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Abstract

We study the spectrum of large a bi‐diagonal Toeplitz matrix subject to a Gaussian ran‐
dom perturbation with a small coupling constant. We obtain a precise asymptotic description
of the average density of eigenvalues in the interior of the convex hull of the range of the
symbol.

 RESUMÉ
 \prime

. Nous étudions le spectre d’une grande matrice de Toeplitz soumise à une perturbation
gaussienne avec petite constante de couplage. Nous obtenons une description asymptotique
précise de la densité moyenne des valeurs propres à l’intérieur 1’enveloppe convexe de l’image
du symbole.

§1. Introduction and main result

It is well known that the spectrum of non‐normal operators can be extremely un‐

stable even under tiny perturbations, see e.g.  [ ,  ] . It is therefore a natural ques‐
tion to study the spectra of such operators subject to small random perturbations.

Recently, there has been a mounting interest in the spectral properties of elliptic non‐

normal (pseudo‐ differential operators with small random perturbations, see for example
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 [ , , , , ,  ] . An interesting, perhaps surprising, result is that by adding a small

random perturbation, we can obtain a probabilistic Weyl law for the eigenvalues for a

large class of such operators.

Another important example is the case of non‐normal Toeplitz matrices, since they

can arise for example in models non‐hermitian quantum mechanics, see e.g.  [ ,  ] . The

authors’ interest in this case, however, is motivated by the aspect of spectral instability.

The goal of this work is to study the spectrum of random perturbations of the

following bidiagonal  N\cross N Toeplitz matrix:

(1.1)  P= (\begin{array}{llllll}
0   a   0   \vdots   \vdots   0
b   0   a   \vdots   \vdots   0
0   b   0   \vdots   \vdots   0
.\cdot   .\cdot      \vdots   \vdots   .\cdot
 0   .\cdot      0   \vdots   a
0   0      b   \vdots   0
\end{array}) .

Here  a,  b  \in  C\backslash \{0\} and  N  \gg  1 . Identifying  C^{N} with  \ell^{2}([1, N]) ,  [ 1,  N]  =  \{1, 2, N\}
and also with  \ell_{[1,N]}^{2}(Z) (the space of all  u\in\ell^{2}(Z) with support in [1,  N] ), we have:

(1.2)  P=1_{[1,N]}(a\tau_{-1}+b\tau_{1})1_{[1,N]} =1_{[1,N]}(ae^{iD_{x}}+be^{-iD_{x}})
1_{[1,N]},

where  \tau_{k}u(j)=u(j-k) denotes translation by  k , and

 (a e^{iD_{x}}+be^{-iD_{x}})u(n)= \frac{1}{2\pi}\int_{R/2\pi Z}e^{in\xi}p(\xi)U(
\xi)d\xi, u\in\ell^{2}(Z) ,

where  u denotes the Fourier transform of  u and  p(\xi) is the symbol of  P , given by

(1.3)  p(\xi)=ae^{i\xi}+be^{-i\xi}.

Assume, to fix the ideas, that  |b|  \leq  |a| . Then  p(R) is equal to the ellipse,  E_{1} , centred

at  0 with major semi‐axis of length  (|a|+|b|) pointing in the direction  e^{i(\alpha+\beta)/2} , where

 \alpha=\arg(a) ,  \beta=\arg(b) , and minor semi‐axis of length  |a|-  |b| . The focal points of  E_{1}

are

(1.4)  \pm 2\sqrt{ab}=\pm e^{i\frac{\alpha+\beta}{2}}2\sqrt{|a||b|}.

In a previous work  [  ] the authors have shown that the numerical range of  P is con‐

tained in the convex hull of the ellipse  E_{1} described above and the eigenvalues of  P are

given by

(1.5)  z=z(l \nu)=2\sqrt{ab}\cos(\frac{\pi l\nu}{N+1}) ,  l\nu=1 , . . . ,  N.
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Figure 1: The black dots along the focal segment show the spectrum (obtained using MAT‐
LAB) of the unperturbed operator  P with dimension  N=501,  a=0.5,  b=i and  \delta=  10^{-12}

The blue cirlces show the spectrum of the perturbed operator  () , and the red ellipse is the
image of the symbol  p.

This result is also illustrated in Figure . In this work, we consider the following random

perturbation of  P

(1.6)  P_{\delta} :=P+\delta Q_{\omega}, Q_{\omega}=(q_{j,k}(\omega))_{1\leq j,k\leq 
N},

where  0\leq\delta\ll 1 , possibly depending on  N , and  q_{j,k}(\omega) are independent and identically

distributed complex Gaussian random variables, following the complex Gaussian law

 \mathcal{N}_{C}(0,1) . In  [  ] , the authors proved that when the coupling constant  \delta is bounded

from above and from below by sufficiently negative powers of  N , then most eigenvalues

of  P_{\delta},  () , are close to the ellipse  p(R) and follow a Weyl law, with probability close

to one, as the dimension  N gets large (cf. Figure ).
The methods used in  [  ] are essentially based on probabilistic subharmonic esti‐

mates of  \ln|\det(P_{\delta}-z)| and complex analysis, using in particular a counting theorem

of  [  ] (see also [ , ]). However, this approach is not fine enough to give a detailed
description of the exceptional eigenvalues seen inside the ellipse in Figure and we only

obtain a logarithmic upper bound on the number of eigenvalues in this region. To gain

more information about these eigenvalues, we study the random measure

(1.7)   \Xi:= \sum \delta_{z},
 z\in\sigma(P_{\delta})
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where the eigenvalues are counted with multiplicity. In particular we are interested in

studying the first intensity measure of  --- , which is the positive measure   l\nu defined by

(1.8)   E[\Xi(\varphi)] =\int\varphi(z)_{l}\nu(dz) ,

where  \varphi is a test function of class  C_{0} . The measure   l\nu contains information about the

average density of eigenvalues, and we will show in Theorem below, that it admits

a continuous density with respect to the Lebesgue measure on  C , up to a small error in

the large  N limit.

This approach is more classical in the theory of random polynomials (cf. [ , ]) and
random Gaussian analytic functions (cf. [ , ]). We follow in particular the approach
developed in  [  ] , which was therein used to describe the average density of eigenvalues

of a class of semiclassical differential operators subject to small random perturbations.

The main result of this paper describes the average density of eigenvalues in the

interior of confocal ellipses. Let  p_{a,b}  =  p as in  () . For any  r  >  0 we define  \Sigma_{r}

to be the convex hull of  p_{ra,r^{-1}b}(R) . We will see in Section that  p_{ra,r^{-1}b}(R) , for

 (|b|/|a|)^{1/2}  \leq r<+\infty , are confocal ellipses and that they are in the interior of  \Sigma_{r_{0}} , for

every  r_{0}  >r.  p_{ra,r^{-1}b}(R) , with  r=(|b|/|a|)^{1/2} , is the focal segment.

We prove the following result.

Theorem 1.1. Let  P_{\delta} be as in  () and let  p_{a,b}=p as in  () . Let  C\gg 1 be

arbitrary, but fixed (and not necessarily the same in the sequel). Let  r_{1}  =  |b/a|^{1/2}+1/C,
let  e^{-N/C}  \leq\delta\ll 1,  N\gg 1 and let  r_{0}  >0 belong to the parameter range

  \frac{1}{C} \leq r_{0}\leq 1-\underline{1},
(1.9)

  \frac{Nr_{0}^{N-1}}{\delta}(1-r_{0})^{2}+\delta N^{3}\ll 1,
so that  \delta N^{3}  \ll  1 . For  r  >  0 , let  \Sigma_{r} be the convex hull of  p_{ra,r^{-1}b}(R) . Then, for al

 \varphi\in C_{0}(\mathring{\Sigma}_{(r_{0}-1/N)}\backslash \Sigma_{r_{1}}) ,

(1.10)   E [\sum_{\lambda\in\sigma(P_{\delta})}\varphi(z)] =\int\varphi(z)\xi(z)L(dz)+
\langle\mu_{N}, \varphi\rangle,
for some  C\gg 1 . Here, the density  \xi is a continuous function satisfying,

  \xi(z)= \frac{2}{\pi}\partial_{z}\partial_{\overline{z}}\ln K(z) (1+
\mathcal{O}(\frac{N|\zeta_{-}|^{N-1}}{\delta}(1-|\zeta_{-}|)^{2}+\delta N^{3})) ,

(1.11)

 K(z)= \sum_{k=0}^{\infty}|\frac{\zeta_{-}^{k+1}-\zeta_{+}^{k+1}}{a(\zeta_{-}-
\zeta_{+})}|^{2},
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where  \zeta_{\pm}(z) are the two solutions of the equation  p_{a,b}(\zeta)=z for  z\in\Sigma_{1}\backslash [-2\sqrt{ab}, 2\sqrt{ab}],
chosen such that  |\zeta_{-}|  \geq  |\zeta+|.  \partial_{z}\partial_{\overline{z}}\ln K(z) is smooth and strictly positive.

Furthermore,  \mu_{N} is a Radon measure of total   mass\leq  Ne^{-N^{2}},  i.e.  |\langle\mu_{N},  \varphi\rangle|  \leq

 Ne^{-N^{2}}\Vert\varphi\Vert_{\infty}.

Let us give some remarks on this result. We will show in Section that for  p(\zeta_{\pm})  =

 z  \in  \mathring{\Sigma}_{1}\backslash [-2\sqrt{ab}, 2\sqrt{ab}] we have that  |\zeta+|  <  |b/a|^{1/2}  <  |\zeta_{-}|  <  1 . In fact we have that

 |\zeta_{-}|  \leq r_{0} when  z\in\Sigma_{r_{0}}\backslash [-2\sqrt{ab}, 2\sqrt{ab}].
Secondly, for  r_{0} satisfying the first condition in  () , the function  [0, r_{0}]  \ni  r  \mapsto

 r^{N-1}(1-r)^{2} is increasing. Hence, the error term in  () is small, since it is dominated

by the term in the second line of  () . More precisely, it satisfies for  |\zeta_{-}|  \leq r_{0}

  \frac{N|\zeta_{-}|^{N-1}}{\delta}(1-|\zeta_{-}|)^{2}+\delta N^{3}\leq 
\frac{Nr_{0}^{N-1}}{\delta}(1-r_{0})^{2}+\delta N^{3}
Theorem shows that in the interior of the ellipse  p(R) (see Figure ) there is a
non‐vanishing continuous density of eigenvalues whose leading term is independent  0

the dimension  N and depends only the symbol  p.

Furthermore, we note that the leading term of the density  \xi is related to the

Edelman‐Kostlan formula (see for example [ ]) for the average density of the zeros  0

a Gaussian analytic function  g(z) , in the sense of  [  ] , with covariance kernel  K(z) , i.e.

 E[g(z)\overline{g(z)}] =K(z) .

The above theorem, together with the result of  [  ] , is a generalisation of the work

done in the case where the unperturbed operator  P is given by a large Jordan block,

i.e. the case where  a  =  1,  b  =  0 . This has already been subject to intense study :

M. Hager and E.B. Davies  [  ] showed that with a sufficiently small coupling constant

most eigenvalues of  P_{\delta} can be found near a circle, with probability close to 1, as the

dimension of the matrix  N gets large. This result has been refined by one of the authors

in  [  ] , showing that, with probability close to 1, most eigenvalues follow an angular

Weyl law. Furthermore, M. Hager and E.B. Davies  [  ] give a probabilistic upper bound

of order  \log N for the number of eigenvalues in the interior of a circle.

A recent result by A. Guionnet, P. Matched Wood and O. Zeitouni  [  ] implies

that when the coupling constant is bounded from above and from below by (different)
sufficiently negative powers of  N , then the normalized counting measure of eigenvalues

of the randomly perturbed Jordan block converges weakly in probability to the uniform

measure on  S^{1} as the dimension of the matrix gets large.

In  [  ] , the authors show that in the case where  P is given by a Jordan block

matrix, the leading term of the average density of eigenvalues is given by the density  0

the hyperbolic volume on the unit disk.
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A similar result has been obtained by C. Bordenave and M. Capitaine in  [  ] , where

they allow for a more general class of random matrices, however, with slower decay  0

the coupling constant, as  N  \gg  1 . In particular they show that the point process  \Xi

converges weakly inside some disc, in the limit   Narrow\infty , to the point process given by

the zeros of a certain Gaussian analytic function (in the sense of [ ]) on the Poincaré
disc.

§2. Image of the symbol  p

It will be important to understand the solutions of the characteristic equation

 p(\xi)=z . The discussion that follows has been taken from  [  ] and is presented here for
the reader’s convenience.

We recall that we have assumed for simplicity that  |a|  \geq  |b| . The case  |a|  =  |b| will

be obtained as a limiting case of the one when  |a|  >  |b| , that we consider now. We write

the symbol  p  () in the form

 f_{a,b}(\zeta)=a\zeta+b/\zeta, \zeta=e^{i\xi},

and observe that when  r>0

 f_{a,b}(\partial D(0, r))=f_{ar,b/r}(\partial D(0,1))

which gives a family of confocal ellipses  E_{r} . The length of the major semi‐axis  0

 E_{r} is equal to  |a|r+  |b|/r  = :  g(r) .  E_{r_{1}} is contained in the bounded domain which

has  E_{r_{2}} as its boundary, precisely when  g(r_{1})  \leq  g(r_{2}) . The function  g has a unique

minimum at  r  =  r_{\min}  =  (|b|/|a|)^{1/2}.  g is strictly decreasing on ]  0,  r_{\min} ] and strictly
increasing on [  r_{\min},  +\infty[ . It tends to  +\infty when  r  arrow  0 and when  r  arrow  +\infty . We have
 g_{\min}=g(r_{\min})  =2(|a||b|)^{1/2} so  E_{r_{\min}} is just the segment between the two focal points,
common to all the  E_{r} . For  r\neq r_{\min} , the map  \partial D(0, r)  arrow E_{r} is a diffeomorphism. Let

 r_{1} be the unique value in ]  0 , 1[ for which  g(r_{1})  =  |a|+|b|  =g(1) . We get the following
result:

Proposition 2.1. Let  |b|  <  |a|.

 \bullet When  z is strictly inside the ellipse  E_{1} described above, then both solutions of

 f_{a,b}(\zeta)=z belong to  D(0,1) .

 \bullet When  z is on the ellipse, one solution is on  S^{1} and the other belongs to  D(0,1) .

 \bullet When  z is in the exterior region to the ellipse, one solution fulfils  |\zeta|  >  1 and the

other satisfies  |\zeta|  <  1.
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In the case  |a|  =  |b|,  E_{1} is just the segment between the two focal points. In this

case  r_{\min}=1 and we get:

Proposition 2.2. Assume that  |a|  =  |b|.

 \bullet If  z\in E_{1} then both solutions of  f_{a,b}(\zeta)=z belong to  S^{1}.

 \bullet If  z is outside  E_{1} , one solution is in  D(0,1) and the other is in the complement of

 D(0,1) .

Remark 2.3. Assuming that  0  <  |b|  \leq  |a| , we observe that for  z  \in  C the two

solutions, say  \zeta\pm of  f_{a,b}(\zeta)  =z are solutions of the equation

(2.1)   \zeta^{2}-\frac{z}{a}\zeta+\frac{b}{a} =0,
and they satisfy the relations

(2.2)   \zeta+\zeta_{-} = \frac{b}{a}, \zeta_{+}+\zeta_{-} = \frac{z}{a}.
Furthermore, we can fix a branch of the square root such that  \zeta_{+}(z) and  \zeta_{-}(z) are

holomorphic functions of  z in  C\backslash [-2\sqrt{ab}, 2\sqrt{ab}].

Throughout this text, we will work with the convention that

(2.3)  |\zeta_{+}| \leq |\zeta_{-}|

which in particular yields by the above discussion that when  z is inside  E_{r} , for  r  \in

[  r_{\min},  +\infty[ , then

(2.4)  0< |\zeta_{+}| \leq \sqrt{|b}/a|\leq |\zeta_{-}| \leq r.

§3. Preparations for the density of eigenvalues in the interior

In this section we are interested in the density of eigenvalues in the interior of the

ellipse  p_{a,b}(R) , where  p_{a,b}=p denotes the principal symbol of the unperturbed operator
 P , cf.  () ,  () . We study the first moment of linear statistics of the point process

given by the eigenvalues of  P_{\delta} , see  () , i.e.

(3.1)  I_{\varphi}= E [\sum_{\lambda\in\sigma(P_{\delta})}\varphi(z)] , \varphi\in 
C_{0}(\Omega) ,

where  \Omega is some open subset in the interior of conv  (p_{a,b}(R))\backslash [-2\sqrt{ab}, 2\sqrt{ab}] , where
conv  (\cdot) denotes the convex hull of a set.
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W. Bordeaux‐Montrieux  [  ] noted that the Markov inequality implies that if  C_{1}  >0

is large enough, then for the Hilbert‐Schmidt norm of  Q_{\omega} (as in ( )),

(3.2)  \mathbb{P} [  \Vert Q_{\omega}\Vert HS  \leq C_{1}N]  \geq  1-e^{-N^{2}}

Since the number of eigenvalues of  P_{\delta} in the support of  \varphi is bounded from above by  N,
it follows from  () that

(3.3)  I_{\varphi}=E \lfloor^{1_{B_{C^{N^{2}}}(0,C_{1}N)}(Q)\sum_{\lambda\in\sigma(P_{
\delta})}\varphi(z)]}\lceil +\langle\mu_{N}, \varphi\rangle,
 |\langle\mu_{N}, \varphi\rangle| \leq Ne^{-N^{2}}\Vert\varphi\Vert_{\infty}.

Here, we identify the random matrix  Q_{\omega} (cf ( )) with a random vector  Q  \in  C^{N^{2}}

Furthermore,  \mu_{N} is a Radon measure of total mass  \leq Ne^{-N^{2}}
After the reduction to , it is sufficient to work with the assumption that the

random vector  Q is restricted to a ball of radius  C_{1}N , i.e.

(3.4)  \Vert Q\Vert_{2} \leq C_{1}N.

Note that this assumption is equivalent, to the assumption that the Hilbert‐Schmidt

norm of the random matrix  Q_{\omega} is bounded, more precisely that

(3.5)  \Vert Q\Vert_{HS}\leq C_{1}N.

Next, we define for  r>0

(3.6)  \Sigma_{r}  := conv  (p_{ar,br-1}(R)) .

We let

(3.7)  \Omega\subset\mathring{\Sigma}_{1}\backslash [-2\sqrt{ab}, 2\sqrt{ab}],

be open, relatively compact and connected. It may depend on  N (to be specified
later on) but will avoid a fixed neighbourhood of the focal segment. Moreover, let
 W=B(0, C_{1}N) for  C_{1}  >0 large enough such that  () holds. By Remark we see

that by excluding the focal segment in  () we have that  \zeta\pm(z) , the solutions to the

characteristic equation, given by the symbol  () ,

 a\zeta+b\zeta^{-1} =z,

are holomorphic functions of  z.
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In the following we write for  \mu\in N

(3.8)  F_{\mu+1}(t)=1+t+\cdots+t^{\mu}, 0\leq t\leq 1.

As in  [  ] , we work under the hypothesis that

(3.9)  \delta NF_{N}(|\zeta_{-}|)\ll 1.

Notice that this is fulfilled for all  z inside  E_{1}  =  p(R) , if we make the even stronger

assumption

(3.10)  \delta N^{2} \ll 1.

(Recall that  N\gg 1 ). We have shown in  [  ] that assuming  () ,  () we can identify
the eigenvalues of  P_{\delta} in  \Omega with the zeros of  g(z, Q) , a holomorphic function on  \Omega\cross W.

Note that since there are at most  N eigenvalues, we have for every  Q\in W that  g(\cdot, Q)  \not\equiv
 0 . Furthermore, see [ , Formula (7.18)],  g is given by

(3.11)  g(z, Q)=g_{0}(z)-\delta(Q|\overline{Z})+T(z, Q;\delta, N) ,

where  Z is given by

(3.12)  Z= ( \frac{\zeta_{+}^{N+1-j}-\zeta_{-}^{N+1-j}}{a(\zeta_{+}-\zeta_{-})}
\frac{\zeta_{+}^{k}-\zeta^{\underline{k}}}{a(\zeta_{+}-\zeta_{-})})_{1\leq j,
k\leq}
 = (a^{-2}F_{N+1-j}(\zeta+/\zeta_{-})F_{k}(\zeta+/\zeta_{-})\zeta_{-}^{N-j+k-1})
_{1\leq j,k\leq} ,

and

(3.13)  g_{0}(z)=  \frac{\zeta_{-}^{N+1}-\zeta_{+}^{N+1}}{a(\zeta_{-}-\zeta_{+})} = 
\frac{\zeta_{-}}{a}F_{N+1}(\zeta+/\zeta_{-}) .

Moreover,

(3.14)  |T(z, Q)| = |T(z, q;\delta, N)| =\mathcal{O}(1)(\delta NF_{N}(|\zeta_{-}|^{2}))
^{2}

We will frequently write  |  | for the Hilbert‐Schmidt norm and, until further notice, we

write  F_{\mu}=F_{\mu}(\zeta+/\zeta_{-}) . By  () , we get that

(3.15)  |Z|  =  |a|^{-2}  ( \sum_{j,k=1}^{N}|\zeta_{-}|^{2(N-j+k-1)}|F_{N+1-j}|^{2}|F_{k}|^{2})^{\frac{1}
{2}}  =  |a|^{-2} \sum_{\mu=0}^{N-1}|\zeta_{-}|^{2\mu}|F_{\mu+1}|^{2}
For  z  \in  \Omega we have  |\zeta+|/|\zeta_{-}|  \leq  C  <  1 and hence  |F_{k}(\zeta+/\zeta_{-})|  \wedge\vee  1 . If we also assume

 z\in\Sigma_{r_{0}},  0<r_{0}  \leq  1-1/N , then

(3.16)  |Z|  \wedge\vee F_{N}(|\zeta_{-}|^{2})\vee\wedge \frac{1}{1-|\zeta_{-}|^{2}} 
\wedge\vee \frac{1}{1-|\zeta_{-}|},
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where we used as well that  \sqrt{|b}/a|\leq  |\zeta_{-}|  \leq  1-1/N (see ( ),  ( ), ( )), and that

(3.17)  F_{N}(| \zeta_{-}|^{2})= \frac{1}{1-|\zeta_{-}|^{2}}(1-|\zeta_{-}|^{2(N+1)})
\vee\wedge \frac{1}{1-|\zeta_{-}|^{2}}.
Recall that  \Omega in  () avoids a fixed neighborhood of the focal segment of the ellipse
 E_{1}  =p(R) . More precisely, in view of the discussion in Section , we assume that

(3.18)  \{  \Omega\Subset\mathring{\Sigma}_{1}\backslash \Sigma_{r_{1}},
 r_{1}  =\sqrt{|b}/a|+1/C,  C\gg 1.

Using  () , it follows that the middle term in  () is bounded in modulus by

(3.19)  \delta|Q||Z| \leq \mathcal{O}(1)(C_{1}\delta NF_{N}(|\zeta_{-}|^{2}))

where we assumed that  |Q|  \leq C_{1}N (cf. ( )). Moreover, we assume that the first term
in  () is smaller than the bound on the middle term, i.e.

(3.20)  |g_{0}(z)| \ll C_{1}\delta NF_{N}(|\zeta_{-}|^{2}) .

Using that  |F_{k}(\zeta+/\zeta_{-})|  \wedge\vee 1 , we see that  () is implied by the assumption

(3.21)  |\zeta_{-}|^{N}\ll C_{1}\delta NF_{N}(|\zeta_{-}|^{2}) .

More precisely, we will assume that  z satisfying  () is such that  \zeta_{-}(z)  \in  D(0, r_{0})
with

(3.22)  |r_{0}|^{N}\ll C_{1}\delta NF_{N}(r_{0}^{2}) , r_{0}\leq 1-\underline{1}.
Observe that the function  r^{N}/F_{N}(r^{2}) is strictly growing on the interval  [0, 1-N^{-1}].
Thus, the inequality  () is preserved if we replace  r_{0} by  |\zeta_{-}| , for  |\zeta_{-}|  \leq r_{0}.

Combining the assumptions  () and  () , we get

(3.23)  \{
 z\in\Omega\subset\Sigma_{r_{0},r_{1}}  :=\mathring{\Sigma}_{r_{0}}\backslash \Sigma_{r_{1}},
 r_{0}>0 satisfies  () ,

 r_{1}  =\sqrt{|b}/a|+1/C,  C\gg 1.

By  () , we see that the bound on  T is much smaller than the upper bound on the

middle term in  () , i.e.

(3.24)  (\delta NF_{N+1}(|\zeta_{-}|^{2}))^{2}\ll\delta NF_{N}(|\zeta_{-}|^{2})

Here we used as well that  F_{N+1}(|\zeta_{-}|^{2})\vee\wedge F_{N}(|\zeta_{-}|^{2}) . From  (  ) ,  (  ) and the Cauchy

inequalities, we get

(3.25)  d_{Q}g(z, Q)=-\delta Z\cdot dQ+\mathcal{O}(\delta^{2}F_{N+1}^{2}(|\zeta_{-}
|^{2})N)
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where the norm of the first term is  \wedge\vee\delta|Z|  \wedge\vee\delta F_{N}(|\zeta_{-}|^{2})  \gg\delta^{2}F_{N+1}^{2}(|\zeta_{-}|^{2})N . Here, we

used  () ,  () . Technically, we need to apply the Cauchy inequalities in a ball  0

radius  \eta C_{1}N for some  0  <  \eta  <  1 , but we have room for that if we choose  C_{1} in  ()
slightly larger to begin with.

Recall that for every  Q\in W,  g(\cdot, Q)  \not\equiv 0 . It has then been shown in  [ ,  ] , that
 i

 g(z, Q)=0\Rightarrow d_{Q}g(z, Q)\neq 0

then

(3.26)  \Gamma :=\{(z, Q) \in\Omega\cross W;g(z, Q)=0\}

is a smooth complex hypersurface in  \Omega\cross W and

(3.27)  K_{\varphi}= E [1_{B(0,C_{1}N)}(Q)\sum_{\lambda\in\sigma(P_{\delta})}\varphi(z)
] =\int_{\Gamma}\varphi(z)e^{-Q^{*}Q}\frac{\dot{j}^{*}(d\overline{Q}\wedge dQ)}{
(2i)^{N^{2}}},
where  j^{*} denotes the pull‐back by the regular embedding  j :  \Gammaarrow\Omega\cross W and

 d\overline{Q} ∧  dQ=d\overline{Q}_{1} ∧  dQ_{1} ∧...  d\overline{Q}_{N^{2}} ∧  dQ_{N^{2}},

which is a complex  (N^{2}, N^{2}) ‐form on  \Omega  \cross  W . Thus,  (2i)^{-N^{2}}  *

(  d\overline{Q} ∧  dQ ) is a non‐
negative differential form on  \Gamma of maximal degree.

Next, we identify  Z(z) in  () with a vector in  C^{N^{2}} and write

(3.28)  Q=Q(\alpha)=\alpha_{1}\overline{Z}(z)+\alpha', \alpha_{1} \in C, 
\alpha'\in\overline{Z}(z)^{\perp}

and we identify  \overline{Z}(z)^{\perp} unitarily with  C^{N^{2}-1} by means of an orthonormal basis  e_{2}(z) , . . . ,  e_{N^{2}}(z) ,

so that   \alpha'=\sum_{2}^{N^{2}}\alpha_{j}e_{j}(z) . Then, we have

(3.29)  Q=Q( \alpha, z)=\alpha_{1}\overline{Z}(z)+\sum_{2}^{N^{2}}\alpha_{j}e_{j}(z)
and we identify  g(z, Q) with  \tilde{g}(z, \alpha)  =g(z, Q(\alpha, z)) which is holomorphic in  \alpha for every

fixed  z and, by  () ,  () , we have that

(3.30)   \sim(z, \alpha)=g_{0}(z)-\delta|Z|^{2}\alpha_{1}+T(z, \alpha_{1}\overline{Z}
(z)+\sum_{2}^{N^{2}}\alpha_{j}e_{j}(z))
 \partial_{\alpha_{1}}\tilde{g}(z, \alpha)=-\delta|Z|^{2}+\mathcal{O}(\delta^{2}
F_{N+1}^{3}N) .

In particular, by  () ,  () , we see that

(3.31)  |\partial_{\alpha_{1}}\tilde{g}(z, \alpha)| \wedge\vee\delta F_{N+1}^{2}
(|\zeta_{-}|^{2}) .
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From  (),() and the Cauchy‐inequalities, we obtain

(3.32)  |\partial_{\alpha_{j}}\tilde{g}(z, \alpha)|  =\mathcal{O}(\delta^{2}F_{N+1}^{2}N) ,  =2 , . . . ,  N^{2}

The Cauchy‐inequalities applied to  () together with  () ,  () yield

(3.33)   \partial_{z}g(z, Q)=\partial_{z}g_{0}(z)-\delta(Q|\overline{\partial_{z}Z})+
\frac{\mathcal{O}(1)(\delta NF_{N+1}(|,\zeta_{-}|^{2}))^{2}}{dist(z,
\partial\overline{\Sigma}_{r_{0}r_{1}})}
with

(3.34)   \partial_{z}g_{0}(z)=(\partial_{z}\ln\zeta_{-})\frac{\zeta_{-}}{a} [NF_{N+1}
(\zeta+/\zeta_{-})-2(\zeta+/\zeta_{-})F_{N+1}'(\zeta+/\zeta_{-})] .

Here, we used as well  () which implies that  \partial_{z}(\zeta+/\zeta_{-})  =-(\zeta+/\zeta_{-})\partial_{z}\ln\zeta_{-}.

Remark 3.1. Note that in  ()

(3.35) dist  (z, \partial\overline{\Sigma}_{r_{0},r_{1}})  \geq   \frac{\min(r_{0}-|\zeta_{-}|,|\zeta_{-}|-r_{1})}{C}  \geq   \frac{r_{0}-|\zeta_{-}|}{C},
for some (not necessarily equal)  C\gg 1.

For  Q in  () , we have the following result:

Lemma 3.2. Let  Q(\alpha)  \in B(0, C_{1}N) and   z\in\Omega as in ( 23 . Then,

  \partial_{z}\tilde{g}(z, \alpha)=\partial_{z}g_{0}(z)-\delta\alpha_{1}
\partial_{z}|Z|^{2}+\frac{\mathcal{O}(1)(\delta NF_{N}(|\zeta_{-}|^{2}))^{2}}
{dist(z,\partial\overline{\Sigma}_{r_{0},r_{1}})}
(3.36)

 + \mathcal{O}(\delta^{2}F_{N}(|\zeta_{-}|^{2})^{2}N)|\sum_{2}^{N^{2}}\alpha_{i}
\partial_{z}e_{i}(z)|,
(3.37)   \partial_{\overline{z}}\tilde{g}(z, \alpha)=-\delta\partial_{\overline{z}}|Z|^
{2}\alpha_{1}+\mathcal{O}(\delta^{2}F_{N}(|\zeta_{-}|^{2})^{2}N)|\alpha_{1}
\overline{\partial_{z}Z}+\sum_{2}^{N^{2}}\alpha_{i}\partial_{\overline{z}}e_{i}
(z)| .

Proof. Using  () , one computes

 \partial_{z}g

 =\partial_{z}g_{0}-\delta\alpha_{1}\partial_{z}Z .  \overline{Z}+\partial_{z}(T(z, Q(\alpha, z)))

(3.38)  =\partial_{zg0}-\delta\partial_{z}Z\cdot\overline{Z}+(\partial_{z}T)(z, 
Q(\alpha, z))+d_{Q}T(z, Q(\alpha))\cdot\partial_{z}Q(\alpha, z)

 = \partial_{z}g_{0}-\delta\partial_{z}Z\cdot\overline{Z}+(\partial_{z}T)(z, 
Q(\alpha, z))+(d_{Q}T)(z, Q(\alpha, z))\cdot\sum_{2}^{N^{2}}\alpha_{j}
\partial_{z}e_{j}(z) ,
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where, to obtain the last equality, we used  () and the fact that  \overline{Z}(z) is antiholomor‐

phic in  z . The Cauchy‐inequalities together with  () yield that

(3.39)  ( \partial_{z}T)(z, Q(\alpha, z))=\mathcal{O}(1)\frac{(\delta NF_{N})^{2}}{dist
(z,\partial\overline{\Sigma}_{r_{0},r_{1}})},
as well as

(3.40)  (d_{Q}T)(z, Q( \alpha, z))\cdot\sum_{2}^{N^{2}}\alpha_{j}\partial_{z}e_{j}(z)=
\mathcal{O}(\delta^{2}N^{2}F_{N})|\sum_{2}^{N^{2}}\alpha_{j}\partial_{z}e_{j}(z)
|,
and we conclude  () . Similarly, we obtain  () .  \square 

Continuing, recall that we work under assumptions  () and  () (recall as well
that the last one implies  () and ()). We use  () ,  () and apply Rouché’s
Theorem to  () , and we see that for  C_{1}  >  0 large enough and for  |\alpha'|  <  C_{1}N , the

equation

(3.41)  \sim(z, \alpha_{1}, \alpha')=0

has exactly one solution

(3.42)   \alpha_{1}=f(z, \alpha')\in D(0, \frac{C_{1}N}{F_{N}(|\zeta_{-}|^{2})}) .

Note that this yields the entire hypersurface  () for  \Omega satisfying  () , since  \tilde{g}\neq 0
for  \alpha_{1} outside the above disc, which follows from  (),() and  () .

Moreover,  f satisfies

(3.43)  f(z,  \alpha')= \frac{g_{0}(z)}{\delta|Z|^{2}}+\mathcal{O}(1)\delta N^{2}=
\mathcal{O}(\frac{g_{0}(z)}{\delta F_{N}(|\zeta_{-}|^{2})^{2}}+\delta N^{2}) .

Differentiating  () with respect to  z and  Z , we obtain

(3.44)  \partial_{z}\tilde{g}+\partial_{\alpha_{1}}\tilde{g}\cdot\partial_{z}f=0, 
\partial_{\overline{z}}\tilde{g}+\partial_{\alpha_{1}}\tilde{g}
\cdot\partial_{\overline{z}}f=0.

Which implies that

(3.45)  \partial_{z}f=-(\partial_{\alpha_{1}}\tilde{g})^{-1}\partial_{z}\tilde{g}, 
\partial_{\overline{z}}f=-(\partial_{\alpha_{1}}\tilde{g})^{-1}
\partial_{\overline{z}}\tilde{g}.

Recall from  () that  \tilde{g} is holomorphic in  \alpha_{1} , . . . ,  \alpha_{N^{2}} and so we see that  f is holo‐

morphic in  \alpha_{2} , . . . ,  \alpha_{N^{2}} . Applying  \partial_{\alpha_{j}},  j=2 , . . . ,  N^{2} , to  () , we obtain

(3.46)  \partial_{\alpha_{j}}f=-(\partial_{\alpha_{1}}\tilde{g})^{-1}
\partial_{\alpha_{j}}\tilde{g},  =2 , . . . ,  N^{2}
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Using  () in the form

(3.47)  \partial_{\alpha_{1}}\tilde{g}=-\delta|Z|^{2}(1+\mathcal{O}(\delta F_{N+1}
(|\zeta_{-}|^{2})N)) ,

and by Lemma ,  () , we obtain

  \partial_{z}f=\frac{(1+\mathcal{O}(\delta F_{N+1}(|\zeta_{-}|^{2})N))}
{\delta|Z|^{2}}[\partial_{z}g_{0}(z)-\delta(\partial_{z}|Z|^{2})f
(3.48)

 + \frac{\mathcal{O}(1)(\delta NF_{N+1}(|,\zeta_{-}|^{2}))^{2}}{dist(z,
\partial\overline{\Sigma}_{r_{0}r_{1}})}+\mathcal{O}(\delta^{2}F_{N+1}^{2}
(|\zeta_{-}|^{2})N)|\sum_{2}^{N^{2}}\alpha_{i}\partial_{z}e_{i}(z)|],
and

  \partial_{\overline{z}}f=\frac{(1+\mathcal{O}(\delta F_{N+1}(|\zeta_{-}|^{2})
N))}{\delta|Z|^{2}}[-\delta(\partial_{\overline{z}}|Z|^{2})f
(3.49)

 + \mathcal{O}(\delta^{2}F_{N+1}^{2}(|\zeta_{-}|^{2})N)|f\overline{\partial_{z}
Z}+\sum_{2}^{N^{2}}\alpha_{i}\partial_{\overline{z}}e_{i}(z)|].
Furthermore, using  () and  () , we get

(3.50)   \partial_{\alpha_{j}}f=\mathcal{O}(1)\frac{\delta^{2}NF_{N+1}^{2}(|\zeta_{-}|^
{2})}{\delta F_{N}^{2}(|\zeta_{-}|^{2})}  =\mathcal{O}(\delta N) ,  \cdot=2 , . . . ,  N^{2}

§4. Choosing appropriate coordinates

In the following we adopt the strategy developed in [ , Section 5: The next step
is to find an appropriate orthonormal basis  e_{1}(z) , . . . ,  e_{N^{2}}(z)  \in C^{N^{2}} with

(4.1)  e_{1}(z)=  \frac{\overline{Z}(z)}{|Z(z)|},
such that we obtain a good control over the terms  | \sum_{2}^{N^{2}}\alpha_{i}\partial_{z}e_{i}(z)|,  | \sum_{2}^{N^{2}}\alpha_{i}\partial_{\overline{z}}e_{i}(z)|
and such that the differential form  dQ_{1} ∧...∧  dQ_{N^{2}}|_{\alpha_{1}=f(z,\alpha')} can be expressed easily

up to small errors.

Proposition 4.1. Let  z_{0}  \in  \Sigma_{r0^{-N-1},r_{1}} . There exists an orthonormal basis

 e_{1}(z) , . . . ,  e_{N^{2}}(z) in  C^{N^{2}} which depends smoothly on  z in a small neighbourhood of
 z_{0} in  C\backslash [-2\sqrt{ab}, 2\sqrt{ab}] such that

1)  e_{1}(z)=   \frac{\overline{Z}(z)}{|Z(z)|},
2)  Ce_{1}(z_{0})\oplus Ce_{2}(z_{0})=C\overline{Z}(z_{0})\oplus 
C\overline{\partial_{z}Z} (z0),

3)  e_{j}(z)-e_{j}(z_{0})=\mathcal{O}((z_{0}-z)^{2}) ,  j=3 , . . . ,  N^{2} , uniformly  w.r.t.  (z, z_{0}) .
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Proof. The proof is identical, mutatis mutandis, to the proof of Proposition 5.1
in  [  ].  \square 

As remarked after the proof of Proposition 5.1 in  [  ] , we can make the following
choice:

(4.2)  e_{2}(z)= |f_{2}(z)|^{-1}f_{2}(z) , f_{2}(z)= \overline{\partial_{z}Z(z)}-\sum_
{j\neq 2}(\overline{\partial_{z}Z(z)}|e_{j}(z))e_{j}(z) ,

so that for  z=z_{0},

(4.3)  f_{2}(z_{0})= \overline{\partial_{z}Z(z_{0})}-\frac{(Z(z_{0})|\partial_{z}
Z(z_{0}))}{|Z(z_{0})|^{2}}\overline{Z(z_{0})}.
Proposition 4.2. For all  z\in\Sigma_{1}\backslash [-2\sqrt{ab}, 2\sqrt{ab}] , we have

(4.4)  | \partial_{z}Z(z)|^{2}-\frac{|(Z(z)|\partial_{z}Z(z))|^{2}}{|Z(z)|^{2}} =
2K_{N}(z)^{2}\partial_{z}\partial_{\overline{z}}\ln K_{N}(z) ,

where

(4.5)  K_{N}(z)= \sum_{\mu=0}^{N-1}|\frac{\zeta_{-}^{\mu+1}-\zeta_{+}^{\mu+1}}
{a(\zeta_{-}-\zeta_{+})}|^{2}= \frac{1}{|a|^{2}}\sum_{\mu=0}^{N-1}|\zeta_{-}|^{2
\mu}|F_{\mu+1}(\zeta+/\zeta_{-})|^{2}
Before giving the proof of this proposition, let us note that by  ()  K_{N}=  |Z|.

Proof. Until further notice, we write  F_{n}  =  F_{n}(\zeta+/\zeta_{-}) . First, use  () , in the
form

 a^{2}Z_{j,k}=\zeta_{-}^{N-j+k-1}F_{N-j+1}F_{k}=\zeta_{-}^{\mu+} F_{\mu+1}F_{\nu
+1},
with  \mu=N-j,  l\nu=k-1 and  \mu,  l\nu\in\{0, . . . , N-1\} , to compute that

  \frac{a^{2}}{\partial_{z}\ln\zeta_{-}}\partial_{z}Z_{j,k}=\zeta_{-}^{\mu+}  F_{\mu+1}F_{\nu+1} .  [(\mu+l\nu)-L_{\mu+1}-L_{\nu+1}],

where  L_{n}  :=   \frac{2\zeta+}{\zeta-}\partial_{t}\ln F_{n}(t)|_{t=\zeta+/\zeta-} . Hence, one obtains from the above expression and
from  () that

(4.6)   \frac{|a|^{4}|(\partial_{z}Z|Z)|}{|\partial_{z}\ln\zeta_{-}|} = |\sum_{\mu,\nu
=0}^{N-1}|\zeta_{-}|^{2(\mu+\nu)}|F_{\mu+1}F_{\nu+1}|^{2}[(\mu+l\nu)-L_{\mu+1}-
L_{\nu+1}]| .

Using  () and a change of index, we obtain that  () is equal to

 2 | \sum_{\nu=0}^{N-1}|\zeta_{-}|^{2\nu}|F_{\nu+1}|^{2}\sum_{\mu=0}^{N-1}
|\zeta_{-}|^{2\mu}|F_{\mu+1}|^{2}[\mu-L_{\mu+1}]|
 =2|a|^{2}|Z|| \sum_{\mu=0}^{N-1}|\zeta_{-}|^{2\mu}|F_{\mu+1}|^{2}[\mu-L_{\mu+1}
]|,
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so

(4.7)   \frac{|a|^{4}|(\partial_{z}Z|Z)|}{|\partial_{z}\ln\zeta_{-}||Z|} =2|a|^{2}
|\sum_{\mu=0}^{N-1}|\zeta_{-}|^{2\mu}|F_{\mu+1}|^{2}[\mu-L_{\mu+1}]| .

Similarly,

(4.8)   \frac{|a|^{4}|\partial_{z}Z|^{2}}{|\partial_{z}\ln\zeta_{-}|^{2}} =\sum_{\mu,
\nu=0}^{N-1}|\zeta_{-}|^{2(\mu+\nu)}|F_{\mu+1}F_{\nu+1}|^{2}|(\mu+l\nu)-L_{\mu+
1}-L_{\nu+1}|^{2}
Combining  () ,  () , we obtain

  \frac{|a|^{4}}{|\partial_{z}\ln\zeta_{-}|^{2}} (|\partial_{z}Z|^{2}-
\frac{|(\partial_{z}Z|Z)|^{2}}{|Z|^{2}})
(4.9)  = \sum_{\mu,\nu=0}^{N-1}|\zeta_{-}|^{2(\mu+\nu)}|F_{\mu+1}F_{\nu+1}|^{2}[|(\mu+
l\nu)-L_{\mu+1}-L_{\nu+1}|^{2}

 -4(\mu-L_{\mu+1})(l\nu-\overline{L_{\nu+1}})] .

By permuting  \mu,   l\nu we get the same sum and after taking the average of the two expres‐

sions we may replace  -4(\mu-L_{\mu+1})(l\nu-\overline{L_{\nu+1}}) by its real part. Then,

 |(\mu+l\nu)-L_{\mu+1}-L_{\nu+1}|^{2}-4{\rm Re}(\mu-L_{\mu+1})(l\nu-\overline{L_
{\nu+1}})
 = |(\mu-l\nu)+(L_{\nu+1}-L_{\mu+1})|^{2}

(4.10)

 = |( \mu+1)\frac{1+t^{\mu+1}}{1-t^{\mu+1}}-(l\nu+1)\frac{1+t^{\nu+1}}{1-t^{\nu+
1}}|_{t=\zeta+/\zeta-}^{2},
where we also used that by the definition of  L_{\mu} above and  ()

 L_{\nu+1}-L_{\mu+1} =2 \frac{\zeta+}{\zeta_{-}}[\partial_{t}\ln(1-t^{\nu+1})-
\partial_{t}\ln(1-t^{\mu+1})]_{t=\zeta+/\zeta-}
 =  \frac{2(\mu+1)t^{\mu+1}}{1-t^{\mu+1}}-\frac{2(l\nu+1)t^{\nu+1}}{1-t^{\nu+1}}
t=\zeta+/\zeta-

Combining this with  () , we obtain

  \frac{|a|^{4}}{|\partial_{z}\ln\zeta_{-}|^{2}} (|\partial_{z}Z|^{2}-
\frac{|(\partial_{z}Z|Z)|^{2}}{|Z|^{2}})
(4.11)

 = \sum_{\mu,\nu=0}^{N-1}|\zeta_{-}|^{2(\mu+\nu)}|F_{\mu+1}F_{\nu+1}|^{2}|(\mu+
1)\frac{\zeta_{-}^{\mu+1}+\zeta_{+}^{\mu+1}}{\zeta_{-}^{\mu+1}-\zeta_{+}^{\mu+1}
}-(l\nu+1)\frac{\zeta_{-}^{\nu+1}+\zeta_{+}^{\nu+1}}{\zeta_{-}^{\nu+1}-\zeta_{+}
^{\nu+1}}|^{2}
Remark 4.3. Observe that the summands in  () are equal to zero whenever

 \mu  =   l\nu and that the summands corresponding to the index pair  (\mu, l\nu) is equal to the
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one corresponding to  (l\nu, \mu) . Hence, by calculating explicitly the terms for  (\mu, l\nu)  =

 (1,0) ,  (0,1) , we obtain that  () is larger or equal than

(4.12)  2| \zeta_{-}|^{2}|F_{2}F_{1}|^{2}|2\frac{\zeta_{-}^{2}+\zeta_{+}^{2}}{\zeta_{-}
^{2}-\zeta_{+}^{2}}-\frac{\zeta_{-}+\zeta+}{\zeta_{-}-\zeta+}|^{2}
By  () , we have that  F_{1}(\zeta+/\zeta_{-})  =  1 and  F_{2}(\zeta+/\zeta_{-})  =  1+\zeta+/\zeta_{-} . Therefore,  ()
is equal to

(4.13)  2| \zeta_{-}+\zeta+|^{2}|2\frac{\zeta_{-}^{2}+\zeta_{+}^{2}}{\zeta_{-}^{2}-
\zeta_{+}^{2}}-\frac{\zeta_{-}+\zeta+}{\zeta_{-}-\zeta+}|^{2}= \frac{2|2\zeta_{-
}^{2}+2\zeta_{+}^{2}-\zeta_{-}^{2}-\zeta_{+}^{2}-2\zeta_{-}\zeta+|^{2}}{|\zeta_{
-}-\zeta_{+}|^{2}}
 =2|\zeta_{-}-\zeta_{+}|^{2}

Hence,

(4.14)  (| \partial_{z}Z|^{2}-\frac{|(\partial_{z}Z|Z)|^{2}}{|Z|^{2}}) \geq 
\frac{2|\partial_{z}\ln\zeta_{-}|^{2}|\zeta_{-}-\zeta_{+}|^{2}}{|a|^{4}} = \frac
{2|\partial_{z}(\zeta_{+}+\zeta_{-})|^{2}}{|a|^{4}} = \frac{2}{|a|^{6}},
where we used  () , in particular that  \zeta++\zeta_{-}  =z/a and that

(4.15)  \partial_{z}\ln\zeta_{-} =-\partial_{z}\ln\zeta+\cdot

Thus, we conclude that for all   z\in  \Sigma_{1}\backslash [-2\sqrt{ab}, 2\sqrt{ab}] the vectors  Z(z) and  \partial_{z}Z(z) are

linearly independent.

Continuing, observe that the summands on the right hand side of  () are equal
to

(4.16)  |( \mu+1)\frac{(\zeta_{-}^{\mu+1}+\zeta_{+}^{\mu+1})(\zeta_{-}^{\nu+1}-\zeta_{+
}^{\nu+1})}{(\zeta_{-}-\zeta_{+})^{2}}-(l\nu+1)\frac{(\zeta_{-}^{\nu+1}+\zeta_{+
}^{\nu+1})(\zeta_{-}^{\mu+1}-\zeta_{+}^{\mu+1})}{(\zeta_{-}-\zeta_{+})^{2}}|^{2}
By ( ) ,

(4.17)  (\mu+1)(\zeta_{-}^{\mu+1}+\zeta_{+}^{\mu+1})\partial_{z}\ln\zeta_{-} =\partial_
{z}(\zeta_{-}^{\mu+1}-\zeta_{+}^{\mu+1}) .

Thus,  () is equal to

(4.18)

  \frac{|\partial_{z}\ln\zeta_{-}|^{-2}}{|\zeta_{-}-\zeta_{+}|^{4}}|(\zeta_{-}^{
\nu+1}-\zeta_{+}^{\nu+1})\partial_{z}(\zeta_{-}^{\mu+1}-\zeta_{+}^{\mu+1})-
(\zeta_{-}^{\mu+1}-\zeta_{+}^{\mu+1})\partial_{z}(\zeta_{-}^{\nu+1}-\zeta_{+}
^{\nu+1})|^{2} .

Writing  f_{\mu}(z)=\zeta_{-}^{\mu+1}(z)-\zeta_{+}^{\mu+1}(z) , it follows from  () and  () that

(4.19)  (| \partial_{z}Z|^{2}-\frac{|(\partial_{z}Z|Z)|^{2}}{|Z|^{2}})  =   \frac{1}{|a|^{4}|\zeta_{-}-\zeta_{+}|^{2}}\sum_{\mu,\nu=0}^{N-1}|f_{\nu}(z)
\partial_{z}f_{\mu}(z)-f_{\mu}(z)\partial_{z}f_{\nu}(z)|^{2} .
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Since  f_{\mu} is holomorphic in  z , we have  (\partial_{z}f_{\mu})(\overline{\partial_{z}f_{\mu}})=\partial_{z}
\partial_{\overline{z}}|f_{\mu}|^{2} , and we obtain

 |f_{\nu}(z)\partial_{z}f_{\mu}(z)-f_{\mu}(z)\partial_{z}f_{\nu}(z)|^{2}= 
|f_{\nu}(z)|^{2}\partial_{z}\partial_{\overline{z}}|f_{\mu}(z)|^{2}+|f_{\mu}(z)
|^{2}\partial_{z}\partial_{\overline{z}}|f_{\nu}(z)|^{2}
(4.20)

 -(\partial_{z}|f_{\nu}(z)|^{2})(\partial_{\overline{z}}|f_{\mu}(z)|^{2})-
(\partial_{z}|f_{\mu}(z)|^{2})(\partial_{\overline{z}}|f_{\nu}(z)|^{2}) .

Using an exchange of summation index, we obtain from  () and  ()

 (| \partial_{z}Z|^{2}-\frac{|(\partial_{z}Z|Z)|^{2}}{|Z|^{2}})
(4.21)  =  \frac{2}{|a|^{4}|\zeta_{-}-\zeta_{+}|^{2}}\sum_{\mu,\nu=0}^{N-1}[|f_{\nu}(z)
|^{2}\partial_{z}\partial_{\overline{z}}|f_{\mu}(z)|^{2}-(\partial_{z}|f_{\mu}
(z)|^{2})(\partial_{\overline{z}}|f_{\nu}(z)|^{2})]

 =  \frac{2}{|a|^{4}|\zeta_{-}-\zeta_{+}|^{2}}[L_{N}(z)\partial_{z}
\partial_{\overline{z}}L_{N}(z)-(\partial_{z}L_{N}(z))(\partial_{\overline{z}}L_
{N}(z))],
where  L_{N}(z)  := \sum_{\nu=0}^{N-1}|f_{\nu}(z)|^{2} , so that by  ()

 K_{N}=  \frac{L}{|a|^{2}|\zeta_{-}-\zeta_{+}|^{2}}
Since we assumed that  z  \not\in  [-2\sqrt{ab}, 2\sqrt{ab}],  \zeta_{\pm}(z) are holomorphic functions in  z and

 \zeta_{-}  \neq\zeta+\cdot It follows that  \ln|\zeta_{-}-\zeta+|^{2} is harmonic, hence  \partial_{z}\partial_{\overline{z}}\ln L_{N}=\partial_{z}\partial_{\overline{z}
}\ln K_{N} , and

 () is equal to

(4.22)  2K_{N}^{2}\partial_{z}\partial_{\overline{z}}\ln K_{N}=2[K_{N}(z)\partial_{z}
\partial_{\overline{z}}K_{N}(z)-\partial_{z}K_{N}(z)\partial_{\overline{z}}K_{N}
(z)].

Next we are interested in obtaining bounds on  () .

Proposition 4.4. Assuming  () , we have that

(4.23)  (| \partial_{z}Z|^{2}-\frac{|(\partial_{z}Z|Z)|^{2}}{|Z|^{2}}) \wedge\vee 
(F_{N}(|\zeta_{-}|^{2}))^{4} .

Proof. For simplicity we assume that  a  =  1 . Recall from  () that we have

 () , so  0  <  \sqrt{|b}/a|  \leq  |\zeta_{-}|  \leq  1  -  1/N , where we also used  () for the first two

inequalities.

We write  F_{\nu+1}  =F_{\nu+1}(t) . Set  t=\zeta+/\zeta_{-} , which satisfies  |b/a|  \leq  |t|  \leq  1-1/C , see

the remark after  () , which also implies that  |F_{\nu+1}(t)|  \wedge\vee 1.
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By ( ) ,

 (| \partial_{z}Z|^{2}-\frac{|(\partial_{z}Z|Z)|^{2}}{|Z|^{2}})
(4.24)

 =  | \partial_{z}\ln\zeta_{-}|^{2}\sum_{\mu,\nu=0}^{N-1}|\zeta_{-}|^{2(\mu+\nu)}
|F_{\mu+1}F_{\nu+1}|^{2}|(\mu+1)\frac{1+t^{\mu+1}}{1-t^{\mu+1}}-(l\nu+1)\frac{1+
t^{\nu+1}}{1-t^{\nu+1}}|^{2}
  \wedge\vee\sum_{\mu,\nu=0}^{N-1}|\zeta_{-}|^{2(\mu+\nu)}|(\mu+1)\frac{1+t^{\mu
+1}}{1-t^{\mu+1}}-(l\nu+1)\frac{1+t^{\nu+1}}{1-t^{\nu+1}}|^{2}=  \{\begin{array}{l}
\leq S_{2(N-1)}
\geq S_{N-1},
\end{array}

where

 S_{M}= \sum_{0}^{M}|\zeta_{-}|^{2k}A_{k},
(4.25)

 A_{k}= \sum_{\nu+\mu=k}|(\mu+1)\frac{1+t^{\mu+1}}{1-t^{\mu+1}}-(l\nu+1)\frac{1+
t^{\nu+1}}{1-t^{\nu+1}}|^{2}
Here

 | \frac{1+t^{\mu+1}}{1-t^{\mu+1}}| \wedge\vee 1,  | \frac{1+t^{\nu+1}}{1-t^{\nu+1}}|  \wedge\vee 1,

so  A_{k}  =  \mathcal{O}(k^{3}) . The terms in  A_{k} with  \mu\gg   l\nu and  \mu\ll   l\nu are  \wedge\vee  k^{2} and there are  \wedge\vee  k

terms of that kind, so  A_{k}  \geq   \frac{1}{C}k^{3} , for some  C  \gg  1 . Thus,  A_{k}  \wedge\vee  k^{3} , for  k  \gg  1 . For

 k=1,

(4.26)  A_{1} =2|2 \frac{1+t^{2}}{1-t^{2}}-\frac{1+t}{1-t}|^{2}=2.
Hence, using that all  A_{k}  \geq 0 , and that  |\zeta_{-}|  \leq  1-1/N (see above), we obtain

(4.27)  S_{M\wedge} \vee\sum_{0}^{M}k^{3}|\zeta_{-}|^{2k_{\vee}}\wedge F_{M}(|\zeta_{-}
|^{2})^{4}
Here, to obtain the second estimate, we used Proposition 4.2 of  [  ] . To conclude the

statement of the proposition observe that  S_{2(N-1)} and  S_{N-1} are of the same order  0

magnitude, that is  F_{N}(|\zeta_{-}|^{2})^{4}.  \square 

Continuing, recall that  F_{N}(\zeta+/\zeta_{-})  \wedge\vee  1 for  z satisfying  () and that it depends

holomorphically on  z  \in  \mathring{\Sigma}_{1}\backslash [-2\sqrt{ab}, 2\sqrt{ab}] . For simplicity, we sharpen assumption

 () and assume

(4.28)  \{
 z\in\Sigma_{(r_{0}-1/N),r_{1}}
 r_{0}>0 satisfies  () ,

 r_{1}  =\sqrt{|b}/a|+1/C,  C\gg 1.
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Next, note that by the Cauchy inequalities, for  z satisfying  () , we have

(4.29)  |\partial_{z}F_{N}(\zeta+/\zeta_{-})| \leq \mathcal{O}(1) .

Furthermore,  \partial_{z}|F_{N}(\zeta+/\zeta_{-})|^{2}  =  \mathcal{O}(1) ,  \partial_{z}\partial_{\overline{z}}|F_{N}(\zeta+/\zeta_{-})|^{2}  =  \mathcal{O}(1) . Using this and [ ,
Proposition 4.2], we obtain for  K_{N} as  () that

  \partial_{z}K_{N}=\partial_{z}K_{\infty}+\mathcal{O}(\frac{N|\zeta_{-}|^{2N}
|\partial_{z}\ln\zeta_{-}|}{1-|\zeta_{-}|^{2}})
(4.30)   \partial_{\overline{z}}K_{N}=\partial_{\overline{z}}K_{\infty}+\mathcal{O}
(\frac{N|\zeta_{-}|^{2N}|\partial_{z}\ln\zeta_{-}|}{1-|\zeta_{-}|^{2}})

  \partial_{z}\partial_{\overline{z}}K_{N}=\partial_{z}\partial_{\overline{z}}K_
{\infty}+\mathcal{O}(\frac{N^{2}|\zeta_{-}|^{2N}|\partial_{z}\ln\zeta_{-}|^{2}}
{1-|\zeta_{-}|^{2}}) ,

where

 K_{\infty} \vee\wedge \frac{1}{1-|\zeta_{-}|^{2}}
(4.31)  \partial_{z}K_{\infty}, \partial_{\overline{z}}K_{\infty}\vee\wedge \overline{1
-|\zeta_{-}|^{2}}

 N^{2}
 \partial_{z}\partial_{\overline{z}}K_{\infty}\vee\wedge -

 1-|\zeta_{-}|^{2}.

Thus, by Proposition

 | \partial_{z}Z(z)|^{2}-\frac{|(Z(z)|\partial_{z}Z(z))|^{2}}{|Z(z)|^{2}}
(4.32)

 =2K_{\infty}(z)^{2} \partial_{z}\partial_{\overline{z}}\ln K_{\infty}(z)+
\mathcal{O}(\frac{N^{2}|\zeta_{-}|^{2N}|\partial_{z}\ln\zeta_{-}|^{2}}{(1-
|\zeta_{-}|^{2})^{2}}) .

Combining Proposition with  () and  () with  () , we see that

 \partial_{z}\partial_{\overline{z}}\ln K_{\infty}(z)(1+\mathcal{O}(N^{2}|\zeta_
{-}|^{2N}|\partial_{z}\ln\zeta_{-}|^{2})) \wedge\vee(F_{N}(|\zeta_{-}|^{2}))^{2}

Since  |\zeta_{-}|  \leq  1-2/N , see  () and  () , it then follows that

(4.33)  \partial_{z}\partial_{\overline{z}}\ln K_{\infty}(z)\vee\wedge(F_{N}(|\zeta_{-}
|^{2}))^{2}

Continuing, let  e_{1}(z) , . . . ,  e_{N^{2}}(z) be as in Proposition . It has been observed in [ ,
Section 5] that if we we assume that

(4.34)  |\nabla_{z}e_{1}(z)| =\mathcal{O}(m) ,

for some weight   m\geq  1 , then

(4.35)  | \sum_{3}^{N^{2}}\alpha_{j}\nabla_{z}e_{j}| \leq \mathcal{O}(m)
\Vert\alpha\Vert_{C^{N^{2}-2}}.
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In the following we shall perform the same steps as in  [  ] . We present this here for the

readers’ convenience, so the reader already familiar with  [  ] may skip ahead to formula

 () .

Next we will show that we can take the weight  m  =  F_{N}(|\zeta_{-}|^{2}) in  () . Using,

 () ,  () , we have

  \nabla_{z}e_{1}(z)= \frac{\nabla_{z}\overline{Z}(z)}{|Z(z)|}-\frac{\nabla_{z}
|Z(z)|}{|Z(z)|^{2}}\overline{Z}(z)
(4.36)

 =  \frac{\nabla_{z}\overline{Z}(z)}{|Z(z)|}-\frac{(\nabla_{z}Z(z)|Z(z))+(Z(z)
|\overline{\nabla}_{z}Z(z))}{2|Z(z)|^{3}}\overline{Z}(z) .

Using  () and the Cauchy inequalities, we obtain the estimate

(4.37)  | \partial_{z}Z(z)| \leq \frac{F_{N}(|\zeta_{-}|^{2})}{dist(z,
\partial\Sigma_{1,r_{1}})} \leq \mathcal{O}(1)(F_{N}(|\zeta_{-}|^{2}))^{2},
where in the second inequality we used that, dist  (z, \partial\Sigma_{1,r_{1}})  \geq  (1- |\zeta_{-}|)/C , for some
 C\gg 1.

Since  Z is holomorphic, we conclude the same estimates for  |\nabla_{z}Z| and  |\nabla_{z}\overline{Z}| , and,

by using the Cauchy‐inequalities,

(4.38)  |\partial_{z}^{2}Z| \leq \mathcal{O}(F_{N}^{3}) .

Using this and the fact that  K_{N}=  |Z| (cf. the remark after Proposition ) in  () ,
we get

(4.39)  |\nabla_{z}e_{1}| =\mathcal{O}(F_{N}) .

We can therefore take  m=F_{N} in the above. Let  f_{2} be the vector as in  () , so that

 e_{2}  =  |f_{2}|^{-1}f_{2} . As in the proof of Proposition 5.1 in  [  ] , we let  V_{0} be the isometry

from  C^{N^{2}-2} to  C^{N^{2}} defined by  V_{0}\nu_{j}^{0}  =  e_{j} (z0),  j  =  3 , . . . ,  N^{2} , where  l\nu_{3}^{0} , . . . ,  l\nu_{N^{2}}^{0} is
the standard basis of  C^{N^{2}-2} . Moreover, for  z in a complex neighbourhood of  z_{0} , we

let  V(z)  =  (1 - e_{1}(z)e_{1}^{*}(z))V_{0} . Setting  U(z)  =  V(z)(V^{*}(z)V(z))^{-1/2} , we get that

 e_{j}  =U(z)\nu_{j}^{0},  j=3 , . . . ,
 N^{2}.

It has been shown in  [  ] that  () implies that  \Vert\nabla_{z}U(z)\Vert  =  \mathcal{O}(m) . Thus, by

 () , we obtain  \Vert\nabla_{z}U(z)\Vert  =\mathcal{O}(F_{N}) . Consider

(4.40)   \nabla_{z}f_{2}(z)=\nabla_{z}\overline{\partial_{z}Z(z)}-\sum_{j\neq 2}
[(\nabla_{z}\partial_{z}Z(z)|e_{j}(z))e_{j}(z)
 +(\partial_{z}Z(z)|\nabla_{z}e_{j}(z))e_{j}(z)+(\partial_{z}Z(z)|e_{j}(z))
\nabla_{z}e_{j}(z)].

By  () , we have that  |\nabla_{z}\partial_{z}Z(z)|  =\mathcal{O}(F_{N}^{3}) . Moreover, the term for  j=1 in the sum
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is of order  \mathcal{O}(F_{N}^{3}) . It remains to estimate,

  I=\sum_{3}^{N^{2}}(\nabla_{z}\partial_{z}Z(z)|e_{j}(z))e_{j}(z)
II  = \sum_{3}^{N^{2}}(\overline{\partial_{z}Z(z)}|\nabla_{z}e_{j}(z))e_{j}(z)
III  = \sum_{3}^{N^{2}}(\overline{\partial_{z}Z(z)}|e_{j}(z))\nabla_{z}e_{j}(z) .

Here,  |I|  \leq  |\nabla_{z}\overline{\partial_{z}Z}(z)|  =  \mathcal{O}(F_{N}^{3}) and, using  () ,  |III|  \leq  \mathcal{O}(F_{N})|\overline{\partial_{z}Z}(z)|  =  \mathcal{O}(F_{N}^{3}) .

Moreover,

II  = \sum_{3}^{N^{2}}(\overline{\partial_{z}Z}(z)|\nabla_{z}U(z)\nu_{j}^{0})e_{j}
(z)=\sum_{3}^{N^{2}}((\nabla_{z}U(z))^{*}\overline{\partial_{z}Z}(z)|\nu_{j}^{0}
)e_{j}(z)
which yields that  |II|  =  |(\nabla_{z}U(z))^{*}\overline{\partial_{z}Z}(z)|  =\mathcal{O}(F_{N}^{3}) . Hence,

(4.41)  |\nabla_{z}f_{2}(z)| =\mathcal{O}(F_{N}^{3}) .

By  () ,  () , we have that for  z=z_{0}

 |f_{2}(z_{0})|^{2}= | \partial_{z}Z(z_{0})|^{2}-\frac{|(Z(z_{0})|\partial_{z}
Z(z_{0}))|^{2}}{|Z(z_{0})|^{2}} \wedge\vee F_{N}(|\zeta_{-}|^{2})^{4}
Thus, for  z in a neighbourhood of  z_{0}

(4.42)  |f_{2}(z)|^{2_{\vee}}\wedge F_{N}(|\zeta_{-}|^{2})^{4}

In view of  () we then obtain that  \nabla_{z}|f_{2}(z)|  =\mathcal{O}(F_{N}^{3}) . Since,  e_{2}  =  |f_{2}|^{-1}f_{2},

 |\nabla e_{2}(z)| =\mathcal{O}(F_{N}(|\zeta_{-}|^{2})) .

So,

(4.43)  | \sum_{2}^{N^{2}}\alpha_{j}\partial_{z}e_{j}| \leq \mathcal{O}(F_{N}(|\zeta_{-
}|^{2}))\Vert\alpha\Vert_{C^{N^{2}-1}} \leq \mathcal{O}(NF_{N}(|\zeta_{-}|^{2})) ,

where in the last inequality we used that  \Vert Q_{\omega}\Vert  =  \Vert\alpha\Vert  \leq  C_{1}N . Combining this with

 () ,  () ,  () ,  () and  () , we obtain

(4.44)   \partial_{z}f=\mathcal{O}(1) [\frac{N|\zeta_{-}|^{N-1}}{\delta F_{N}^{2}}+
\frac{|\zeta_{-}|}{\delta F}+\delta N^{2}F_{N}+\frac{\delta N^{2}}{r_{0}-|\zeta_
{-}|}] .
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Here, the first term dominates the second and the fourth term dominates the third, thus

(4.45)   \partial_{z}f=\mathcal{O}(1) [\frac{N|\zeta_{-}|^{N-1}}{\delta F_{N}^{2}}+
\delta N^{3}] .

Similarly, using  () ,

  \partial_{\overline{z}}f=\mathcal{O}(1) [\frac{|\zeta_{-}|}{\delta F_{N}}+
\delta N^{2}F_{N}+N|\zeta_{-}|^{N}+\delta^{2}N^{3}F_{N+1}^{2}+\delta N^{2}F_{N}]
(4.46)

 = \mathcal{O}(1) [\frac{|\zeta_{-}|}{\delta F_{N}}+\delta N^{2}F_{N}] .

Repeating line by line (with the obvious changes) the proof of Proposition 5.3 in  [  ],
we obtain the following, basically identical result:

Proposition 4.5. We express  Q in the canonical basis in  C^{N^{2}} or in any othe

xed orthonormal basis . Let  e_{1}(z) , . . . ,  e_{N^{2}}(z) be an orthonormal basis in  C^{N^{2}} depend‐

ing smoothly on  z , with  e_{1}(z)=  |Z(z)|^{-1}\overline{Z}(z) , and  Ce_{1}(z)\oplus Ce_{2}(z)=C\overline{Z}(z)\oplus C\overline{\partial_{z}Z}(z) .

Write  Q= \alpha_{1}\overline{Z}(z)+\sum_{2}^{N^{2}}\alpha_{j}e_{j}(z) , and recall that the hypersurface

 \{(z, Q) \in\Sigma_{r_{0}-1/N}\backslash \Sigma_{r_{1}} \cross B(0, C_{1}N);
g(z, Q)=0\},

is given by  () with  f as in  () (see also ( ), ( )). Then, the restriction of
 dQ ∧  d\overline{Q} to this hypersurface is given by

 dQ ∧  d\overline{Q}=J(f)dz ∧  dZ ∧  d\alpha' ∧  d\alpha'

 J(f)=- \frac{|\alpha_{2}|^{2}}{|Z|^{2}}|(e_{2}|\overline{\partial_{z}Z})|^{2}
(4.47)

 + \mathcal{O}(1)|\alpha_{2}||F_{N}| (\frac{N|\zeta_{-}|^{N-1}}{F_{N}\delta}+
\delta N^{3}F_{N}+|\alpha_{2}|F_{N}^{2}\delta N)
 + \mathcal{O}(1) (\frac{N|\zeta_{-}|^{N-1}}{F_{N}\delta}+\delta N^{3}F_{N}+
|\alpha_{2}|F_{N}^{2}\delta N)^{2},

where  F_{N}=F_{N}(|\zeta_{-}|^{2}) ,  \alpha'=(\alpha_{2}, \ldots, \alpha_{N^{2}}) and  d\alpha' ∧  d\alpha'=d\alpha_{2} ∧   d\alpha_{2}\wedge\cdots ∧  d\alpha_{N^{2}} ∧  d\alpha_{N^{2}}.

Note that the Jacobian  J(f) in  () is invariant under any  z‐dependent unitary

change of variables  \alpha_{2} , . . . ,  \alpha_{N^{2}}  \mapsto\alpha_{2}' , . . . ,  \alpha_{N^{2}}' . Therefore, to calculate  J(f) , and thus

 \xi , at any given point  (z_{0}, \alpha_{0}) we may choose the most appropriate orthogonal basis

 e_{2}(z) , . . . ,  e_{N^{2}} in  \overline{Z}(z)^{\perp} depending smoothly on  z.

§5. The average density

Recall  () . Using  () ,  () , it follows by a general formula, obtained in

Section 3 of  [  ] , that

(5.1)  K_{\varphi}= \int\varphi(z)\xi(z)L(dz) ,
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with

(5.2)   \xi(z)=\pi^{-N^{2}}\int_{|f(z)|^{2}|Z(z)|^{2}+|\alpha'|^{2}\leq(C_{1}N)^{2}}e^
{-|f(z)|^{2}|Z(z)|^{2}-|\alpha'|^{2}}J(f(z, \alpha'))L(d\alpha') .

where  f is as in  () and  J is as in Proposition . Recall that we work under the

hypotheses  () and  () . The latter in particular implies  () ,  () . Applying
these to  () we obtain

(5.3)  |f|  \leq \mathcal{O}(1) (\frac{g_{0}(z)}{\delta NF}+\delta NF_{N}) 
\overline{F_{N}} \ll \overline{F} .

Now we strengthen assumptions  () ,  () to

(5.4)  ( \frac{|\zeta_{-}|}{\delta NF}+\delta NF_{N}) \ll \underline{1}.
Then,

  e^{-|f(z)|^{2}|Z(z)|^{2}} =1+\mathcal{O}(1) (\frac{|\zeta_{-}|}{\delta NF}+
\delta NF_{N})^{2}N^{2}
Thus, using  ()

(5.5)

 \xi(z)=  (1+ \mathcal{O}(1) (\frac{|\zeta_{-}|}{\delta NF}+\delta NF_{N})^{2}N^{2})  \cross

  \frac{|(e_{2}|\overline{\partial_{z}Z})|^{2}}{|Z|^{2}}\int_{|(f|Z|,\alpha')
|\leq C_{1}N}|\alpha_{2}|^{2}e^{-|\alpha'|^{2}}\pi^{-N^{2}}L(d\alpha')
 + \mathcal{O}(1)\int_{|(f|Z|,\alpha')|\leq C_{1}N}|\alpha_{2}||F_{N}|  ( \frac{N|\zeta_{-}|^{N-1}}{F_{N}\delta}+\delta N^{3}F_{N}+|\alpha_{2}|F_{N}
^{2}\delta N)e^{-|\alpha'|^{2}}\frac{L(d\alpha')}{\pi^{N^{2}}}
 + \mathcal{O}(1)\int_{|(f|Z|,\alpha')|\leq C_{1}N}  ( \frac{N|\zeta_{-}|^{N-1}}{F_{N}\delta}+\delta N^{3}F_{N}+|\alpha_{2}|F_{N}
^{2}\delta N)^{2}e^{-|\alpha'|^{2}}\frac{L(d\alpha')}{\pi^{N^{2}}}.

By  () ,  |f||Z|  \ll N . Therefore, the first integral is equal to

  \frac{1}{\pi^{2}}\int|w|^{2}e^{-|w|^{2}}L(dw)+\mathcal{O}(e^{-\frac{N^{2}}
{O(1)}}) = \frac{1}{\pi} (1+\mathcal{O}(e^{-\frac{N^{2}}{O(1)}})) .

The sum of the other two integrals is equal to

  \mathcal{O}(1) [(\frac{N|\zeta_{-}|^{N-1}}{F_{N}\delta}+\delta N^{3}F_{N})^{2}
+F_{N} (\frac{N|\zeta_{-}|^{N-1}}{F_{N}\delta}+\delta N^{3}F_{N})] .

We have seen that

(5.6)   \frac{|(e_{2}|\overline{\partial_{z}Z})|^{2}}{|Z|^{2}} =\mathcal{O}(F_{N}^{2}) .
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Therefore, we obtain

  \xi(z)=\frac{1}{\pi}\frac{|(e_{2}|\overline{\partial_{z}Z})|^{2}}{|Z|^{2}}
(5.7)

 + \mathcal{O}(1) [(\frac{N|\zeta_{-}|^{N-1}}{F_{N}\delta}+\delta N^{3}F_{N})
^{2}+F_{N} (\frac{N|\zeta_{-}|^{N-1}}{F_{N}\delta}+\delta N^{3}F_{N})] .

Next, let us study the leading term in  () . Since  \overline{\partial_{z}Z} belongs to the span of  e_{1}  =\overline{Z}/|Z|
and  e_{2} for  z=z_{0} , we obtain by Pythagoras’ theorem that the leading term is equal to

(5.8)   \frac{1}{\pi|Z|^{2}}  (| \overline{\partial_{z}Z}|^{2}-\frac{|(\partial_{z}Z|Z)|^{2}}{|Z|^{2}}) , for  z=z_{0}.

By the remark after Proposition , this is then true for all  z.

Recall from the remark after Proposition that  K_{N}  =  |Z| . Similarly to  () ,

using  () we get that  K_{N}  =K_{\infty}(1+\mathcal{O}(|\zeta_{-}|^{2N}) , where  K_{\infty}  \wedge\vee  (1- |\zeta_{-}|^{2})^{-1} . Using

this and  () , we see that  () becomes

  \xi(z)=\frac{2}{\pi}\partial_{z}\partial_{\overline{z}}\ln K_{\infty}(z)+
\mathcal{O}(N^{2}|\zeta_{-}|^{2N}|\partial_{z}\ln\zeta_{-}|^{2})
(5.9)  + \mathcal{O}(1) [(\frac{N|\zeta_{-}|^{N-1}}{F_{N}\delta}+\delta N^{3}F_{N})
^{2}+F_{N} (\frac{N|\zeta_{-}|^{N-1}}{F_{N}\delta}+\delta N^{3}F_{N})] ,
where by  ()

(5.10)   \frac{2}{\pi}\partial_{z}\partial_{\overline{z}}\ln K_{\infty}(z)\vee\wedge F_
{N}^{2}(|\zeta_{-}|^{2}) .

Thus, the error term in  () can be written as

(5.11)   \mathcal{O}(F_{N}^{2}) (\frac{N^{2}|\zeta_{-}|^{2N}|\partial_{z}\ln\zeta_{-}|^
{2}}{F_{N}^{2}}+\frac{N^{2}|\zeta_{-}|^{2N-2}}{\delta^{2}F^{4}}+\delta^{2}N^{6}+
\frac{N|\zeta_{-}|^{N-1}}{\delta F^{2}}+\delta N^{3}) .

By  () , we have that  (\delta F_{N})^{-1}  \gg N^{2} . Thus, by  () (which is implied by ( )), the
second term in  () is

  \gg \frac{N^{6}|\zeta_{-}|^{2N-2}}{F^{2}}
which dominates the first term. Strengthening assumption  () to

(5.12)  ( \frac{|\zeta_{-}|^{N-1}}{\delta F_{N}^{2}}+\delta N^{3}) \ll 1,
the remainder becomes

(5.13)   \mathcal{O}(F_{N}^{2}) (\frac{N|\zeta_{-}|^{N-1}}{\delta F_{N}^{2}}+\delta 
N^{3}) .
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By  () , assumption  () is equivalent to

(5.14)  ( \frac{|\zeta_{-}|^{N-1}}{\delta}(1-|\zeta_{-}|)^{2}+\delta N^{3}) \ll 1.
Note that for  1/C  \leq  r_{0}  \leq  1  -  1/N , for some  C  \gg  1 , the function  [0, r_{0}]  \ni  r  \mapsto

 r^{N-1}(1-r)^{2} is increasing. Thus, unifying our previous assumptions, we assume that

 z\in\Sigma_{r_{0}-1/N}\backslash \Sigma_{r_{1}} , with  r_{0} satisfying  1/C\leq r_{0}  \leq  1-1/N and  () with  |\zeta_{-}| replaced

by  r_{0} , and  r_{1} as in  () (note that this assumption implies ( ), ( ) and ( )).
Then, by  () ,  () ,  () we conclude that

(5.15)   \xi(z)= \frac{2}{\pi}\partial_{z}\partial_{\overline{z}}\ln K_{\infty}(z) (1+
\mathcal{O}(\frac{N|\zeta_{-}|^{N-1}}{\delta}(1-|\zeta_{-}|)^{2}+\delta N^{3})) .

We have proved Theorem , the main result of this paper.
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