \nu=2 ; we have not yet seriously thought over

this point, but we believe it should be worth being recorded.
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§5. Future problems and concluding remarks

By studying some basic examples in micro‐analytic  S‐matrix theory we have so far

shown how the trials toward the better understanding of Sato’s postulates lead us to

find novel and intriguing problems in microlocal analysis. In this section we present

some concrete problems which we hope to be useful for developing the research in this
direction further.

[A] It should be an interesting problem to try to find the concrete form of solutions
of a simple holonomic system when the projection of its characteristic variety to the

base manifold contains Whitney’s umbrella. Actually we have not yet known even the

concrete form of  I_{T_{1}} (other than the integral representation, i.e., its definition) near the
pinch point of  L^{\oplus} (T1).

[B] It is an interesting problem to find the concrete form of  I_{T_{3}^{-}} near the pinch point
(I.a) (in the notation of [HK3]) and then apply the result to find the explicit form  0

 I_{T_{3}} near the higher codimensional component of  L^{\oplus} (T3). We believe that its holonomic
structure is different from that of  I_{h} , where  h stands for the hinged graph

(5.1)

 D

 A
 C

 B

with  \alpha_{AB},  \alpha_{DE}\neq 0.
 E

Here we note that  L^{\oplus}(h) geometrically coincides with the higher codimensional compo‐

nent of  L^{\oplus} (T3).

[C] In parallel with trying to answer these questions, we should try to use a computer
to write down the explicit form of the simple holonomic system that  I_{\tau_{n}^{-}} satisfies.

[D] In the analysis with the help of a computer, the study of the holonomic structure  0

Feynman integrals is more difficult than that of phase space integrals. At the same time,

the analytic renormalization of Speer ([Sp]) is an excellent procedure which nicely fits
in with microlocal analysis fortified with a computer. In this direction of the research,

the study of the holonomic structure of  F_{T_{n}} near  3PT is the first trial to be done in
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conjunction with Postulate I (ii); clarifying the holonomic structure of  F_{T_{n}} will help
to clarify what kind of holonomic systems Sato had in mind there. Here we note that,

despite the inclusion relation (3.10),  L^{+}(T_{n}) is, unlike  L^{\oplus}(T_{n}) , a rather large set worth
studying. For example

(5.2)  L^{\oplus}(h) \subset L^{+}(T_{4})

holds for  h given by (5.1), and furthermore, we find

(5.3)  (3PT) \subset [L^{\oplus}(h)].

[E] Although the study of the (holonomic) structure of the  S‐matrix near the exceptional
set  N is a formidable task because of the failure of the finiteness of the number of the

relevant LN surfaces there, the study of individual Feynman integrals near  N is, in

principle, within reach of us, microlocal analysts. Actually in view of the exceptional

geometric features of LN surfaces near  N (versus “outside  N”) ([HKS, Appendix  B],
[HK2, Section 3.3]) we believe the study of holonomic structure of  F_{G} near  N should
be a mathematically important and challenging problem.

In this paper we have put our emphasis on the study of phase space integrals

rather than Feynman integrals, particularly in the computation of integrals associated

with complemented graphs, as the phase space integrals are often more suited for the

concrete computation. However, particularly in studying the hierarchical principle for

the  S‐matrix, Feynman integrals are more suited for our purpose. Actually in the

analytic  S‐matrix theory we are forced to analyze “bubble diagram functions” ([KS])
in manipulating the unitarity relation; if we regard the  S‐matrix as the Borel sum  0

a formal series with Feynman integrals as its coefficients, a bubble diagram function

is, in a rough description, a phase space integral whose vertex  \delta‐function (i.e., the  \delta-

function   \delta^{\nu}(\sum_{r}[j;r]p_{r}+\sum_{l}[j;l]k_{l}) at the vertex  V_{j} ) is replaced by a Feynman integral
or its complex conjugate. Thus the integral  \hat{F}(\tilde{p}) given in (4.19) is one of the simplest
examples of bubble diagram functions. As we touched upon there, such integrals are,

in principle, coupled with the  u  =  0 problem. We believe that the employment  0

complemented graphs should be useful in analyzing integrals suffering from the  u=0

trouble, and that it nicely fits in with Sato’s intention in emphasizing the generalized

unitarity, rather than the unitarity, in stating Postulate II.
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