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Transformations of KZ type equations
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Abstract

The middle convolution introduced by Katz is extended to an operation on a regular holo-
nomic system by Haraoka. We study this operation on a KZ type equation and we clarify how
the conjugacy classes of resulting reside matrices under this operation are determined in terms
of the original residue matrices and examine the relation with other related transformations.

§1. Introduction

Katz [4] introduces the middle convolution and Dettweiler-Reiter [2] interprets this
and an addition as operations on a Fuchsian system of Schlesinger canonical form. The
author [5] defines these operations on linear ordinary differential equations of arbitrary
order and studies the analytic properties of their solutions.

Since the rigid Fuchsian ordinary differential equation is obtained by a successive
application of these operations on the trivial equation u’ = 0, we obtain many global
analytic properties of its solution by the analysis of these operations (cf. [5]). In this
analysis it is a key that the structure of the transformation by these operations on the
space of Fuchsian differential equations is understood as an action of the Weyl group of
a Kac-Moody root space by Crawley-Boevey [CB| and then the equations are classified
by their local monodromies of its solutions or their spectral types which are identified
with roots of the root space.

Haraoka [3] extends the middle convolution to an operation on regular holonomic

systems. As a consequence, any rigid Fuchsian system of Schlesinger canonical form
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can be naturally extended to a KZ type equation. If the rigid Fuchsian system has
more than three singular points, the solution of the corresponding KZ type equation
can be regarded as a hypergeometric function with several variables and hence we have
a plenty of examples as is shown in §5. Appell’s hypergeometric function is the simplest
example. The irreducibility of the monodromy group of the solution space of the KZ
type equation is studied by [7] in this point of view.

For our further study of the KZ type equation we need to analyze the transfor-
mation of local monodromies or the spectral type under these operations, which we
will study in this paper. The integrability condition of the equation plays an essential
role in analyzing the transformation. We will also examine the symmetry of the KZ
type equation related to these operations, which also give other transformations of the
equation.

8§2. KZ type equation and integrability condition

A Pfaffian system

(2.1) M:du= Y Ayt

d(zi — ;)
0<i<j<n Li = Tj

with an unknown N vector u and constant square matrices A; ; of size IV is called a
KZ (Knizhnik-Zamolodchikov) type equation of rank N, which equals the system of the

equations
ou A@V
ox; T; — Ty

0<v<n
vF#i

(2.2)

with denoting A;; = A; ;. The matrix A; ; is called the residue matrix of M at x; = x;.
Here we always assume the integrability condition

[Ai,j:Ak,Z] =0 (V{Z,j,]{?,g} C {0,...,n}),

(2.3)
[Aijs Aip + Ajel =0 (Wi, 5, k} € {0, m}),

which follows from the condition ddu = 0. Here 4, j, k, £ are mutually different indices.

Remark 1. We can also study the KZ type equation (2.1) such that u is a function
of (xg,...,z4) and z, = a, € Cfor v = ¢+ 1,...,n. In this case A4; ; have no meaning
for {i,j} C ¢+ 1,...,n and in the integrability condition (2.3) the relations containing
such A; ; are not necessary. Most of the results in this paper are naturally extended to
this case (cf. Theorem 4.1 ii)).
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Definition 2.1.  We use the following notation.

Ai=Ap=4,=0, A ;=A4;, (i,j€{0,1,...,n+1}),

n
Ai,n+1 = } Ai,u7
v=0

Ail,iz,...,ik = Z Aip,iq ({11,,Zk} C {0,,n+1})

1<p<q<k

The matrix A; ;11 is called the residue matrix of M at x; = oco.

We have

[A1,2, Ao nt+1] = AlQ?ZAOV]_ [A1,2, 401 + Ao2] =0,

[Aon+1,A01 + A1 1] = [Z Ao, Z A1 k] Z Ap1+ Aok, A1 k] =0

=2
[Ao.1,A01 + Aont1 + A1 nt1] = [Aog + Aont1 + A1 ns1, Aoa + Aontr + At ]
—[Aon+1, 401 + Ao nt1 + A1 1]
—[A1n+1, 401 + Ao nt1 + A1ns1] =0

and therefore in general, A; ; satisfy

(24) [Ai’j7Ak,g] =0 (\V/{Z,], k7£} C {0, e, + 1}),
(25) [AZ g Al kTt Aj,k] =0 (V{Z,j, ]{7} C {0, o, Tt 1})

Conversely the assumption (2.4) implies (2.3) and moreover (2.5), which follows from

[Aij, Ai + Ajp] = —[Ai, > Ag ]
£e{0,...,n+11\{¢,5}

for {7,j,k} € {0,...,n}.
Hereafter we assume (2.4) and (2.5). If 1 <k <n+ 1, we have

[Ao.1,Ao,... k] = [Ao.1, Z Al = A017A01+ZAOJ+ZA1J

0<i<j<k 71=2 j=2

Then by the symmetry of indices we have
(2.6) [4;;,A;]=0 if {i,j} Cc Jor {i,j}NnJ =0

for J € {0,...,n+ 1} and therefore we have the following lemma.
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Lemma 2.2. IfI,JC{0,....,n+ 1} satisfy INJ =0 or I C J, then

[A7, As] = 0.
Note that
n n n
ZAi,n—i—l = Z(-Z&,y) = —2A0,...n,
i=0 =0~ j=0
n 1 n n n n
Ap,.onv1 = Ak, .on + ZAi,n+1 =3 Z ZAi,j - Z Z A j
i—k i—k j—k i—k j=0
n k—1 1 n n
= =22 A= 52 0 Au
i—k j=0 i—k j—k
k—1k—1 n k-1
Ao, k=1 — Ak,onr1 = ( ZA i+ 2ZZA” + Z ZA ,3> = Ao, n-
1=0 j=0 i=k j=0 i=k j=k

We assume that the system {4, ;} is irreducible, namely, there exists no proper
invariant subspace V of C with A, ;V C V for all {i,j}. Since any A; ; with {i,j} C
{0,...,n} satisfies [A; j, Ao,...n] =0, Ag

a scalar matrix and there is a complex number k satisfying

n commutes with any A; ;. Hence Ag, ., is

.....

(27) AO,.A.,n - 'L/V'IN

and therefore

(2.8) ZAi,n—i—l = —2klN,
=0

(2.9) A — A{O,...,n+1}\[ = rln (VI C {0, cee n})

§3. Addition and Middle convolution of KZ type equation

In this section we review the middle convolution of the KZ type equation defined
by [3]. The addition M’ = Ad((zx — 7)) M with 1 < k < j <nand A € Cis a
transformation of (2.1) defined by

M ocdu =Y (A + Aidj, )M o

— xT; —l'j
0<i<j<n

The convolution M = mMCy,, , M of M with € C is given by

Midi=| 3O 4, i m) ) g
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with
k
0 0 0
(31) Aor==k | Ao1r - Aox+p - Aom | €EM@N,C) (1<k<n)
0 . 0 . 0
= (@4Qq4‘ﬂépﬂ)5nk)1§p5n,
1<g<n
i J
Al,‘]
g Aij + Aoy —Ao,;
(33) A= . € M(nN,C)
' (1<i<j<n)
J —Ao,i Aii+ Aoy
AfL7J
= (Ai,j5p,q + A0,j0p,i(0q,i — 8q.5) + A0,i0p,;(0q,5 — 6q,¢)) 1 <p<n’
1<g<n

Here Ao and A; ; are block matrices of size n whose entries are square matrices of size
N and M (r,C) denotes the space of square matrices of size r whose entries are complex
numbers.

Definition 3.1. The above matrices 12107 r and 1211-7 ;j define linear transformations
of C™V and then we introduce the following notation.

V::an:{v: (>

pi(v) == (v:(E>E(C"N,j:1,...,n),

Un

ij(CN (jzl,...,n)},

(V) =)= | ¢ | (pioy(v)=div, veCT)
0
Vj = Lj((CN) ~ CN,
Vijiiny = Vi ® - @ Vjy,
Ui (V) = (0)jy, i = 1y (V) + - 15 (0) (v e CY),
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Vit 7= by, (CV) 22 €N

Lyeeey

Under the above notation we put
0

ICj = (Ker Ao’j) =37 Ker(f)‘lo,j ~ Ker Ao,j,

v

Koo = {( ) | Ap,cov = ,uv} =11, n(Ker (Ao — ) =~ Ker (Ag,co — 1),

v

;c’:éélcj, K=Ksx+K".

i=1

Then K; and K, are stable under fli, j and fli’ ;j induce linear transformations on cnV /K
and then the corresponding matrices with respect to a base of C*V /K are denoted by
A; j, respectively. Note that Koo N K’ = {0} if 4 # 0. Then A; ; are square matrices of
size nIN — dim K and the middle convolution M = mcg, , M is the KZ type equation

0<i<j<n

Here we note that mc;, _, omcy, , = id.

When z1,...,z, are fixed in (2.1), u is a solution of the ordinary differential equa-
tion
du - AO i
3.5 — =) —
(3:5) dz ; T — T “

with = xg. Dettweiler-Reiter [2] studied its middle convolution

du & z‘_lo,j _
(3.6) 5_;—:17_%@

and analyzed the conjugacy classes of 14_1071, .oy Ag a1 in terms of those of Ag 1, ..., Agnt1-
The main purpose of this paper is to determine the conjugacy classes of other /L-, j

8§4. Conjugacy classes of residue matrices

Let A be a square matrix of size N. Then there exist positive integers r, my,...,m,
and complex numbers Aq,..., A, such that

N=mi+--+m,,

my, > m, if A\, =\, and v >/
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and moreover

k
(4.1) rank H(A—)\j):N—(m1+~~—|—mk) (k=1,...,7).

=1

Then the set

(4.2) {PMadmrs o Pl }

determines the conjugacy class of A and we call this set the eigenvalue class of A and
denote it by [A]. If m; = 1 in (4.2), the element [);],,, in (4.2) may be simply expressed
by A;. Moreover we put

[A], = {P‘l]kmw cees [)‘r]kmr} and  [[Alm]rx = [Alrm

for a positive integer k.

If a square matrix B belongs to the closure of the conjugacy class in M (N,C), B is
said to be in the eigenvalue class (4.2) in the weak sense. If \; # \; for 1 <i < j <,
then A is semisimple and the conjugacy class is closed and the eigenvalue class of the
matrix B equals (4.2) in the above.

For the KZ type equations which we want to study, the reside matrices A; ; have
complex parameters and in most cases they are semisimple for generic values of the
parameters. For some special values of the parameters A; ; may not be semisimple,
but the conjugacy classes of A; ; may be obtained by the analytic continuation of the
parameters and therefore we assume A; ; are semisimple (cf. [5, Theorem 12.10] and 7,
Lemma 2.1]). Even without this assumption most of our results in this paper are valid.

If A, B e M(N,C) satisfy AB = BA, then A and B have a simultaneous (gener-
alized) eigenspace decomposition and we can define a simultaneous eigenvalue class

0 1
denoted by [A : B]. For example A = ( o, ) and B = ( 2, ), we put
-1 3
[A:B]={[0:1]1,[0:2]5,[-1:3]1}.
Putting

[AO,j] = {[)‘j,l]mj,m ey [Aj,"’j]mj,r» } (j = 1, o, n + 1),

J
we define the generalized Riemann scheme of the equation (3.5) by
T =1 rT=xy - XT=Tp o T=Tppl =00

[)‘171]m1,1 [)‘271]7711,1 T [>‘I€71]mk,1 T [)\n+171]mn+1,1
(4.3)

[>\177"1]m1,7'1 [)‘2,r2]m2,r2 [)‘k,m]mk,% [An+1,rn+1]mn+1,rn+1
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Here and hereafter in this section we use the notation

(4.4) Apco = A0n+1s Mooy = Aty Too =Tnt1 and Mooy = Myt u.
For Ag  given by (3.1) we have

Ao (0)e = (Ao + p)v),,
(v)y =0

Apk(v), =0 mod Vj (ve{l,....,n}\ {k}),
Aop(v) =pv (v EKy),
Agp(v) =0 (veK,,ve{l,...,no0}\{k}).

Hence we have
[Aok] = [Aok + 1] U [0](n—1)n
and

i [I’L‘KQTAO,I@] (v =k),
[Aok]lc, = 4 [Olker a0, ] (v e{1,...,n}\ {k}),

[0]ker (AO,oo*IJJ)] (v =00),
from which we obtain
(4.5) [Ao,k] = ([Ao,k + pj U [0](n—1)N—dimK+dimICk) \ [1]dim Ky, -

Here for A, B € M(N,C) and a subspace U € CV satisfying AU C U and BU C U,
put [A]|v = [A|y] and [A : B]|y = [A|v : Bly] for simplicity.
For the residue matrix at o = oo we have

n n
AO,oo = - E AO,I/) AO,oo = - § AO,V?
v=1 v=1

and therefore

)

Aop+p--- Aok - Aon

AO,oo = - A0,1 T Ao,kz + AO,n = _<A0,q + M(SpquN)1<p<n’
. ) . ) 1<q<n

Aoqr -+ Aok - Aont+p
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_/’LU>V mod Vi,...,na
[A0,00] = [Ao,00 = ] U [ (n—1)n

~ MKeery 1SVSTL7
o oe]le, = | ( )
O‘Ker(Ao oo u)] (V = oo),
(4.6) [A0,00) = ([A0,00 = 1] U [t (n—1)N—dim &) \ [0)dim Kou

Suppose A1 = 0for K =1,...,nand A\yy11 = pand m;1 > my, if \i1 = A\,
which can be assumed by allowing m; ; = 0 for some 7. Moreover we assume p # 0 and
Aij are generic under the Fuchs condition

n+1 Tj

(4.7) Z Z m; o Aj, =0,

j=1v=1

which follows from A; 1 + -+ 4+ A n4+1 = 0. Then the above calculation shows that the
generalized Riemann scheme of (3.6) equals

T = T = T T = Tpy1 = 00
[O]le—d e [O]mk,l—d e [_M]mn+1,1—d
(4.8) M2+ pmis o ezt plme 0 Parre = lmas
\ [)‘1,7"1 + :u]ml,rl U P‘kﬂ"k + /“L]mk,rk e [)‘n+1,7“n+1 - 'u]m”+1ﬂ”n+1 7
with the integer
n+1

d—= ij,l — (n— 1)N
7j=1

This result is given in [2].

Note that rank M = rank M — d and therefore the rank of the KZ type equation
may be changed by the middle convolution. We will calculate [/_li,j] forl1 <i<j<n+l.
By the definition (3.2) we have

Aij(v)ij = (Aijv)iy,
Ai,j (U)z = (AO,i,jU)z' IIlOd ‘/i,jy
zzli,j (v)y = A (v)y (v#14,J)

and therefore

(4.9) [Ai ;] = [Aijln—1 U[Ao ],
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[A'L,j Keer,y] (VE {]-77”}\{17.7})7
(410) [Ai,j”’Cu = [AO,i,j|Keeryl,] (V S {'L,]}),
[Ai,j Ker (Ao,oo—u)] (V = OO)
Hence we should know [A;; : Aoxl, [Aos,; @ Ao and [A;; @ Ao for {i,7,k} C
{1,...,n}. Then
(411) [Al,j : AO,k] = [A i - AO,k + ,U] @) [Al,j . O]n_g U [AO,i,j . O],
[ z]|KerA0u : 0] (vedl,....,n}p\ {34, k}),
~ ~ er Ao, V=
(4.12) oy : Aoullie, = 4 AnalKerdos 1] v =F),
[Ao,i,j|Ker 4., © 0] (v ed{i,j}),
\[ i, |Ker (Ag,co—p) * 0] (v=00)
and
(4.13) [Aij  Aooo) = [Aij : Aoeo — M U [Aij 0 —pln—2 U [Ag,ij : —pl,
[Ai,j|KerA0,l, : _/L] (VE {L?n}\{Z?j})?
(4.14) [Aij  Aocollic, = [Aoijlker o, 1 —1] (v €{i,j}),
[Ai7j|Ker (Ao,c0—p) * O] (V = OO)
Since
(415) Ai,oo = — Z Ai’y and fL"OO = — Z Ai,y,
0<v<n 0<v<n
v#£i v£i
we have
)
Ai,oo AO,i
Aj o Api
’ i Aj oo +A000 + A0 — 11
AO,i Ai,oo
and therefore
Az,oo(v)u = (Ai,oov)z/ (V 7é i)a
Az,oo(v)i = ((AO,’L,OO - ,u)v)z mod Vl,...,ifl,iJrl,‘..,na
Az,oo(v)l,...,n — ((AO,z,oo - M)U)l,...,n ((U)l,...,n S ]Coo)a
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(416) [Az,oo] - [Ai,oo]n—l U [AO,i,oo - ,u],
) [Ai o0 |Ker 0., ] (v e{l,....n}\{i}),
(4.17) [Aicollic, = § [(Aoi00 — 1) [Ker ,.,] (v=1),

[(Ao,i,00 = 1) [Ker (A, -] (¥ = 00).

Thus we have

(418) [Az,oo : AO,k] == [Az,oo . 0]71—2 U [Az,oo . AO,kz —+ ,U,] U [AO,i,oo — W 0],

ve{l,...,n}\{i,k}),

([ soicer o, < 0] (
[Aj, 00| Ker Aok * 1] (v=F),
[ (
[ (

(4.19) [Az,oo . AO,I@”IC,, =
(Ao,i,00 = 1) |Ker Aq,; : 0]

(AO,i,oo - M)|Ker (Ao,co—p) * 0]

\

We will study a successive application of additions and middle convolutions to KZ
type equations. Hence to complete our calculation it is sufficient to know [Ag ; ; : Aol
[Ap,i00 © Ao.ils [A0i,00 @ Ao,00] and their transformations under the middle convolution.

The calculation is symmetric for the indices in {1,...,n} and hence we have only to
examine [A071’2 : Ao,l], [AO,l,oo : AO,l] and [AO,l,oo : AO,oo]-
Since
Ap12=Ao1+ A2+ Ars and Agio=Ags + Aga + Ar 2,
we have
Ap12+p Aoz Ao
Ao+ 1 Aoz Ao
1210,1,2 = Ao )
A1
AO’172('U)V ((A07172 + H)’U)V (V = 1’ 2)7
A0,172(/U)U = (ALQU)V mod V{LQ} (l/ = 3, Ce ,n),
A0’172(/U)y = (ALQU)V (U € Ker AO71/7 V= 3, Ce ,n),
A0,1,2(U)1 n = (A1,2U)1,...,n (v € Ker (Ao,oo — )

[/Io 1,2] = [Ao,1.2 + pl2 U [A12]n—2,
[1210,1,2 : fio,ﬂ =[Ap12+p:Ao1+p]U[Ao 12+ p:0lU[A12:0]p—2,
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(

[(Ao,12 + p)lKer a0, 1 1] (v =1),
- - Ao1,2 + 1t)|Ker 4y, 0 v=2),
oz : Agalle, = 4 Aone Fitlkera, 201 (r=2)
[A12]Ker 40, : 0] (v=3,...,n),
\ [A1,2|Ker (Ao,00—m) * O] (V = OO)

The indices 1 and 2 in the above may be changed into arbitrary different numbers in
{1,...,n}. Similarly we have

(4.20) [Ap12: A1) =[Aoa2 +p: Aoa2) U[Agre +p: Ao U[A1 o : Al oln s,
[Ao2 + 10 Ao 2llkera,, (=1, 2),

(4.21) [Aopz2: Aigllk, = [A12 1 A1 2]|Ker Ao (v=3,...,n),
[A1,2 + A1 2]lKer (40,00 —p) (v = ),

which will be used in §7.

Since

Ao,1,00 = Ao + Ao,eo + Ar,00 and 1210,1 = A0,1 + Ao,oo + ALOO,

we have
A0,1,00 —H
A so—p—Acs  —Ags - Ao
AO,l,oo = —40,2 Al,oo_'/l—Ao,s —A‘o,n |
— Ao CAes o Ayse—pi—Aon
Ap 1,00 (0)1 = ((Ao,1,00 — u)v)l,
Ao 1oo(V)2n = ((Ao,1,00 — u)v)z .... .

Aoalvoo(v)l’ = ((A1,00 —p)v), mod Va (2 <v<n),
Ao 1,00(v)y = ((A100 — ,u)v)y (veKerdp,, v=2,...,n),

and therefore

[1210,1,00] = [A0,1,00 — 12 U[A1,00 — ft]n—2,
[(Ao,1,00 = 14)|Ker Ag 1 ] (v=1),
[A0,1,00|’Cu] = [(Al,oo - ILL)|KerA0,,,] (V - 2> ce 7”))
[(AO,l,oo - M)|Ker(A0,oo—u)] (V = 00)»
[A0.1.00 : Ao1] = [Ao100 — 112 Ao + ] U [Ao 100 — 2 0| U[A1 0o — 2 0]po,
[(Ao,1,00 = 1) |Ker A1 ¢ 1] (v=1
[A071700 : A071]|’CV = [(Al,oo - /’L)|KerA0,l, : 0] (V = 2, ey n)7
[(AO,I,OO - /’L)|Ker(A0,oo_M) 0] (v =o00),
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[[10,1,00 : Ao,oo] = [A01,00 = 1 Avoo — ] U[A0 1,00 — 00 —p] U [AL 0o — 1 —ft]n—2,

[(Ao,1,00 = 1) |Ker Ag, * —H] (v=1
[Ao,1,00 + Ao,collic, = { [(A1,00 — 1) |Ker Aq.,  —1] (v=2,...,n),
[(AO,LOO - /J’)|Ker (Ao, 00—p) * O] (V = OO)

The index 1 in the above may be changed into arbitrary number in {1,...,n}.
Thus we have the following theorem.

Theorem 4.1. i) If [A;; : Aok and [Ao,; : Aol of the KZ type equation
(2.1) are known for all mutually different indices i, j and k in {1,...,n,00}, their
transformations under the middle convolution mc,, , can be obtained by the calculation
i this section if the eigenvalues of the reside matrices are generic.

ii) Choose ig € {1,...,n,00}. Then if [Aiy ;i : Aokl [Ao,ig; : Ao,ig] and [Aoig.;
Ay ;] of the KZ type equation (2.1) are known for all mutually different indices j and k
in {1,...,n,00} \ {io}, their transformations under the middle convolution mcy, , can
be obtained by the calculation in this section if the eigenvalues of the reside matrices are

generic.

Remark 2. 1) If [Ag ] of the KZ type equation (2.1) are known for 1 <k <n-+1,
then their transformations under the middle convolution mc,, , can be obtained by the
calculation in this section if the eigenvalues are generic, which was given by [2].

ii) By our calculation we have

n Z;LZO Ai,oo - 2:“
AO,oo + Z Ai,oo = T
= Do Ajco — 21

and therefore if Ay, = k under identifying a scalar matrix with the scalar, then

(4.22) R:i=A0. . n=K+ M.

I

§ 5. Rigid Fuchsian ordinary differential equations and KZ type equations

Consider a Fuchsian ordinary differential equation of Schlesinger canonical form.
Suppose the equation is of rank N and has ¢ + 3 singular points. By a fractional linear
transformation we may assume that the singular points are 0, 1,00 and y1,...,y,. Then
the equation is

d Az= Aze Ape Ap—
(5.1) N (Aa=0 | Ae=t | Be=y oy De=ve )
dx x r—1 xz—1n T — Yq
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with constant square matrices Ay—o, Az=1, Az=y,,..., Az=y, of size N. Here u is a
column vector of N unknown functions of z. The matrix A,—. in the above is called
the residue matrix of the equation at the singular point z = ¢ (c € {0,1,y1,...,yq, 0})
and

(52) Ag;:oo - _(AZCZO + Am=1 + Am:y1 + T + Ax:yq)'

We define that the set of generalized exponents of the equation at the singular point
x = c by the eigenvalue class {[A¢1]m. ;- -, [Ae,ro)me.,, } of the matrix A,—. defined in
§4. Note that this set of generalized exponents determines the conjugacy class of the

matrix A,—.. The number

idx N = ( Z imiy> — (m+1)N?

CE{Ozlvylv"'7ymvoo} v=1

is called the index of rigidity of N/, which is defined by Katz [4] and the ¢+ 3 partitions
N=mc1+ - +men, (ce{0,1,y1,...,Yq,00})
of N is called the spectral type of A/, which can be expressed by
ML M0y, Mool Moo,

if there is no confusion. Then the generalized Riemann scheme of N is

x=0 r=1 - =y - T =00
P‘O,l]’mo,l [)‘1,1]77%,1 T [)‘yk,l]mk,1 T [)‘OO,l]moo,1
(5.3)
[)‘O,ro]mo,ro P‘l,m]mul [)‘yk,m]mk,% [)‘oo,roo]moo,roo

When the generalized Riemann scheme is given, the dimension of the moduli space of
the corresponding equations equals 2 — idx N. Then if idx N = 2 and the equation
is irreducible, namely, the space of its solutions has an irreducible monodromy group,
the equation and its spectral type is called rigid. In this case, the equation and the
monodromy group is uniquely determined by the generalized Riemann scheme.

By the correspondence of the spectral type and an element of a space spanned
by a star-shaped Kac-Moody root system, which is introduced by [1], the existence of
an irreducible equation with a given spectral type is characterized that the spectral
type corresponds to a positive root of the system. In particular, the rigid spectral type
correspond to the real root of the root system. Moreover for a given rigid spectral type
and generic numbers A., € C under the Fuchs condition

(54) Z imc,vkc,u = 07

Ce{0a1:y17-~~:yq700} v=1
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there uniquely exists an irreducible equation N with the corresponding generalized Rie-
mann scheme (5.3). Here we note that the Fuchs condition follows from (5.2). Moreover
any rigid irreducible equation N can be obtained by a successive application of middle
convolutions and additions from the trivial equation du = 0 with rank 1 and therefore
N can be extended to a KZ type equation

(5.5)

ou  (Apmo  Apm1 | = Auey,
I 8:6_< x +x—1+;x—yy s

Y ou (A A Auy, Ay .
o e R RO DR L
Yi Yi Yi Yi ve{l,...,n}\{i} Yi = Yv
Putting
(5.6) p= PO " Ter2 4 yizm (i=1,...,q),
Lg+1 — Tq+2 Lg+1 — Lq+2

this equation is transformed into our equation (2.1) with

AO,i = Ax:yia Ao,q+1 = A1, AO,q+2 = Ay—0, n=q+2,

(5.7) g
Agprgra=— Y, Aij—Y (Aigri+Aigea).

0<i<j<q i=1

Note that k given by (2.7) equals 0 in this case. The solution of this KZ type equation
has an integral representation since the middle convolution corresponds to an integral
transformation given by a Riemann-Liouville integral and it is a hypergeometric function
with (essentially) g + 1 variables.

Thus we have a plenty of KZ type equations corresponding to rigid spectral types.
The numbers of rigid spectral types with rank at most 15 are as follows.

The numbers of rigid spectral types with rank <15

g+1W\rank | 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 3 5 13 20 45 74 142 212 421 588 1004 1481
2 1 2 4 11 16 35 58 109 156 299 402 685 924
3 1 1 3 5 12 17 43 52 104 135 263 327
4 1 0 2 3 5 8 14 24 39 60 79
) 1 0 0 2 3 4 6 6 14 20

There are 9 rigid spectral types whose order are smaller than 5 and larger than 1.
The corresponding hypergeometric functions are Gauss hypergeometric function, gener-
alized hypergeometric functions expressed by 3F5 and 4F3, a function belonging to the
even family, another function corresponding to 211,211,211 with a single variable and
Appell’s hypergeometric functions F; (j = 1,2, 3,4) with two variables and Lauricella’s
Fp with three variables.
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Some of the spectral types are in the following figure.
Hierarchy of rigid quartets (cf. [5])

Hy
, s ‘,~7§%5}111’1111
11,11,11 > 21,111,111« > 22,211,1111
: CA211,211,211

51,222, 33,411

> 33,42,33,411

5 411,42, 411,411

I
41,32, 311, 311 42,33, 411,411

1
N 21,21,21,21<i:: . 41,32, 32,221 Je O e
31,22,22,22 P 51,42,321,321
32,32, 32,32

51,42, 33,2211
51,33,33,222

42, 42,42, 321

Py

l(FD .
31,31,31,31,31 42,33,33,33

§6. A symmetry of KZ type equations

We define a KZ type equation is homogeneous if k defined by (2.7) equals 0. By
the addition Ad((xn_l — xn)_") which corresponds to the transformation of u into
(xp—1 — xn)"u, the KZ equation is transformed to homogeneous.

If o is an element of transposition of the set of indices {0,1,...,n}, then the

transformations of A; ; into Aa(i), ) for 0 <7 < j < n+1 defines a transformation

o(j
in homogeneous KZ equations. This group of transformations is isomorphic to the
symmetric group S,42 whose number of elements is (n + 2)!. The group is generated
by o, ..., on, where o; = 0, ;41 and o0, ; corresponds to the transposition of indices i
and j.

We realize these transformations in the equation (5.5) which is obtained from (2.1)
by putting x, = 0 and x,_1 = 1. Then the transposition of y; and ;11 corresponds
to o; for 1 < i < n — 3, the transposition of x and y corresponds to oy and the map
(,y1,---,Yg) — (1—2x,1—y1,...,1 —y,) and the map (x,y1,...,yq) — (%’y_ll”i)
correspond to o,_; and o,, respectively. Note that ¢ = n — 2 and {0;,00,-1 | 7 €
{0,...,n—3,n—1,n}} is a set of generators of the group and the following involution
corresponds to 0g,—1. Then the element of the group corresponds to a coordinate

transformation of the variable (z,y1,...,yq).
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Under the involution o : (x,y1,...,yq) — (X, Y1,...,Y,) = (%, oo, %‘7), we have
dx  d(3) 1 dx
dX -1 di-1) -—%& dz dix—1) dx
X -1 11 l—z z(z—1) r—1 x’
dy, _d(%) WMy, do
Y Lo . oy T
A, —1)  fw_wde gy, vl g gy o Wt g gy de
Y, —1 =t yi—x yi — @ Ty
dX -Y;) —dp_dvgugr (o 1)de dy dr  d(y; —1)
X-v, i_uw Coa(l—y)  wi—1 z yi—1
Putting
dx dX —1) & d(X —Y;) dy; d(Y; — 1)
Ax—og— + Axo1——= A : Ay — Ay
Xf()X‘i‘ X=1"% "7 +;(XY, X_v, + Yi=07y Y;=1 Y, — 1
dx dz—1) & d(x — y;) Yi d(y; — 1)
=A,—o— +A,— Apy. Ay —o— + A, = ,
Oa:+ e +§< Vior— vi=0 i+ yllyi—l
we have
q
AX=O = _sz() - szl - Z (Am:yi + AinO + Ayizl) )
i=1
AYL‘:O = Ayi:07

Ax=1= Ay,
Ax=y; = Ay;=1.

AYz:l = Aw:yw
Hence it follows from (5.7) that this involution corresponds to the transposition of xg

and z,_1 of the KZ type equation (2.1).
Systems of hypergeometric equations with two variables
Then the

§7.

In this section we examine the KZ equations corresponding to the hypergeometric
functions with two variables, such as Appell’s hypergeometric functions.
equation is (2.1) with n = 3 or (5.5) with ¢ = 1. Then the group of symmetry defined

by coordinate transformations is of order 120.
To get the conjugacy classes of the residue matrices under the middle convolution
MCxy,p it is sufficient to know [Ai,j . A()’k], [Ai,j . A()A], [A()ﬂ;’j . AO,i]a [AO,Z'A : A()ﬂ;] and
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[Agia = Apa] for any (4,7, k) satistying {i,7,k} = {1,2,3} (cf. Theorem 4.1). By the
relation (2.9) we have Ay ; ; = Apa + K and Ay ;4 = A — Kk and therefore

[Agia: Aol =[Ajr —k:Aoil, [Aoa:Aoa =[Ajr—k: Aol
[Aoij: Aol = [Ara+r: Ao, [Aoj:Aij]l = [Aka+ KAl

Hence the calculation in §3 gives the transformation of simultaneous eigenvalue classes
[A; + Ay] for all I, J C {0,1,2,3,4} satisfying #I = #J = 2 and INJ = 0 and
therefore we can also get the transformation of them under the middle convolution
mc,, ,, for 0 < j < 3. Here we note that there are 15 simultaneous eigenvalue classes
and the calculation in §3 shows that their transformation under mc,, , are obtained by
the following:

Theorem 7.1.  Retain the above notation. For {i,j,k} = {1,2,3} we have

[Ai,j : AO,k] = [Az,j : AO,k: + IU] U [AZ’J : 0] U [Ak,ll + K 0],

([Aka+ 5 0)lker 4o, (v=1i,3j),
[Aij : Aokllc, = [Aij 1 1lKer Aq., (v =k),
\ [AZ,] : OHKeT (A074—‘u) (V — 4)7

[Ai,4 : AO,k] = [Ai,4 : A07k + ILL] U [Ai,4 : O] U [Aj,k — kKR —U: 0],

gk — K= 12 O]ker Ao,

i4 - ,u] |Ker Aok

(
[A

< [Ai,4 : OHKGI‘AOJ‘
[A
[A

\ Jyk - FU‘ - /’l‘ : O”Ker (A0’4—/1,)

[Aij: Aga) = [Asj: Aoa — p] U[Asj o —p] U [Apa+ Kkt —p,

[Aa + 5 —p|Ker 4., (v=1,7),
(A s Aoall, = [Ai g+ —h]lKer A (v=k),
[Aij : O]|Ker (A0.0—p) (v=4),
[Aijt Apal = [Aij: Aij —k— p] U [Aij : Apa] U [Apa+ 50 Agal,
[Aga+ 5 A al|Ker 40, (v =1, j),
[Aij s Apallic, = S [Aiy s Aij — K — ] |Ker A0 (v=kF),

[Aij: Aij =& = WlKer (Agu—py (¥ =14).

Remark 3. i) When n = 3, the above theorem describes the transformation
of equivalence classes of local monodromy of the KZ equation under the successive
operation of additions, middle convolutions and transformations by its symmetry in §6.
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ii) When n > 3, we require more simultaneous conjugacy classes, which we will

study in another paper. When n = 4, we require simultaneous eigenvalue classes

(71) [AIS) :Aléz) ZAI:gS)] and [A[2 ZA]3 :A[4]

for #I") =2, #I; =j, ’$VuIP UIY ={0,...,5} and I, c Is C I, € {0,...,5}.

§ 8. Examples

Applying Ad(Hizl(xo — :L‘V)A”) to the trivial equation, we get a KZ type equation
(2.1) of rank 1 with

Ao = Ni, Aoa=—Xi23, Aij =0, Aja=—XNi, K= A3

for {i,j, k?} = {1,2,3} Here )\z’j = )\z + >\j and )\123 = )\1 + )\2 + )\3.
Then we apply mcg, , with 4 € C to this equation and we get a KZ type equation
corresponding to Appell’s Fy. In this case L = 0 and the residue matrices satisfy

[Ao,i] = {Xi + 1, [0]2},
[Aij] = {Xij, 012},

The spectral type of the ordinary differential equation equation with the variable zq is

[Aoa] = {—Mi23 — i, [—2},

8.1
(8.1) [A; 4] = {—)\123 - K [_)‘i]Q}'

21,21,21,21 and the simultaneous conjugacy classes obtained by Theorem 4.1 are

[Az] : AO,k] = {[0 : )\k +,u], [O : O], [_)\ij : O]},
8.2) [A;a: Aog) = {[=Xi s Mo+ 4, [=Xi 0], [ Ai2g — p: 0]},
[Aij: Aga] = {[0: =Aias — g, [0 —p], [=Aij - —pl},
[Aij o Aga] = {[0: =2z — ], [0: =i, [=Xij : =]}
Putting
ap =—p, a;j =X\ +p and a5 =a;,+a; (0<i<j<3),
we have
a1 ap2 agp3 0 00 0 0O
Ao 00 0], Ap,2 ap1 az az | , Ao,z 0 0 01,
0 0 O 0 00 agp1 ap2 a3
ap2 —agp2 0 0 0 0 aops 0 —aps
Aj o —ap1 apr 0|, A23=10 ap3 —aps |, Ais 0 0 0
0 0 0 O—CLQQ ap2 —CL010 aopl
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Next apply Ad((mo — xl)_/\l_“) to the above equation. Then for ¢ = 2, 3 and
{p,q} C {1,2,3}, the residue matrices of the resulting KZ type equation satisfy

[Ao1] = {0, [=A1 — pl2},  [Aoi] = {Ni + 1, [0]2}, [Aoa] = {23, [M]2},

[Ap,a] = {Apgs [0]2}, [Ara] = {=A2s, [1l2},  [Aia] = {—A12s =, [=Ni]2}
and
[Aij s Aoa] = {[0: 0], [0 =X —pal, [=Aij : =M1 — pl },
[Az',4 Ao,l] = {[_)\i D0l [t =A1 =l [“Aaes — s —Ar — ,U]}7
[A;j : Aoa) = {[0: =Xas], [0: A1, [N 2 A},
[Aij s Aval = {[0: —=Xaz], [0: ], [ X5 = pl )

and other simultaneous conjugacy classes are same as in (8.2).
Applying mc,, » and mc,, » to the above, we have the resulting residue matrices
with

[Aoa] = {7 [=M — g+ 7]2, 06}, [Agi] = {Ni +M+T 2, [0]6},
[1210,4] = {)\23 -7, [>\1 - 7’]2, [—7]6}, [Am] { )\11 2, )\1 P\ ]2},
(A 3] = {[A2sl2, [0]5, [Aos + pl2}, Aq4) = {[-Aasl2, [Wa, =7, [~ 23 — T2},
[A;4] = {[-X2s — p2, [“Aila, M1 = X =7, [=Aa3 — 72 }, R:)\23+7’

and

d1mlC1 = 1, dlmng = dlmlC3 = 2, dlmlC4 = 0,
[Aoa] = {[-M1 —p+ 72, [0]2},  [Aos]={N+p+7 [0} (=23),

(8.3) [/_10 4 { A2z — T, )\1 2, —7'}

Hence under the transformation mc,, -, the spectral type of the resulting ordinary
differential equation with the variable x( is 22,31,31,211. Moreover owing to Theo-

rem 4.1, we have

Avilc, = Niy Aaslic, =0, Avalic, = —das — 7, Aiale, = =i,

[~ ’Cz] = {_)\1 — M, )‘Z}a [Al,i‘lcj] == {)\1727 0}7
(A2 5]xc.] = {0, Aos + i}, [1211 4|1<- = {— a3, u},
[Aialc] = {M =X — 7, —Aaz — 7}, 4, = {2 —p, =N}

for {i, j} = {2, 3} and therefore we get

A1 il = {1, [0]s}, [As 5] = {[A23)2, [0]2},

(8.4) ,
Ava) = {lpl2, =7, =Xz — 7}, [Aia] = {—Ni2s — i, [=Ni]2, —Aos — 7}
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In fact, for example,

4
[A12] = [A12)\ [ J[412]k.]
=1

= {[zla, 002, =M1 — g, a2} \ ({A U {=A0 = 1, AU {2, 0})

= {12, [0]s}.

Putting

ar=M—p+T, a2=X+p+T, a3=A3+p+7T, a4 =-T, a5 =—pL—T

and a;; = a; + a;, we have

ai 0 a4 0 az4 azs —ailq 0 0 0 0 0
- 0 ai 0 a4 - 0 0 0 0 - ass as4 0 —ai4
01 000 0] b2 —ap4 —ags aig 07 1P o 0 0 0 |’
00 O 0 0 0 0 O —ass —as4 0 a14
0 0 0 O 0 0 0 0 aszs —azs 0 0
- 0 0 0 O - 0 0 0 0 - —ass a2s 0 0
0.2 Qo4 Q25 a2 Q25 |’ 0.3 0 O 0 0 ’ 2,3 0 0 ass —ass
0 0 0 O ass a34 ass as 0 0 —Aass a2s

In this case the resulting KZ type equation corresponds to Appell’s Fr and Fj.

Remark 4.  The calculation based on Theorem 4.1 and Theorem 7.1 is imple-
mented in a library [8] of a computer algebra Risa/Asir.
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