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Abstract

In this note we report our recent research project on the exact WKB analysis of additive
discrete Painlevé equations associated with continuous Painlevé equations through Bäcklund
transformations. To exemplify the effectiveness and usefulness of our approach, we consider two
problems; (approximate) invariants and the Stokes phenomena of discrete Painlevé equations.
Here we only make an announcement of the results and outline our approach to these problems.
Details will be discussed in our forthcoming papers.

§1. Introduction

The exact WKB analysis, i.e., WKB analysis based on the Borel resummation

technique, for differential equations was initiated by Silverstone [18] and Voros [22], and
later developed mainly by the French and Japanese schools ([6], [7], [16] and references
cited therein). In this report, to generalize the exact WKB analysis to discrete equations,
we discuss the exact WKB analysis of additive discrete Painlevé equations associated

with continuous Painlevé equations through Bäcklund transformations.
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Every continuous Painlevé equation except for the first one (PI) admits Bäcklund
transformations. It is well known that some discrete Painlevé equations are derived

from these Bäcklund transformations. For example, solutions of the second Painlevé

equation

(PII)   \frac{d^{2}u}{dz^{2}}  =2u^{3}+zu+c

admit Bäcklund transformations of the form

  u=u|_{c\mapsto c+1}=-u-\frac{c+1/2}{u^{2}+du/dz+z/2},
  u=u|_{c\mapsto c-1} =-u-\frac{c-1/2}{u^{2}-du/dz+z/2}

and, by eliminating  du/dz from these two equations, we obtain the following discrete

Painlevé equation known as (alt‐dPI) (cf. [11]):

(alt‐dPI)   \frac{c+1/2}{\overline{u}+u}+\frac{c-1/2}{\underline{u}+u}+2u^{2}+z=0.
The purpose of our research project is to make an asymptotic study of solutions  0

such discrete Painlevé equations in the framework of the exact WKB analysis. That is,

we suitably introduce a large parameter  \eta (i.e., inverse of the semi‐classical parameter)
into the equations and develop an asymptotic study with respect to the asymptotic

parameter  \eta based on the so‐called Borel‐Laplace method, as was done for continuous

Painlevé equations in [14], [4], [15] and [19]. Note that, in the case of (PII) and (alt‐dPI ,
introduction of  \eta is done by scaling of variables

(1.1)   u=\eta^{1/3}\lambda, z=\eta^{2/3}t, c=\eta\zeta

and the equations are transformed into the following form after this scaling:

 -2d^{2}\lambda
(PII)  \eta  \overline{dt^{2}}=2\lambda^{3}+t\lambda+\zeta,

(1.2)   \overline{\lambda}=\lambda|_{\zeta\mapsto\zeta+\eta-1} =-\lambda-\frac{\zeta+
\eta^{-1}/2}{\lambda^{2}+\eta^{-1}(d\lambda/dt)+t/2},
(1.3)   \lambda=\lambda|_{\zeta\mapsto\zeta-\eta-1} =-\lambda-\frac{\zeta-\eta^{-1}/2}
{\lambda^{2}-\eta^{-1}(d\lambda/dt)+t/2},
(alt‐dPI)   \frac{\zeta+\eta^{-1}/2}{\overline{\lambda}+\lambda}+\frac{\zeta-\eta^{-1}/2}{
\underline{\lambda}+\lambda}+2\lambda^{2}+t=0.
(For the sake of simplicity, we attach the same symbols (PII) and (alt‐dPI) to the
scaled equations as the original ones.) Roughly speaking, dealing with both continuous
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Painlevé equations and discrete Painlevé equations simultaneously (that is, as systems  0

differential and difference equations) and making full use of the expansion with respect to
 \eta with the help of the Borel‐Laplace method, we make an asymptotic study of solutions

of discrete Painlevé equations.

In this report, to exemplify the effectiveness and usefulness of our approach, we

discuss the following two problems: The first one is concerned with an invariant  0

discrete Painlevé equations. In the case of continuous Painlevé equations, Hamiltonians

provide approximate first integrals of their solutions. As a counterpart of this fact,

approximate invariants of solutions of discrete Painlevé equations are provided also by

Hamiltonians of continuous Painlevé equations. Here, using our approach, we show this

fact in the case of the above discrete Painlevé equation (alt‐dPI . The second problem
is the Stokes phenomena for (alt‐dPI) when the independent variable  c of (alt‐dPI)
tends to infinity with the variable  z being (arbitrarily) fixed. Applying the exact WKB
analysis to linear differential‐difference equations (Lax pair”) associated with (PII)
and (alt‐dPI) through the isomonodromic deformation theory, we can obtain explicit
connection formulas that describe Stokes phenomena for (alt‐dPI . In this report we
only make an announcement of the results for special cases and outline our approach to

these problems. (For the second problem we have written a more detailed announcement
[12]. This report is considered to be a résumé of [12] for the second problem.) The details
for more general cases will be discussed in our forthcoming papers.

The plan of this report is as follows: In Section 2, to prepare the discussion  0

the above two problems, we construct two kinds of formal solutions of (alt‐dPI . Then
in Section 3 we discuss the first problem, that is, approximate invariants of solutions

of (alt‐dPI . In Section 4, after defining the Stokes geometry (i.e., turning points and
Stokes curves) of (alt‐dPI , we present explicit connection formulas describing Stokes
phenomena for (alt‐dPI . Finally in Section 5 we discuss some future problems related
especially to the second problem.

§2. Formal solutions of (alt‐dPI)

In what follows we concentrate our consideration on the case of (alt‐dPI) associated
with (PII) for the sake of definiteness. Most parts of the discussion can be generalized
to other discrete Painlevé equations associated with continuous Painlevé equations.

To develop the exact WKB analysis of (alt‐dPI , we need its formal solutions. To
this aim we first replace the shift operator  \overline{\lambda} and  \lambda in (alt‐dPI) by

(2.1)   \overline{\lambda}=X\frac{\eta^{-n}}{n!}\frac{\partial^{n}\lambda}
{\partial\zeta^{n}} and   \lambda=X(-1)^{n}\frac{\eta^{-n}}{n!}\frac{\partial^{n}\lambda}{\partial\zeta^
{n}},
respectively. This replacement converts (alt‐dPI) to an  \infty‐order differential equation  0
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WKB type of the form

(2.2)  (2 \lambda^{2}+t) [2\lambda+\sum_{n=1}^{\infty}\frac{\eta^{-n}}{n!}
\frac{\partial^{n}\lambda}{\partial\zeta^{n}}] [2\lambda+\sum_{n=1}^{\infty}(-1)
^{n}\frac{\eta^{-n}}{n!}\frac{\partial^{n}\lambda}{\partial\zeta^{n}}]
 + \zeta [4\lambda+2\sum_{k=1}^{\infty}\frac{\eta^{-2k}}{(2k)!}
\frac{\partial^{2k}\lambda}{\partial\zeta^{2k}}] -\eta^{-1}\sum_{k=1}^{\infty}
\frac{\eta^{-(2k-1)}}{(2k-1)!}\frac{\partial^{2k-1}\lambda}{\partial\zeta^{2k-1}
} =0.

Then, in parallel to the case of continuous Painlevé equations (cf. [14], [4]), we can
construct the following two kinds of formal solutions of (alt‐dPI .

§2.1. Formal power series solution

Assume that  \lambda=\lambda^{(0)} has the following formal power series expansion with respect
to  \eta^{-1} :

(2.3)  \lambda^{(0)} =\lambda_{0}(\zeta)+\eta^{-1}\lambda_{1}(\zeta)+\eta^{-2}\lambda_
{2}(\zeta)+\cdot \cdot \cdot .

Then, by substituting (2.3) into (2.2), we readily find that the top order term  \lambda_{0}(\zeta)
satisfies an algebraic equation

(2.4)  2\lambda_{0}^{3}+t\lambda_{0}+\zeta=0

and the lower order terms  \lambda_{j}(\zeta)  (j \geq 1) are determined in a unique and recursive

manner. Thus we obtain the formal power series solution  \lambda^{(0)} of (alt‐dPI .
Note that (2.4) is the same as the algebraic equation satisfied by the top order term

of the formal power series solution of (PII). More generally, we can verify the following

Proposition 2.1. The formal power series solution  \lambda^{(0)} of (alt‐dPI) coincides
with the formal power series solution of (PII).

§2.2. Transseries solution

The formal power series solutions constructed above are uniquely determined up to

the choice of solutions of (2.4) and contain no free parameters. Besides the formal power
series solutions we can construct formal solutions of (alt‐dPI) with free parameters,
called transseries solutions, in the following way.

Assume that a solution of (alt‐dPI) has an exponentially small correction to the
formal power series part as follows:

(2.5)  \lambda=\lambda^{(0)}+\lambda^{(1)}+\lambda^{(2)}+\cdot \cdot \cdot ,

where  \lambda^{(0)} is a formal power series solution of (alt‐dPI) and  \lambda^{(1)}  + denotes an
exponentially small correction. Then, substituting the expansion (2.5) into (alt‐dPI ,
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we find that the subleading part  \mu=\lambda^{(1)} satisfies

(2.6)  (2(\lambda^{(0)})^{2}+t)[(\underline{\lambda^{(0)}}+\lambda^{(0)})
(\overline{\mu}+\mu)+ (\overline{\lambda(0)}+\lambda^{(0)})(\underline{\mu}+\mu)
]
 +4\lambda^{(0)}(\overline{\lambda(0)}+\lambda^{(0)})(\underline{\lambda^{(0)}}+
\lambda^{(0)})\mu

 + \zeta(2\mu+\overline{\mu}+\underline{\mu})-\frac{1}{2}\eta^{-1}
(\overline{\mu}-\underline{\mu})=0.
Let us consider a WKB solution of (2.6).

(2.7)   \mu=\exp(\eta\int^{\zeta}Z_{-1}(\zeta)d\zeta)\sum_{n=0}^{\infty}\mu_{n}(\zeta)
\eta^{-n}
Note that, in view of (2.1),

(2.8)  \overline{\mu}=e^{z_{-1}}(\mu_{0}+O(\eta^{-1}))

holds for (2.7). Hence, by substituting (2.7) into (2.6) and taking the leading part  0

both sides with respect to  \eta^{-1} , we have the following equation for  Z_{-1} :

(2.9)  (4\lambda_{0}^{3}+2t\lambda_{0}+\zeta)(e^{z_{-1}}+e^{-z_{-1}})+(24\lambda_{0}
^{3}+4t\lambda_{0}+2\zeta)=0,

that is,

(2.10)  Z_{-1} = \cosh^{-1}\frac{8\lambda_{0}^{3}-\zeta}{\zeta} =
\log(\frac{8\lambda_{0}^{3}-\zeta}{\zeta}+\frac{4\lambda_{0}^{2}}{\zeta}
\sqrt{6\lambda_{0}^{2}+t}) .

Once the exponential term (i.e., the phase factor)  Z_{-1} is fixed, the amplitude part  \mu_{n}

 (n = 0,1,2, \ldots) of a WKB solution (2.7) is determined recursively. Furthermore, the
remainder part (i.e.,  \lambda^{(2)}  +\cdots ) of the exponentially small correction of (2.5) is also
recursively determined from  \lambda^{(0)} and  \mu=\lambda^{(1)} . Thus we obtain a transseries solution  0

(alt‐dPI) of the form

(2.11)   \lambda=\lambda^{(0)}+\eta^{-1/2}c\exp(\eta\int^{\zeta}\cosh^{-1}
\frac{8\lambda_{0}^{3}-\zeta}{\zeta}d\zeta)x^{\mu_{n}(\zeta)\eta^{-n}}+\cdot 
\cdot \cdot ,

where  c\in \mathbb{C} denotes a free parameter.
Recall that a transseries solution can be constructed also for the continuous Painlevé

equation (PII) and has the following explicit form:

(2.12)   \lambda=\lambda^{(0)}+\eta^{-1/2}\tilde{c}\exp(\eta\int^{t}\sqrt{6\lambda_{0}^
{2}+t}dt)_{x^{i_{n}}}(\zeta)\eta^{-n}+\cdot \cdot \cdot .

(Cf. [13]; It is also regarded as a special case of 2‐parameter instanton‐type solutions
constructed in [4].) Between these two transseries solutions we have the following rela‐
tion.
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Proposition 2.2. Up to the constants of integration, the following relation holds:

(2.13)   \int^{t}\sqrt{6\lambda_{0}^{2}+t}dt=\int^{\zeta}\cosh^{-1}\frac{8\lambda_{0}
^{3}-\zeta}{\zeta}d\zeta.
In other words,

(2.14)   \frac{\partial}{\partial\zeta}\sqrt{6\lambda_{0}^{2}+t}= \frac{\partial}
{\partial t}\cosh^{-1}\frac{8\lambda_{0}^{3}-\zeta}{\zeta}.
Corollary 2.3.

(2.15)   \omega_{-1} = \sqrt{6\lambda_{0}^{2}+t}dt+\cosh^{-1}\frac{8\lambda_{0}^{3}-
\zeta}{\zeta}d\zeta
is a closed 1‐form in  \mathbb{C}^{2}

 (t,\zeta)
.

These results strongly suggest that we should deal with the following system  0

differential equations instead of discussing (alt‐dPI) solely.

(2.16)  \{\begin{array}{l}
\eta^{-2}\frac{d^{2}\lambda}{dt^{2}} =2\lambda^{3}+t\lambda+\zeta,
\overline{\lambda} (^{d}=^{e} X\frac{\eta^{-n}}{n!}\frac{\partial^{n}\lambda}
{\partial\zeta^{n}}) =-\lambda-\frac{\zeta+\eta^{-1}/2}{\lambda^{2}+\eta^{-1}
(d\lambda/dt)+t/2}.
\end{array}
As a matter of fact, extending Proposition 2.2 to the remainder parts of transseries

solutions, we can verify

Proposition 2.4. The system (2.16) has the following transseries solution:

(2.17)  \lambda(t, \zeta, \eta;\alpha)=\lambda^{(0)}+\eta^{-1/2}\alpha\lambda^{(1)}+
(\eta^{-1/2}\alpha)^{2}\lambda^{(2)}+\cdot \cdot \cdot ,

where  \lambda^{(0)} is a formal power series solution and  \lambda^{(k)}  (k\geq 1) is of the for

(2.18)   \exp(k\eta\int_{(t_{0},\zeta_{0})}^{(t,\zeta)}\omega_{-1})_{X}\eta^{-n}
\lambda_{n}^{(k)}(t, \zeta) .

Here  \omega_{-1} is a closed 1‐form given by (2.15) and  \alpha is an infinite series of the for

(2.19)   \alpha=\sum_{l=0}^{\infty}\alpha_{l}e^{2\pi il\eta\zeta} (\alpha_{l} \in 
\mathbb{C}) .

Proposition 2.4 is considered as a generalization of Proposition 2.1 to transseries
solutions.
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Remark. Reflecting the multi‐valuedness of (2.10), the infinite series  \alpha appears
in the description of transseries solutions. It is essentially  c in (2.11). Note that, in
dealing with transseries solutions, we implicitly assume the added exponential terms

are exponentially small, which excludes terms with negative  l in (2.19).

§3. Approximate invariants for (alt‐dPI)

As the discussion in the preceding section suggests, we should consider (alt‐dPI)
and (PII) simultaneously and it is certainly effective to deal with the system (2.16) in the
study of solutions of (alt‐dPI . To show the effectiveness of this approach, we discuss
an (approximate) invariant of (alt‐dPI) and its relationship with the Hamiltonian  0

(PII) in this section.
Let us start with the following

Proposition 3.1. Let  K=K(\lambda, \overline{\lambda}, \zeta, t) be defined by

(3.1)  K=K( \lambda, \overline{\lambda}, \zeta, t)= \frac{\zeta}{2} (-
\frac{2\lambda\overline{\lambda}}{\lambda+\overline{\lambda}}+\frac{t}{\lambda+
\overline{\lambda}}+\frac{\zeta}{(\lambda+\overline{\lambda})^{2}}) .

Then, if  \lambda is a formal power series solution or a transseries solution of (alt‐dPI),
 K(\lambda, \overline{\lambda}, \zeta, t) is preserved modulo  O(\eta^{-1}) under the shift  \zeta\mapsto\zeta+\eta^{-1} , that is,

(3.2)  K-\overline{K}\equiv 0 mod O(\eta^{-1})

holds.

Proof. It suffices to verify  K-K\equiv 0  (mod O(\eta^{-1})) . Since

(3.3)   K= \frac{1}{2}(\zeta-\eta^{-1}) (-\frac{2\lambda\underline{\lambda}}{\lambda+
\underline{\lambda}}+\frac{t}{\lambda+\underline{\lambda}}+\frac{\zeta-\eta^{-1}
}{(\lambda+\underline{\lambda})^{2}}) ,

we have

 K- K \equiv \frac{\zeta}{2} [-2\lambda(\frac{\overline{\lambda}}{\lambda+
\overline{\lambda}}-\frac{\underline{\lambda}}{\lambda+\underline{\lambda}})
 +t( \frac{1}{\lambda+\overline{\lambda}}-\frac{1}{\lambda+\underline{\lambda}})
+\zeta(\frac{1}{(\lambda+\overline{\lambda})^{2}}-\frac{1}{(\lambda+
\underline{\lambda})^{2}})]

modulo  O(\eta^{-1}) . Hence, in view  0

  \frac{\overline{\lambda}}{\lambda+\overline{\lambda}}-
\frac{\underline{\lambda}}{\lambda+\underline{\lambda}} = (1-\frac{\lambda}
{\lambda+\overline{\lambda}}) - (1-\frac{\lambda}{\lambda+\underline{\lambda}}) 
=-\lambda(\frac{1}{\lambda+\overline{\lambda}}-\frac{1}{\lambda+
\underline{\lambda}}) ,
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we obtain

 K- K \equiv \frac{\zeta}{2} [(2\lambda^{2}+t) (\frac{1}{\lambda+
\overline{\lambda}}-\frac{1}{\lambda+\underline{\lambda}}) +\zeta(\frac{1}
{(\lambda+\overline{\lambda})^{2}}-\frac{1}{(\lambda+\underline{\lambda})^{2}})]
 =  \frac{\zeta}{2} (\frac{1}{\lambda+\overline{\lambda}}-\frac{1}{\lambda+
\underline{\lambda}}) ((2\lambda^{2}+t)+\zeta(\frac{1}{\lambda+
\overline{\lambda}}+\frac{1}{\lambda+\underline{\lambda}}))
 \equiv 0 mod O(\eta^{-1}) .

Proposition 3.1 claims that  K is an approximate invariant (i.e., invariant modulo
 O(\eta^{-1})) of (alt‐dPI .

On the other hand, the continuous Painlevé equation (PII) has an expression as
Hamiltonian system

 -1d\lambda \partial H
(3.4)  \eta \overline{dt} = \overline{\partial},

with the Hamiltonian

  \eta^{-1}\frac{d}{dt}  =- \frac{\partial H}{\partial\lambda}

(3.5)  H=H( \lambda, \nu, t, \zeta)= \frac{1}{2}\nu^{2}- (\frac{1}{2}\lambda^{4}+\frac
{1}{2}t\lambda^{2}+\zeta\lambda) .

Between the invariant  K of (alt‐dPI) and the Hamiltonian  H of (PII), there exists the
following relation:

Proposition 3.2. Identifying  \nu with  \eta^{-1}(d\lambda/dt) , we solve the defining equatio

(1.2) of the Bäcklund transformation with respect to  \nu=\eta^{-1}(d\lambda/dt) as

(3.6)   \nu=\nu(\lambda, \overline{\lambda}, \zeta, t)=-\frac{\zeta+\eta^{-1}/2}
{\lambda+\overline{\lambda}}- (\lambda^{2}+\frac{t}{2}) .

Then the following relation holds:

(3.7)  H( \lambda, \nu(\lambda, \overline{\lambda}, \zeta, t), t, \zeta)\equiv 
K(\lambda, \overline{\lambda}, \zeta, t)+\frac{t^{2}}{8} mod O(\eta^{-1}) .

Proof. Substitution of (3.6) into (3.5) immediately entails

LHS of (3.7)

  \equiv \frac{1}{2} (\frac{\zeta}{\lambda+\overline{\lambda}}+\lambda^{2}+\frac
{t}{2})^{2}- (\frac{1}{2}\lambda^{4}+\frac{1}{2}t\lambda^{2}+\zeta\lambda)
 =  \frac{\zeta^{2}}{2}\frac{1}{(\lambda+\overline{\lambda})^{2}}+\frac{\zeta}
{\lambda+\overline{\lambda}}(\lambda^{2}+\frac{t}{2})+\frac{1}{2}(\lambda^{2}+
\frac{t}{2})^{2}- (\frac{1}{2}\lambda^{4}+\frac{1}{2}t\lambda^{2}+\zeta\lambda)
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 =  \frac{\zeta}{2} [\frac{\zeta}{(\lambda+\overline{\lambda})^{2}}+
\frac{2\lambda^{2}+t}{\lambda+\overline{\lambda}}-2\lambda] +\frac{t^{2}}{8}
 =  \frac{\zeta}{2} [\frac{\zeta}{(\lambda+\overline{\lambda})^{2}}+\frac{t-
2\lambda\overline{\lambda}}{\lambda+\overline{\lambda}}] +\frac{t^{2}}{8}
 = K( \lambda, \overline{\lambda}, \zeta, t)+\frac{t^{2}}{8} mod O(\eta^{-1}) .

Note that  t^{2}/8 in the right‐hand side of (3.7) is an innocent term when considering
the invariant of (alt‐dPI . Thus Proposition 3.2 tells us that an approximate invariant
of (alt‐dPI) is readily obtained from the Hamiltonian and the Bäcklund transformation
of (PII).

Similar relations as (3.7) also hold for the other Painlevé equations (PJ)  (J  =

III, IV, V, VI) and, as its consequence, approximate invariants of the associated discrete
Painlevé equations are obtained from the Hamiltonians of (PJ). The details will be
discussed in our forthcoming paper.

§4. Stokes phenomena for (alt‐dPI)

As another example showing the effectiveness of our approach, we discuss the Stokes

phenomena for (alt‐dPI) from the viewpoint of the exact WKB analysis in this section.
Here we only explain an outline of our discussion and present some explicit formulas

that describe Stokes phenomena for (alt‐dPI . For more details we refer the reader to
[12].

§4.1. Stokes geometry of (alt‐dPI)

The transseries solution constructed in Section 2 provides a formal solution  0

(alt‐dPI) for each fixed  t . Its phase factor (more precisely, phase factor of  \lambda^{(1)} in the
 \zeta‐direction) is given by

(4.1)  Z_{-1,(\pm,l)}( \zeta) :=Cosh^{-1}(\frac{8\lambda_{0}^{3}-\zeta}{\zeta}) +2\pi 
il
 ={\rm Log}( \frac{8\lambda_{0}^{3}-\zeta}{\zeta}\pm\frac{4\lambda_{0}^{2}}
{\zeta}\sqrt{6\lambda_{0}^{2}+t}) +2\pi il.

Here  Cosh^{-1} and  {\rm Log} designate the principal branch of  \cosh^{-1} and  log , respectively,

and we use the suffix  (\pm, l)  (l \in \mathbb{Z}_{\geq 0}) to specify the branch of (2.10). This naturally
leads to the following definition of the Stokes geometry (i.e., turning points and Stokes
curves) of (alt‐dPI .
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Definition 4.1. (i) A point  \zeta=\hat{\zeta} is said to be a turning point of (alt‐dPI)  (0
type  (*, l)  =(*', l') ) if there exist two subces  (*, l)  \neq(*', l') for which

(4.2)  Z_{-1,(*,l)}(\hat{\zeta})=Z_{-1,(*',l')}(\hat{\zeta})

holds.

(ii) A Stokes curve of (alt‐dPI) (of type  (*, l)  =(*', l') ) is defined by

(4.3)   \Im\int_{\hat{\zeta}}^{\zeta}\prime,
where  \hat{\zeta} is a turning point at which (4.2) is satisfied.

For example, Figure 1 shows the Stokes geometry of (alt‐dPI) when  t is fixed at
 t  =  e^{\pi i/6} . (Note that, as turning points and Stokes curves are defined through an

 q_{1}

 r_{1}

 p_{1}

 q_{0}

 p_{2}

(I)  r_{2}

(II)  q_{2}

(III)

Figure 1. Stokes geometry of (alt‐dPI) for  t=e^{\pi i/6}.

algebraic function  \lambda_{0} satisfying (2.4), the Stokes geometry is a geometric object on its
Riemann surface. Taking account of this fact, we write Figure 1 on  \lambda_{0} ‐plane. In the

current situation the Riemann surface of  \lambda_{0} can be identified with  \lambda_{0} ‐plane since we can

take  \lambda_{0} as its global coordinate.) When  t=e^{\pi i/6} , there exist seven turning points  p_{i},  q_{j}

and  r_{k}  (1 \leq i\leq 2,0\leq j \leq 2,1 \leq k\leq 2) , where  p_{i},  q_{j} and  r_{k} are of type  ((+, l), (-, l)) ,

 ((+, l), (+, l')) and  ((+, l), (-, l+2)) , respectively.
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§4.2. Connection formula for (alt‐dPI)

On each Stokes curve in Figure 1 it is expected that a Stokes phenomenon oc‐

curs with formal power series solutions and transseries solutions of (alt‐dPI . In this
subsection, taking three regions (I), (II) and (III) specified in Figure 1 for the sake  0

definiteness, we seek for explicit connection formulas that describe a Stokes phenomenon

between Regions (I) and (II) and that between Regions (II) and (III).
For that purpose we employ linear differential‐difference equations (Lax pair”)

associated with (PII) and (alt‐dPI . To be more specific, we use the following system
of linear differential‐difference equations:

(4.4)  ( \eta^{-2}\frac{\partial^{2}}{\partial x^{2}}-Q_{ii})\psi=0,
(4.5)   \eta^{-1}\frac{\partial\psi}{\partial t}=A_{II}\eta^{-1}\frac{\partial\psi}
{\partial x}-\frac{\eta^{-1}}{2}\frac{\partial A_{II}}{\partial x}\psi,

 -1\partial\psi
(4.6)  \overline{\psi}=gii\eta \overline{\partial x}+f_{ii}\psi,
where  Q_{II},  A_{II} , fii and gii are explicitly given by

Qii  =x^{4}+tx^{2}+2 \zeta x+\nu^{2}-(\lambda^{4}+t\lambda^{2}+2\zeta\lambda)-\eta^{
-1_{\overline{x-\lambda}}}+\eta^{-2}\frac{3}{4(x-\lambda)^{2}},
 A_{II}=   \frac{1}{2(x-\lambda)},
 gii=  ((2\nu+2\lambda^{2}+t)(x-\lambda)(x-\overline{\lambda}))^{-1/2},
 f_{ii}= (x^{2}- \lambda^{2}-\nu+\eta^{-1}\frac{1}{2(x-\lambda)}) g_{II}.

Note that, as is well known, (PII) and (alt‐dPI) describe the compatibility condition  0

the system  (4.4)-(4.6) (cf. [10], [11], [17]).
In what follows we take a turning point as an endpoint  (t_{0}, \zeta_{0}) of the integral

in the definition (2.18) of a transseries solution  \lambda(t, \zeta, \eta;\alpha) and substitute it into the
coefficients of the Lax pair  (4.4)-(4.6) . Then we can confirm that on each Stokes curve

of (alt‐dPI) some degenerate configuration is observed for the Stokes geometry of the
linear equation (4.4) and, as its consequence, the Stokes geometry of (4.4) becomes
different according as  \lambda_{0} belongs to Region (I), (II) or (III). On the other hand, by
applying the exact WKB analysis to the system  (4.4)-(4.6) , in particular, to the linear

equation (4.4), we can explicitly compute the Stokes multipliers of (4.4). Since the
computation of Stokes multipliers through the exact WKB analysis heavily depends

on the configuration of Stokes curves, the expressions for the Stokes multipliers thus
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obtained consequently differ according as  \lambda_{0} belongs to Region (I), (II) or (III). Thus,
if we let  s_{k}^{(J)} (  k=1,  \ldots,  6,  J=I , II, III) denote the Stokes multipliers of (4.4) when  \lambda_{0}

belongs to Region (J) (note that there exist six Stokes multipliers for (4.4)) and further  i

we assume that two transseries solutions  \lambda(t, \zeta, \eta;\alpha_{J}) in Region (J) and  \lambda(t, \zeta, \eta;\alpha_{J+1})
in Region  (J+ 1) define the same analytic solution of (alt‐dPI , then the following
relations should hold thanks to the “isomonodromy property

(4.7)  s_{k}^{(J)}(\alpha_{J})=s_{k}^{(J+1)}(\alpha_{J+1}) (k=1,2, \ldots, 6) .

As we mentioned above, the expression of  s_{k}^{(J)} is different from that of  s_{k}^{(J+1)} and hence

(4.7) provides a nontrivial constraint on  \alpha_{J} and  \alpha_{J+1} . In fact, (4.7) gives explicit
connection formulas that describe the Stokes phenomena for transseries solutions  0

(alt‐dPI) between Regions (J) and  (J+1) . For the explicit formulas for  s_{k}^{(J)} we refer
the reader to [12]. Using the formulas for  s_{k} given in [12], we obtain the following

(J)

connection formula for (alt‐dPI :

Connection formula for (alt‐dPI .

Suppose that the transseries solutions  \lambda(t, \zeta, \eta;\alpha_{J}) in Region (J) (  J=I , II, III) define
the same analytic solution of (alt‐dPI). Then the following relations hold among the
free parameters  \alpha_{J}.

(4.8)  \alpha ii=\alpha_{I}(1+e^{2\pi i\eta\zeta}) ,

(4.9)   \alpha iii=\alpha ii+\frac{i}{2\pi}e^{2\pi i\eta\zeta}.

Remark. In terms of the coefficients  \alpha_{J,l} of the expression (2.19) of  \alpha_{J} , the
formulas (4.8) and (4.9) can be expressed also as

 (4.10)  \alpha II,  l  =\alpha_{I,l}  +  \alpha_{I,l-1},
 i

 (4.11)  \alpha III,  l  =\alphaII,  l  +
 \overline{2\pi}  \delta_{l1}

 (l=0,1,2, \ldots) , where  \delta_{jk} denotes Kronecker’s delta and  \alpha_{I,-1}  =0.

Remark. The relation (4.9) between  \alpha ii and  \alpha iii is the same as the connection
formula for Stokes phenomena of the continuous first Painlevé equation (PI) discussed
in [19]. Similarly, the relation (4.8) between  \alpha_{I} and  \alpha ii is the same as the connection
formula for parametric Stokes phenomena of the continuous second Painlevé equation

(PII) studied by Iwaki [9]. It is interesting that both Stokes phenomena of (PI) type
and those of (PII) type are observed with the discrete Painlevé equation (alt‐dPI .
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§5. Related future problems

In this report we have discussed two problems: (approximate) invariants and Stokes
phenomena of the discrete Painlevé equation (alt‐dPI). A key point of our approach is to
consider both equations (alt‐dPI) and (PII) simultaneously and we hope the discussions
so far successfully exemplify the effectiveness of our approach. However, to complete

these analyses, in particular, to understand the structure of Stokes phenomena for

(alt‐dPI) more thoroughly, we have still several problems to be studied.
First, we have obtained the explicit connection formulas (4.8) and (4.9) for transseries

solutions of (alt‐dPI) in this report, but transseries solutions are not general solutions
of (alt‐dPI), that is, they do not contain sufficiently many free parameters. Judging
from our experiences with continuous Painlevé equations (cf., e.g., [19], [20]), we have
to investigate Stokes phenomena for the so‐called “instanton‐type solutions A typical

way of constructing instanton‐type solutions is to employ the multiple‐scale analysis.

This was done in [4] for Painlevé equations and later extended to higher order Painlevé
equations in [1], [2], [21]. In the current situation, as (alt‐dPI) is considered to be an
 \infty‐order differential equation by the replacement (2.1), we need to deal with a system
of two differential equations, one of which is of  \infty‐order (in the variable  \zeta ) and the
other of which is of second order (in the variable t). It is an interesting problem to
apply the multiple‐scale analysis to such a system of (alt‐dPI) and (PII) to obtain its
instanton‐type solutions.

Second, in this report we only discuss Stokes phenomena for (alt‐dPI) on some
particular Stokes curves and do not discuss Stokes phenomena on the whole Stokes

curves. To understand the structure of Stokes phenomena for (alt‐dPI) globally, we
again have to take into account the fact that (alt‐dPI) is considered as an  \infty‐order
equation. For example, it is observed in Figure 1 that there are several crossing points

of Stokes curves for (alt‐dPI). Such crossing points of Stokes curves are often observed
for higher order ordinary differential equations with a large parameter and “new Stokes

curves” and “virtual turning points introduced respectively by [5] and [3], appear in
connection with crossing points of Stokes curves (cf. [8] for more details of new Stokes
curves and virtual turning points). Thus, to obtain the global understanding of Stokes
phenomena, we also need to analyze the global structure of new Stokes curves and

virtual turning points of (alt‐dPI). We believe (alt‐dPI) provides a good example  0

 \infty‐order nonlinear differential equations with intriguing Stokes geometry.

Finally, it goes without saying that it is very important to extend the analysis  0

Stokes phenomena for (alt‐dPI) reported in Section 4 to the other Painlevé equations
and the associated discrete Painlevé equations. We hope we can discuss these problems

in our forthcoming articles.
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