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Parametric Borel summability for semilinear partial
differential equation

By

Masafumi YOSHINO*

Abstract

In [1], Balser and Kostov studied the parametric Borel summability for a system of or‐
dinary differential equations of Fuchsian type. They noted that a certain Diophantine phe‐
nomenon enters in the summability. In fact, they showed, by a counter example, that a
Diophantine condition is necessary in general for the parametric Borel summability. In this
paper we shall show the parametric Borel summability for a first order semilinear partial dif‐
ferential equation as well as an ordinary differential equation which does not necessarily satisfy
Balser‐Kostov’s Diophantine‐type condition.

§1. Introduction

In 2002, Balser and Kostov showed the parametric Borel summability for a first

order system of ordinary differential equations under a certain Diophantine type condi‐

tion for eigenvalues of the linear part. (cf. [1]). They also showed that such a condition
is necessary in general. On the other hand, in [2] it was shown that the Diophan‐
tine phenomena do not appear in the case of an irregular singular ordinary differential

equations.

In our preceding paper [3] we proved the parametric Borel summability for a first
order semilinear system of partial differential equations of Fuchsian type under the con‐

dition similar to Balser‐Kostov’s one. In this paper, we shall study the case where the

Diophantine type condition for the eigenvalues of the linear part is not satisfied. (cf.
[1]). Because the Borel summability without Balser‐Kostov’s condition does not hold in
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general, we need to restrict the class of functions which we use in proving the summabil‐

ity. In fact, we introduce the class of functions whose Borel transforms are holomorphic

and of exponential growth in some direction as well as in its antipodal direction. Then

we show the parametric Borel summability for a Fuchsian semilinear partial differential

equation which does not satisfy Balser‐Kostov’s condition. We remark that the summa‐

bility in such a restricted class is new even in the case of ordinary differential equation

not satisfying Balser‐Kostov’s condition.

This paper is organized as follows. In Section 2, we state the main theorem, Theo‐

rem 2.1. In Section 3, we prove Gevrey estimate for the formal power series. In Section 4,

we prove elementary properties of the convolution needed for the proof of Theorem 2.1.

In Section 5, we prove Theorem 2.1, after having prepared technical lemmas.

§2. Statement of results

Let  x  =  (x1, . . . , x_{n})  \in  \mathbb{C}^{n},  n  \geq  1 be the variable in  \mathbb{C}^{n} . For  \lambda_{j}  \in  \mathbb{C},  \lambda_{j}  \neq  0

 (j=1,2, \ldots, n) we define

(2.1)   \mathcal{L} :=\sum_{j=1}^{n}\lambda_{j}x_{j}\frac{\partial}{\partial x_{j}}.
Let   N\geq  1 be an integer and let  f(x, u, \eta)  =  (f^{(1)}(x, u, \eta), \ldots, f^{(N)}(x, u, \eta)) be a holo‐

morphic vector function in some neighborhood of the origin of  x  \in  \mathbb{C}^{n},  \eta  \in  \mathbb{C} and
 u=  (u^{(1)}, \ldots, u^{(N)})  \in  \mathbb{C}^{N} . We assume that  f(x, u, \eta) is an entire function of  u and  \eta.

We consider the semilinear system of equations of  u

(2.2)  \eta \mathcal{L}u=f(x, u, \eta) ,

where  \eta\in \mathbb{C} is a complex parameter. We assume

(2.3)  f(0,0, \eta)  \equiv 0 for all  \eta,  \det(\nabla_{u}f(0,0,0))  \neq 0

where  \nabla_{u}f(0,0,0) denotes the Jacobi matrix of  f(x, u, \eta) with respect to  u at the point

 x=0,  u=0,  \eta=0 . We assume

(2.4)  \nabla_{u}f(0,0, \eta)\equiv\nabla_{u}f(0,0,0) , for all  \eta,

and

(2.5)  \nabla_{u}f(x, 0,0) is a diagonal matrix.

We set

(2.6)  \nabla_{u}f(0,0,0)= diag  (\mu_{1}, \ldots, \mu_{N}) ,
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where diag  (\mu_{1}, \ldots, \mu_{N}) is the diagonal matrix with diagonal components given by

 \mu_{1} , . . . ,  \mu_{N} in this order. By multiplying the equation with some nonzero constant

one may assume that  \lambda_{n}  =  1 . In the following we always assume the condition. We
assume

(2.7)  \Re\lambda_{j}  >0,  =1 , . . . ,  n,

and

(2.8)  \Re\mu_{k}\neq 0,  k=1 , . . . ,  N.

If  \Re\mu_{k}  >  0 for all  k or if  \Re\mu_{k}  <0 for all  k , then we are in the situation studied in [3].
Hence we assume that there exist  k and  \ell such that  \Re\mu_{k}  >  0 and  \Re\mu_{\ell}  <  0 in the rest

of this paper.

We construct the solution  u=v(x, \eta) of (2.2) in the formal power series of  \eta

(2.9)   v(x,  \eta)=\sum_{\nu=0}^{\infty}\eta^{\nu}v_{\nu}(x)=v_{0}(x)+\eta v_{1}(x)+
\cdots ,

where the coefficient  v_{\nu}(x) is a holomorphic vector function of  x in some open set inde‐

pendent of  \nu . We set  v_{\nu}(x)  \equiv v_{\nu}=  (v_{\nu}^{(1)}, \ldots, v_{\nu}^{(N)}) . We denote by  \Omega_{0} the neighborhood

of the origin on which every coefficient  v_{\nu}(x) is defined. For the details we refer §3.

In order to state our results we recall some definitions from the summability theory.

The formal Borel transform of  v(x, \eta) is defined by

(2.10)  B (  v )  (x, y)  := \sum_{\nu=0}^{\infty}v_{\nu}(x)\frac{y^{\nu}}{\Gamma(\nu+1)},
where  \Gamma(z) is the Gamma function. For  \xi\in \mathbb{R} and  \theta>0 we define

(2.11)  E_{+}(\xi, \theta)  :=  \{z\in \mathbb{C} dist  (z, \mathbb{R}_{+}e^{i\xi})  <   \frac{\theta}{2}\},
where  \mathbb{R}_{+}  =\{t, t\geq 0\} , and dist  (z, \mathbb{R}_{+}e^{i\xi}) denotes the distance from  z to the set  \mathbb{R}_{+}e^{i\xi}.
We say that  v(x, \eta) is 1‐summable in the direction  \xi with respect to  \eta if  B (v)  (x, y)
converges in some neighborhood of  (x, y)  =  (0,0) , and there exist a neighborhood  U

of  x  =  0 and a  \theta  >  0 such that  B (v)  (x, y) can be analytically continued to the set
 \{(x, y) \in U \cross E_{+}(\xi, \theta)\} and of exponential growth of order 1 with respect to  y in

 E_{+}(\xi, \theta) when  x  \in  U . For the sake of simplicity we denote the analytic continuation

with the same notation  B (v)  (x, y) . The Borel sum  V(x, \eta) of  v(x, \eta) is, then, given by
the Laplace transform

(2.12)  V(x,  \eta) :=\eta^{-1}\int_{0}^{\infty e^{i}} e^{-y\eta^{-}} B(v)(x, y)dy.
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Let  C_{0}^{+} be the convex closed positive cone with vertex at the origin containing  \mu_{k}

such that  \Re\mu_{k}  >0 and  1  \leq  k\leq N.  C_{0}^{-} is defined similarly by replacing the condition

 \Re\mu_{k}  >0 with  \Re\mu_{k}  <0 . Write

(2.13)  C_{0}^{+}=\{z\in \mathbb{C}|-\theta_{2}^{+} \leq\arg z\leq\theta_{1}^{+}\},  C_{0}^{-}  =\{z\in \mathbb{C}|-\theta_{2}^{-} \leq\arg z-\pi\leq\theta_{1}^{-}\}.

for some  -\pi/2  <  \theta_{1}^{\pm}  <  \pi/2 and  -\pi/2  <  \theta_{2}^{\pm}  <  \pi/2 with  -\theta_{2}^{\pm}  \leq  \theta_{1}^{\pm} . Define  \theta_{1}  :=

  \max\{\theta_{1}^{+}, \theta_{1}^{-}\},  \theta_{2}  := \max\{\theta_{2}^{+}, \theta_{2}^{-}\} . Then we have

Theorem 2.1. Suppose (2.3), (2.4), (2.5) and (2.7). Then there exists a neigh‐
borhood  U of  x=0 such that  v(x, \eta) is 1‐summable in the direction  \arg\eta with  \pi/2+\theta_{1}  <

 \arg\eta<3\pi/2-\theta_{2} when  x\in U. Moreover, there exists a neighborhood  W of  \eta=0 such

that  V(x, \eta) is holomorphic and satisfies (2.2) when   x\in  U,  \theta_{1}  <\arg\eta<2\pi-\theta_{2},  \eta\in  W.

§3. Formal series solutions and Gevrey estimate

Formal series expansion in a parameter. We substitute the expansion (2.9) into
(2.2) with  u=v . The left‐hand side is given by

(3.1)   \eta \mathcal{L}v=\sum_{\nu=0}^{\infty}\mathcal{L}v_{\nu}(x)\eta^{\nu+1}
By the partial Taylor expansion of  f with respect to  \eta we have  f(x, u, \eta)  = \sum_{\ell=0}^{\infty}f_{\ell}(x, u)\eta^{\ell}.
Hence the right‐hand side of (2.2) is written as

(3.2)  f(x, v,  \eta)=\sum_{\ell=0}^{\infty}\eta^{\ell}f_{\ell}(x, v_{0}+v_{1}\eta+
v_{2}\eta^{2}+\cdots)
 =f_{0}(x, v_{0})+\eta(\nabla_{u}f_{0})(x, v_{0})v_{1}+\eta f_{1}(x, v_{0})+
O(\eta^{2}) .

By comparing the coefficients of  \eta , we obtain for  \eta^{0}=1

(3.3)  f_{0}(x, v_{0}(x))=0

and for  \eta

(3.4)  \mathcal{L}v_{0}-f_{1}(x, v_{0})=(\nabla_{u}f_{0})(x, v_{0})v_{1}.

We solve (3.3) with the condition  v_{0}(0)  =  0 by means of an implicit function theo‐
rem on some  \Omega_{0} in view of the assumption (2.3) and  f_{0}(0,0)  =  f(0,0,0) . Next we
solve  v_{1} from (3.4) on  \Omega_{0} where we may assume  \det(\nabla_{u}f_{0}(x, v_{0}(x)))  \neq  0 on  \Omega_{0} since
 \det(\nabla_{u}f(0,0,0))\neq 0.
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In order to determine  v_{\nu}(x)  (\nu\geq 2) we compare the coefficients of  \eta^{\nu} in the both

sides of (2.2). Indeed, we differentiate (3.2)  (\nu-1) ‐times with respect to  \eta and we put
 \eta=0 . Then we obtain

(3.5)  \mathcal{L}v_{\nu-1}  =(\nabla_{u}f_{0})(x, v_{0})v_{\nu}+ (terms consisting of  v_{k},   k<\nu).

We observe that the second term in the right‐hand side appear from the terms  \eta^{\ell}f_{\ell}(x,  v_{0}+

 v_{1}\eta+v_{2}\eta^{2}+\cdots) for  \ell\geq 0 in (3.2), which are products of terms of the form  v_{i_{j}}\eta^{i_{j}} and
 \eta^{\ell} such that

 i_{1}+i_{2}+\cdots+i_{k}+\ell=\nu,  i_{1}  \geq 0 , . . . ,  i_{k}  \geq 0,  i_{j}  \neq 0

for some  k\geq 2 and  j  \leq k . It follows that all terms  v_{k} ’s in the second term satisfy  k<\nu.

Therefore one can write (3.5) in the following way

 \nabla_{u}f_{0}(x, v_{0})v_{\nu}=H_{\nu} (  x,  v_{0} , v1, . . . ,  v_{\nu-1} ) for all  \nu\geq 2.

Since  \det(\nabla_{u}f(x, v_{0}(x), 0))\neq 0 on  \Omega_{0} , one can inductively determine  v_{\nu}.

The next theorem gives the existence of a formal solution.

Proposition 3.1. Suppose that  v_{0}(x) is holomorphic and satisfy (3.3) with  v_{0}(0)  =

 0 on  \Omega_{0} for some neighborhood of the origin  \Omega_{0} . Assume that  \det(\nabla_{u}f_{0}(x, v_{0}))\neq 0  0

 \Omega_{0} . Then every coefficient  v_{\nu},  \nu  \geq  1 of (2.9) is uniquely determined as a holomorphic
function on  \Omega_{0}.

Proof. Suppose that  v_{k}(x) is determined up to some  \ell-1 in the neighborhood  0

the origin for some  \ell  \geq  1 . Then, by an implicit function theorem one can determine

 v_{\ell}(x) uniquely in some neighborhood of the origin depending on  \ell . Because  v_{k}(x)
are determined recursively by differentiations and algebraic calculations, the recurrence

formula for  v_{\ell}(x) implies that  v_{\ell}(x) is holomorphic on  \Omega_{0}.  \square 

By the same argument as that of Proposition 3.2 in [3] we have the Gevrey estimate
of order 1 with respect to the parameter  \eta . Namely we have

Proposition 3.2. Assume that  f(x, u, \eta) be analytic with respect to  x in some

neighborhood of the origin  0  \in  \mathbb{C}^{n} and an entire function of  u  \in  \mathbb{C}^{N} and  \eta  \in C. Let
 v in (2. 9) be the formal series solution given by Proposition 3.1. Then there exist
neighborhood  U of  x  =  0 and a neighborhood  W of  y  =  0 in  \mathbb{C} such that  B(v)(x, y)
converges in   U\cross  W.

§4. Convolution estimate

For  \theta>0 let  \Omega be an open set containing  E_{+}(\pi, \theta) such that if   z\in\Omega , then   z-t\in\Omega

for every  t  \geq  0 and   z\sigma  \in  \Omega for every  0  \leq  \sigma  \leq  1 . Let  H(\Omega) be the set of holomorphic
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functions in  \Omega . For  c>0 , we define the space  \mathcal{H}_{c}(\Omega) as the set of those  h\in H(\Omega) such
that there exists  K\geq 0 for which

(4.1)  |h(z)|  \leq Ke^{c|\Re z|}(1+|z|)^{-2} for all  z\in\Omega.

Obviously,  \mathcal{H}_{c}(\Omega) is the Banach space with the norm

(4.2)   \Vert h\Vert_{\Omega,c} :=\sup_{z\in\Omega}|h(z)|(1+|z|)^{2}e^{-c|\Re z|}.
The convolution  f*g  ( f, g\in \mathcal{H}_{c}(\Omega)) is defined by

(4.3)  (f*g)(z) :=  \frac{d}{dz}\int_{0}^{z}f(z-t)g(t)dt= \frac{d}{dz}\int_{0}^{z}f(t)
g(z-t)dt.
Write  f'(z)  =(df/dz)(z) . Then we have

Proposition 4.1. For every  f,  g\in \mathcal{H}_{c}(\Omega) such that  f(0)  =g(0)  =0 and  f',   g'\in

 \mathcal{H}_{c}(\Omega) we have  f*g\in \mathcal{H}_{c}(\Omega) with the estimate

(4.4)  \Vert f*g\Vert_{\Omega,c}\leq 8\Vert f'\Vert_{\Omega,c}\Vert g\Vert_{\Omega,c},
\Vert f*g\Vert_{\Omega,c}\leq 8\Vert f\Vert_{\Omega,c}\Vert g'\Vert_{\Omega,c}.

Proposition 4.1 can be proved by the similar argument as in the proof of Proposition

4.2 in [3]. Because the domain of the integration of the convolution in our case is different
from the one in [3], we give the key point of the proof. Consider

 | \int_{0}^{z}f'(z-t)g(t)dt|  \leq   \Vert f'\Vert_{\Omega,c}\Vert g\Vert_{\Omega,c}|\int_{0}^{z}e^{c|\Re t|+
c|\Re(z-t)|}(1+|z-t|)^{-2}(1+|t|)^{-2}|dt|| .

Because  \Re t and  \Re(z-t) have the same sign, by the definition of  \Omega , we have

 e^{c|\Re t|+c|\Re(z-t)|} =e^{c|\Re t+\Re(z-t)|} =e^{c|\Re z|}.

The estimate of the right‐hand side integral and the remaining argument are idential

with those given in the proof of Proposition 4.2 in [3].
For  f  \in \mathcal{H}_{c}(\Omega) we define  D_{z}^{-1}f(z)  := \int_{0}^{z}f(t)dt , where the integration is taken on

the straight line connecting the origin and  z . Then we have

Lemma 4.2.  D_{z}^{-1} is a continuous linear operator defined on  \mathcal{H}_{c}(\Omega) into  \mathcal{H}_{c}(\Omega) .

Proof. Let  f\in \mathcal{H}_{c}(\Omega) . By definition we have

(4.5)  e^{-c|\Re z|}(1+|z|)^{2}|D_{z}^{-1}f(z)| \leq\int_{0}^{z}|f(t)|e^{-c|\Re z|}(1+
|z|)^{2}|dt|
  \leq\Vert f\Vert_{c}\int_{0^{e^{c|\Re t|-c|\Re z|}}}^{z}\frac{(1+|z|)^{2}}{(1+
|t|)^{2}}|dt|.



arameteric Borel summability 243

If  |\Re t|  \leq  (1-\epsilon)|\Re z| , then we have  e^{c|\Re t|-c|\Re z|}(1+|z|)^{2}  \leq e^{-c\epsilon|\Re z|}(1+|z|)^{2} . We see that

the right‐hand side is bounded by some constant  K_{0} independent of  z and  f . Moreover,

the integral   \int_{1\Re t|\leq(1-\epsilon)|\Re z|}(1+|t|)^{-2}|dt| is bounded by   \int_{-\infty}^{\infty}(1+|t|)^{-2}|dt| . Hence it is

bounded by some constant  K_{1} . It follows that

(4.6)   \int_{|\Re t|\leq(1-\epsilon)|\Re z|^{e^{c|\Re t|-c|\Re z|}}}\frac{(1+|z|)^{2}
}{(1+|t|)^{2}}|dt| \leq K_{0}K_{1}.
Next we shall estimate

(4.7)   \int_{|\Re z|\geq|\Re t|\geq(1-\epsilon)|\Re z|^{e^{c|\Re t|-c|\Re z|}}}\frac{
(1+|z|)^{2}}{(1+|t|)^{2}}|dt|.
Because (4.7) is bounded if  z moves in a bounded set in  \Omega , we may assume that  |z| is
sufficiently large. It follows that there exists  0<c_{0}<  1 such that  |\Re z|  \geq c_{0}|z| for such
 z . Because  |\Re t|  \geq  (1-\epsilon)|\Re z| , we have

 (1+|t|)^{2}\geq (1+|\Re t|)^{2} \geq (1+(1-\epsilon)c_{0}|z|)^{2} \geq (1-
\epsilon)^{2}c_{0}^{2}(1+|z|)^{2}

On the other hand, since the integral is taken on the straight line connecting  0 and  z,

it follows that  \Re z and  \Re t has the same sign. Hence we have  |\Re t|-|\Re z|  =-|\Re(z-t)|.
Therefore (4.7) is bounded by

 (1- \epsilon)^{-2}c_{0}^{-2}\int_{|\Re z|\geq|\Re t|\geq(1-\epsilon)|\Re z|}e^{
-c|\Re(t-z)|}|dt|.
By setting  s=t-z we see that the integral is equal to

 (1- \epsilon)^{-2}c_{0}^{-2}\int_{0\leq|\Re s|\leq\epsilon|\Re z|}e^{-c|\Re s|}
|ds|.
Clearly, it is bounded by some constant independent of  z . Therefore, by (4.6) there
exists  K3>  0 independent of  f such that the right‐hand side of (4.5) is bounded by
 K_{3}\Vert f\Vert_{c}.  \square 

§5. Proof of Theorem 2.1

First we define a function space. Let  D be an open connected set in the neighbor‐

hood of the origin of  \mathbb{C}^{n} and define  \Omega  :=\{z\in \mathbb{C}||\Im z| <\theta/2\} . Let  H(D, \Omega) be the set  0

holomorphic functions in  (x, y)  \in D  \cross\Omega . Then we define  \mathcal{H}_{c}(D, \Omega) as the set of those

 h\equiv h(x, y)  \in H(D, \Omega) such that there exists  K_{0}  \geq 0 for which

(5.1)   \sup_{x\in D}|h(x, y)|  \leq K_{0}e^{c|\Re y|}(1+|y|)^{-2} for all  y\in\Omega.
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The space  \mathcal{H}_{c}(D, \Omega) is a Banach space with the norm   \Vert h\Vert_{c}=\inf K_{0} where  K_{0} is given

in (5.1).
Proof of Theorem 2.1. We first show the summability of  v(x, \eta) in the direction

 \arg\eta  =\pi when  x  \in  U , where  U is given in Proposition 3.2. In terms of (2.2) with  u

replaced by  v_{0}+u,  f_{0}(x, v_{0})  =0 and

 f_{\ell}(x, v)=f_{\ell}(x, v_{0})+ \nabla_{u}f_{\ell}(x, v_{0})\cdot u+
\sum_{|\beta|\geq 2}r_{\beta,\ell}(x, v_{0})u^{\beta},  \ell=0 , 1, 2, . . .

we obtain

(5.2)  Lu=- \mathcal{L}v_{0}+\eta^{-1}\nabla_{u}f_{0}(x, v_{0})u+\eta^{-1}
\sum_{|\beta|\geq 2}r_{\beta,0}(x, v_{0})u^{\beta}

 + \sum_{\ell\geq 1}\eta^{\ell-1} (f_{\ell}(x, v_{0})+\nabla_{u}f_{\ell}(x, 
v_{0})\cdot u+\sum_{|\beta|\geq 2}r_{\beta,\ell}(x, v_{0})u^{\beta}) .

Let  U(y)  :=B(u) be the formal Borel transform of  u with respect to  \eta , where  y is the

dual variable of  \eta . By the Borel transform of (5.2) and by recalling that  \eta^{-1} corresponds
to  \partial/\partial y , we obtain

(5.3)   \mathcal{L}u=-\mathcal{L}v_{0}+\nabla_{u}f_{0}(x, v_{0})\frac{\partial\hat{u}}
{\partial y}+\frac{\partial}{\partial y} \sum r_{\beta,0}(x, v_{0})(U)^{*\beta}
 |\beta|\geq 2

 + \sum_{\ell\geq 1}D_{y}^{1-\ell} (f_{\ell}(x, v_{0})+\nabla_{u}f_{\ell}(x, 
v_{0})\cdot u+\sum_{|\beta|\geq 2}r_{\beta,\ell}(x, v_{0})(U)^{*\beta}) .

where  (u)^{*\beta}  =  (U_{1})^{*\beta_{1}}\cdots(U_{N})^{*\beta_{N}},  \beta=  (\beta_{1}, \ldots, \beta_{N}) , and  (U_{j})^{*\beta_{j}} is the  \beta_{j} ‐convolution

product,  (U_{j})^{*\beta_{j}}  =  U_{j}  *\cdots*U_{j} . Here  D_{y}^{1-\ell}  =  (D_{y}^{-1})^{\ell-1} and  D_{y}^{-1} is the integration,

 D_{y}^{-1}g(y)= \int_{0}^{y}g(t)dt.
Let  v be the formal solution given by Proposition 3.1 and let  B(v) be the formal

Borel transform of  v . Define  U(x, y)  :=  B (v)  -v_{0} . Then  U(x, y) , being analytic on
 (x, y)  \in U\cross W and satisfying û  (x, 0)  \equiv 0 in  x , is the solution of (5.3) in a neighborhood
of  y=0 . We shall show that every solution of (5.3) being analytic at  y=0 and satisfying
 \wedge(x, 0)  \equiv  0 is uniquely determined. Indeed, by definition the convolution product  0

 y^{i}/i! and  y^{j}/j! is equal to  y^{i+j}/(i+j)! . Hence, if we expand  U in the power series  0

 y and we insert it into (5.3), then every coefficient of the expansion can be uniquely
determined from the recurrence relation because  \nabla_{u}f_{0}(x, v_{0}) is invertible. Therefore,  i

we can show the existence of the solution of (5.3) being analytic in  (x, y)  \in   U\cross\Omega and
of exponential growth with respect to  y in  \Omega , then we have the analytic continuation

of the formal Borel transform of  v which is of exponential growth in   y\in  \Omega . Hence we

have the summability of  v . Therefore, it is sufficient to prove the following theorem.
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Theorem 5.1. There exist  c>0 , a neighborhood of  x=0,  D and  \Omega as in (5.1)
such that (5.3) has a solution  U in  \mathcal{H}_{c}(D, \Omega) .

For the proof of Theorem 5.1 we prepare six lemmas. Let  c>0,  D and  \Omega be given

as in the above. We may assume that  D is contained in an open ball centered at the

origin. In order to prove the solvability of (5.3) when  x is in some neighborhood of the
origin and   y\in\Omega we first consider

(5.4)   \mathcal{L}w-(\nabla_{u}f_{0})(x, 0)\frac{\partial w}{\partial y} =g(x, y) ,

where  w=(w_{1}, \ldots, w_{N}) and  g=g(x, y)=(g_{1}, \ldots, g_{N}) ,  g_{j}  \in \mathcal{H}_{c}(D, \Omega) is a given vector
function and  f_{0}(x, u)=f(x, u, 0) .

By the assumption (2.5), for every  j,  1  \leq  j  \leq  N we denote the j‐th diagonal
component of  (\nabla_{u}f_{0})(x, 0) by  (\nabla_{u}f_{0})_{j}(x, 0) . We use the method of characteristics in

order to solve (5.4). Namely, we consider

(5.5)   \frac{d\zeta}{\zeta}  =   \frac{dx_{k}}{\lambda_{k}x_{k}}  =- \frac{dy}{(\nabla_{u}f_{0})_{j}(x,0)},  k=1 , 2, . . . ,  n-1.

Let  b\in \mathbb{C},  b\neq 0 be sufficiently small and  y_{0}  \in\Omega be given. By integrating (5.5) we have

(5.6)  x_{k}=x_{k}(\zeta)=c_{k}\zeta^{\lambda_{k}} (k=1, \ldots, n-1) , y=y_{0}-
\Phi_{j}(\zeta, b) ,

where

(5.7)   \Phi_{j}(\zeta, b)=\int_{b}^{\zeta}(\nabla_{u}f_{0})_{j}(x_{1}(s), \cdots , x_
{n-1}(s), s, 0)s^{-1}ds,
and the integral is taken along the non self‐intersecting curve which does not encircle

the origin. Then we make analytic continuation around the origin. Here  y_{0}  :=y(b)  \in\Omega

is the initial value of  y  =  y(\zeta) at  \zeta  =  b and  c_{k} ’s are chosen so that the initial point
 x^{(0)}  :=(x_{1}(b), \ldots, x_{n-1}(b), b) lies in  D . Define  \Phi(\zeta, b)  :=(\Phi_{1}(\zeta, b), \ldots, \Phi_{N}(\zeta, b)) . Then

we have

Lemma 5.2. Assume (2.7) and (2.8). Let  \zeta_{0}  \in  D\backslash \{0\} . Then, for every  j,
 1  \leq  j  \leq  N there exists a curve  \gamma_{\zeta_{0},j} passing  \zeta_{0} and tending to the origin such that

 \Im\Phi_{j}(\zeta, b)  =  \Im\Phi_{j}(\zeta_{0}, b) for every  \zeta  \in  \gamma_{\zeta_{0},j} , where  \Im\Phi_{j} denotes the imaginary part of

 \Phi_{j}.

Proof. The condition  \Im\Phi_{j}(\zeta, b)  =\Im\Phi_{j}(\zeta_{0}, b) is equivalent to  \Im\Phi_{j}(\zeta, \zeta_{0})=0 . We

shall look for the curve  \gamma_{\zeta_{0},j} satisfying the latter condition. By the assumption (2.6)
there exists a neighborhood  \Omega_{0} of  x  =  0 such that  (\nabla_{u}f_{0})_{j}(x, 0)  =  \mu_{j}+O(|x|) when
 x\in\Omega_{0} . We shall show that there exist  i_{j},  \Re i_{j}  \neq 0  (j=1, \ldots, n) such that

(5.8)   \Phi_{j}(\zeta, \zeta_{0})=\int_{\zeta_{0}}^{\zeta}s^{-1}(\nabla_{u}f_{0})_{j}
(x, 0)ds=i_{j}\log(\frac{\zeta}{\zeta_{0}}) +R(\zeta) ,
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where  x  =  x(s) is given by (5.6) with  c_{k} sufficiently small so that the integrand
 (\nabla_{u}f_{0})_{j}(x(s), 0) is well‐defined. First we observe that   \int_{\zeta_{0}}^{\zeta}s^{-1}\mu_{j}ds=\mu_{j}\log(\zeta/\zeta_{0}) .

Consider the term containing  x^{\alpha},  \alpha=  (\alpha_{1}, \ldots, \alpha_{n})  \in  \mathbb{Z}_{+}^{n} in the Taylor expansion

of  (\nabla_{u}f_{0})_{j}(x, 0) at  x  =  0 . In view of (5.6) with  \zeta  =  s , the integrand is given by the
(infinite) sum with respect to  \alpha of constant times of the following integral

(5.9)   \int_{\zeta_{0}}^{\zeta}s^{-1}\prod_{j=1}^{n}c_{j}^{\alpha_{j}}s^{\alpha_{j}
\lambda_{j}}ds
where  \lambda_{n}=1 and  \alpha\neq 0.

If  \alpha satisfies that   \sum_{j=1}^{n}\alpha_{j}\lambda_{j}  =0 , then by integration we get, from (5.9),

 ( \prod_{j=1}^{n}c_{j}^{\alpha_{j}})\log(\zeta/\zeta_{0}) . Because we may assume that   \prod c_{j}^{\alpha_{j}} is sufficiently small, there

exists  i_{j} such that the first term of the right‐hand side of (5.8) appears. We remark
that such terms may appear if there is an alpha such that   \sum_{j=1}^{n}\alpha_{j}\lambda_{j}  =0.

Next we consider the case  \lambda\cdot\alpha  \equiv   \sum_{j=1}^{n}\alpha_{j}\lambda_{j}  \neq  0 . We shall show that the terms

corresponding to this case yield  R(\zeta) . By simple integration in (5.9) we have

(5.10)  ( \prod_{j=1}^{n}c_{j}^{\alpha_{j}})(\zeta^{\lambda\cdot\alpha}-\zeta_{0}
^{\lambda\cdot\alpha})/\lambda\cdot\alpha.
If  \zeta approaches the origin from a sector, then  \zeta^{\lambda\cdot\alpha} is bounded by  K_{0}^{|\alpha|+1} for some

constant  K_{0} independent of  \alpha because  \Re\lambda_{j}  >  0 for every  j . Hence, if we take  c_{j}

sufficiently small, then (5.10) is bounded in  \zeta as  \zeta approaches the origin from a sector.
Therefore we have proved the boundedness of  R(\zeta) .

We shall show the existence of the curve  \gamma_{\zeta_{0},j} which tends to the origin. By (5.8)
the relation  \Im\Phi_{j}(\zeta, \zeta_{0})  =0 is written as

(5.11)  \Im(i_{j}\log\zeta)+\Im R(\zeta)-\Im(i_{j}\log\zeta_{0})=0.

By setting

(5.12)  \tilde{\zeta}:=i_{j}\log\zeta, \tilde{\zeta}_{0} :=i_{j}\log\zeta_{0},

and  \tilde{R}(\tilde{\zeta})  :=R(e^{\tilde{\zeta}/i}j)  (5.11) is written as

(5.13)  \Im\tilde{\zeta}+\Im\tilde{R}(\tilde{\zeta})-\Im\tilde{\zeta}_{0}=0.

Set  \tilde{\zeta}=\tilde{x}+i\ovalbox{\tt\small REJECT} and  \tilde{\zeta}_{0}  = x∼0  + iỹ0. We shall determine ỹ  = ỹ(x∼) from (5.13) such that
ỹ(x∼0)  =\ovalbox{\tt\small REJECT} 0. We remark that (5.13) holds if  \tilde{\zeta}  =  \tilde{\zeta}_{0} . On the other hand, we observe
that  \tilde{R}(\tilde{\zeta}) is bounded when  \zeta is in some neighborhood of the origin. Moreover, the

derivative of  \tilde{R}(\tilde{\zeta}) with respect to  y is also bounded. Thus, if  |\tilde{x}_{0}| is sufficiently large

and  |\tilde{x}|  \geq  |\tilde{x}_{0}| , then the derivative with respect to ỹ of (5.13) does not vanish. By the
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implicit function theorem one can determine  \ovalbox{\tt\small REJECT}= ỹ(x∼) as an analytic function of  \tilde{x},  i

 |\tilde{x}_{0}| is sufficiently large and  |\tilde{x}|  \geq  |\tilde{x}_{0}| . We denote the curve by  \tilde{\gamma}_{\overline{\zeta}_{0},j}.
We transform  \gamma_{\overline{\zeta}_{0},j} in the  \tilde{\zeta} space to  \gamma_{\zeta_{0},j} in the  \zeta space by the change of variables,

(5.12). Set  i_{j}  =i_{j,0}+ii_{j,1} with  i_{j,0}\neq 0 . Then we have

(5.14)   \frac{\tilde{\zeta}}{\tilde{\mu}_{j}} = \frac{1}{|\tilde{\mu}_{j}|^{2}}(\tilde
{x}i_{j,0}- \ovalbox{\tt\small REJECT}\tilde {}j,1+i (\tilde{x}i_{j,1}+ \ovalbox
{\tt\small REJECT}\tilde {}j,0)) .

We recall that ỹ(x∼) is a bounded function of  \tilde{x} and its derivative tends to zero as
 |\tilde{x}|  arrow\infty . Because we have  i_{j,0}\neq 0 by assumption, we have that

 \sim i_{j,0}=\Re i_{j}\Re\tilde{\zeta}=\Re i_{j}\Re(i_{j}\log\zeta)=\Re((\Re i_
{j})i_{j}\log\zeta)
 =(\Re i_{j})^{2}\log|\tilde{\zeta}|-(\Re i_{j})(\Im i_{j})(\arg\tilde{\zeta}) .

In view of the definition of  \tilde{\gamma}_{\overline{\zeta}_{0},j},  \arg\tilde{\zeta} is bounded. Hence we have  \tilde{x}i_{j,0}  arrow  -\infty . It

follows that  \zeta=\exp(\tilde{\zeta}/i_{j})arrow 0.  \square 

Lemma 5.3. Assume (2. 7) and (2. 8). Let   c\neq  0 and  \zeta_{0}  \neq  0 be given comple
constants. Then, for every  j,  1  \leq j  \leq N,  \Re\Phi_{j}(\zeta, c) is monotone when  \zeta approaches to

the origin along the curve  \gamma_{\zeta_{0},j}.

Proof. Because the curves  \gamma_{\zeta_{0},j} and  \gamma_{\overline{\zeta}_{0},j} are diffeomorphic by the relation  \zeta  =

 \exp(\tilde{\zeta}/\mu_{j}) it is sufficient to show that  \Re\Phi_{j}(\zeta, \zeta_{0}) is a monotone function when  \tilde{\zeta} moves

along  \gamma_{\overline{\zeta}_{0},j} . In terms of (5.8) we have

(5.15)  \Re\Phi_{j}(\zeta, \zeta_{0})+\Re(\mu_{j}\log\zeta_{0})=\Re\tilde{\zeta}+
\Re\tilde{R}(\tilde{\zeta})=\tilde{x}+\Re\tilde{R}(\tilde{\zeta}) .

By the proof of Lemma 5.2 we see that  \tilde{R}(\tilde{\zeta})  =R(\zeta) and its derivative with respect to
 \sim

tends to zero. Thus, with  \tilde{\zeta}=\tilde{x}+i\ovalbox{\tt\small REJECT} and ỹ  = ỹ(x∼), we see that  |(d/d\tilde{x})\Re\tilde{R}(\tilde{\zeta})| can
be made small when  |\tilde{x}|  \geq  |\tilde{x}_{0}| for some  \tilde{x}_{0} . Therefore we have  (d/d\tilde{x})\Re\Phi_{j}(\zeta, \zeta_{0})  >  0,
and the assertion follows.  \square 

Lemma 5.4. Assume (2. 7) and (2.8). Let  g  =  g(x, y)  =  (g1, . . . , g_{N}) ,  g_{j}  \in

 \mathcal{H}_{c}(D, \Omega) . Then the solution of (5.4) is given by

(5.16)  w=P_{0}g:=(P_{0,1}g1, . . . , P_{0,N}g_{N}) .

Here, for every  j,  1  \leq j  \leq N and  \zeta\neq 0 in a neigborhood of the origin we take  \zeta_{0} such

that  \zeta\in\gamma_{\zeta_{0},j} and  P_{0,j} is given by

(5.17)  P_{0,j}g_{j} := \int_{\zeta_{0}}^{\zeta}g_{j}(x_{1}(s), \cdots , x_{n-1}(s), s;
y_{0}-\Phi_{j}(s, b))s^{-1}ds,
where the integral is taken along the curve  \gamma_{\zeta_{0},j} from  \zeta_{0} to  \zeta\in\gamma_{\zeta_{0},j} and  x_{j}(s) is give

by (5.6) with  \zeta=s . The independent variables  x_{k} and  y in  (5.17) are related to  c_{k} and
 y_{0} via (5.6).
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Proof. We show that the integrand in (5.17) is well‐defined. By (5.6) and (5.7)
we have

(5.18)  y_{0}-\Phi_{j}(s, b)=y-\Phi_{j}(s, b)+\Phi_{j}(\zeta, b)=y+\Phi_{j}(\zeta, s) .

By Lemma 5.2 we see that  \Im\Phi_{j}(\zeta, s)  =0 if  s  \in\gamma_{\zeta_{0},j} because  \zeta\in\gamma_{\zeta_{0},j} . In view of the

assumption on  \Omega we have  y+\Re\Phi_{j}(\zeta, s)  \in\Omega for every  y\in\Omega.

Next we take the neighborhood  U_{0} of the origin such that the formal solution is

holomorphic in  U_{0} . Consider the substitution  x_{k}  =  x_{k}(s) into the integrand of (5.17)
where  x_{k}(s) is given by (5.6) with  \zeta=s . This is possible for  s on the segment of  \gamma_{\zeta_{0},j}

between  \zeta_{0} and  \zeta if  c_{k} is sufficiently small. Indeed, since  \Re\lambda_{k}  >  0 , the definition  0

 \gamma_{\zeta_{0},j} implies that  s^{\lambda_{k}}c_{k}  =\exp(\lambda_{j}(\log|s|+i\arg s))c_{k} is small if  c_{k} is sufficiently small.

Next we shall show that  w_{j}  :=P_{0,j}g_{j}  (j=1,2, \ldots, N) satisfies the equation (5.4),
namely

(5.19)   \mathcal{L}w_{j}-(\nabla_{u}f_{0})_{j}(x, 0)\frac{\partial w_{j}}{\partial y} 
=g_{j}(x, y) .

Indeed, by (5.5) and (5.6) we have

(5.20)  g_{j}(x, y)x_{n}^{-1} =  \frac{dw_{j}}{d\zeta} =\sum_{k=1}^{n}\frac{\partial x_
{k}}{\partial\zeta}\frac{\partial w_{j}}{\partial x_{k}}+\frac{\partial y}
{\partial\zeta}\frac{\partial w_{j}}{\partial y}
 = \sum_{k=1}^{n}\frac{\lambda_{k}x_{k}}{\zeta}\frac{\partial w_{j}}{\partial x_
{k}}-\frac{(\nabla_{u}f_{0})_{j}(x,0)}{\zeta}\frac{\partial w_{j}}{\partial y}.

Multiplying both sides with  \zeta and setting  \zeta  =x_{n} we have (5.19). This completes the
proof.  \square 

Let  \zeta_{0} satisfy  |\zeta_{0}|  =r_{0}  >0 . In the following we assume that there exists an  \epsilon_{0}  >0

such that  |\zeta|/|\zeta_{0}|  \geq\epsilon_{0} for  \zeta and  \zeta_{0} in  D , where  \zeta and  \zeta_{0} are related by  \zeta\in\gamma_{\zeta_{0},j} . Then
we have

Lemma 5.5. Assume (2. 7) and (2. 8). Then, there exists a constant  c_{1} such
that, for every  1  \leq j\leq N,  g_{j}  \in \mathcal{H}(D, \Omega) , we hav

(5.21)   \Vert P_{0,j}g_{j}\Vert_{c}\leq c_{1}\Vert g_{j}\Vert_{c}, 
\Vert\frac{\partial}{\partial y}(P_{0,j}g_{j})\Vert_{c}\leq c_{1}\Vert g_{j}
\Vert_{c}.
The constant  c_{1} is independent of  \zeta_{0},  |\zeta_{0}|  =r_{0}  >0.

Proof. Let  \zeta\in\gamma_{\zeta_{0},j} and consider the integral (5.17). Noting that  y_{0}-\Phi_{j}(s, b)  =

 y+\Phi_{j}(\zeta, s) we make the change of variable  \sigma=y+\Phi_{j}(\zeta, s) in (5.17) from  s to  \sigma . We
have   d\sigma  =  - \frac{(\nabla_{u}f)_{j}}{s}ds . We have  \sigma  =  y for  s  =  \zeta and  \sigma  =  y+\tilde{\zeta}_{0} for  s  =  \zeta_{0} , where
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 \tilde{\zeta}_{0}=\Phi_{j}(\zeta, \zeta_{0}) . Clearly, if  s moves on  \gamma_{\zeta_{0},j} , then  \sigma moves on  y+\gamma_{\zeta_{0},j}^{\sim} , where  \gamma_{\zeta_{0},j}^{\sim} is the

straight line connecting  0 and  \tilde{\zeta}_{0} . Then (5.17) is written as

(5.22)  w=- \int_{y+\gamma_{\zeta_{0}^{\sim},j}}g(x_{1}(s), \cdots , x_{n-1}(s), s;
\sigma)\frac{d\sigma}{(\nabla_{u}f_{0})_{j}}.
Note that  (\nabla_{u}f_{0})_{j} is bounded from the below by (2.3).

We next estimate the growth of  y_{0}-\Phi_{j}(s, b) . In terms of (5.18) we have

(5.23)  \exp(c|\Re(y_{0}-\Phi_{j}(s, b))|)=\exp(c|\Re(y+\Phi_{j}(\zeta, s))|)

 \leq\exp(c|\Re y|+c|\Re\Phi_{j}(\zeta, s)|) .

Hence we need to estimate  e^{c|\Re\Phi_{j}(\zeta,s)|} , namely we shall estimate  |\Re\Phi_{j}(\zeta, s)| from the
above.

Because  R(\zeta) in (5.8) is bounded,  \Phi_{j}(\zeta, s) has asymptotic behavior

(5.24)  \Phi_{j}(\zeta, s)=i_{j}\log(\zeta/s)(1+O(1)) ,

for  s\in\gamma_{\zeta_{0},j} if  |\log\zeta_{0}| is sufficiently large. Set  \log(\zeta/s)  =x+iy and  i_{j}  =\alpha+i\beta with
 \alpha  \neq  0 . Then we have  \Re(i_{j}\log(\zeta/s))  =  \alpha x-\beta y and  \Im(i_{j}\log(\zeta/s))  =  \alpha y+\beta x . It

follows that  |\Re\Phi_{j}(\zeta, s)|  \leq  \gamma_{0}|\alpha x-\beta y| for some  \gamma_{0}  >  0 if  |\log\zeta_{0}| is sufficiently large.

The condition holds if  \zeta and  \zeta_{0} are in a sector of a neighborhood of the origin.

By (5.24) there exist  \gamma_{1}  >0 and  \gamma_{2}  >0 such that

(5.25)  \gamma_{1}|\alpha y+\beta x| \leq |\Im\Phi_{j}(\zeta, s)| \leq\gamma_{2}|\alpha
y+\beta x|,

if  |\log\zeta_{0}| is sufficiently large. Because  \Im\Phi_{j}(\zeta, s) is constant when  \zeta  \in  \gamma_{\zeta_{0},j} , there

exist  \gamma_{1}  >  0 and  \tilde{\gamma}_{2}  >  0 such that  \tilde{\gamma}_{2}  \leq  |\alpha y+\beta x|  \leq  \gamma_{1} , if  \zeta  \in  \gamma_{\zeta_{0},j} . It follows that

 |y+\beta\alpha^{-1}x|  \leq  |\alpha^{-1}|\gamma_{1} . Therefore we have  |\beta y|  \leq  |\beta^{2}\alpha^{-1}x|+|\beta\alpha^{-1}|\gamma_{1} . Hence we have

 |\alpha x-\beta y| \leq |\alpha x|+|\beta y| \leq (|\alpha|+|\beta^{2}\alpha^{-
1}|)|x|+\gamma_{1}|\beta\alpha^{-1}|.

Noting that  x=\log(|\zeta|/|s|)  >\log(|\zeta|/|\zeta_{0}|)  >\log\epsilon_{0} , we have

(5.26)  e^{c|\Re\Phi_{j}(\zeta,s)|}\leq e^{c|\alpha x-\beta y|} \leq\exp(c(|\alpha|+
|\beta^{2}\alpha^{-1}|)|x|+\mathcal{C}\gamma_{1}|\beta\alpha^{-1}|)

 \leq\exp(c(|\alpha|+|\beta^{2}\alpha^{-1}|)|\log\epsilon_{0}^{-1}|+\mathcal{C}
\gamma_{1}|\beta\alpha^{-1}|) =:K_{0}.

This proves

(5.27)  \exp(c|\Re(y_{0}-\Phi_{j}(s, b))|) \leq K_{0}\exp(c|\Re y|) .

We shall estimate  |y_{0}-\Phi_{j}(s, b)|  =  |y+\Phi_{j}(\zeta, s)| from the below. Because  \Im\Phi_{j}(\zeta, s)=
 0 and  |\Re\Phi_{j}(\zeta, s)| is bounded on  \gamma_{\zeta_{0},j} by the argument in proving (5.26), there exists
 C_{1}  >0 independent of  \zeta and  s such that

(5.28)  (1+|y_{0}-\Phi_{j}(s, b)|)^{-2}  \leq C_{1}(1+|y|)^{-2} for all  y\in\Omega.
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Therefore we get, from (5.27) and (5.28) that

(5.29)  \Vert w_{j}\Vert_{c}\leq

  \leq\sup((1+|y|)^{2}\exp(-c|\Re y|)\int\Vert g_{j}\Vert_{c}\frac{\exp(-
c|\Re(y_{0}-\Phi_{j}(s,b))|)}{(1+|y_{0}-\Phi_{j}(s,b)|)^{2}}|d\sigma|)
  \leq C_{2}\Vert g_{j}\Vert_{c}\int|d\sigma| \leq C_{3}\Vert g_{j}\Vert_{c},

for some  C_{2}  >0 and  C3>0.

We shall show the latter inequality of (5.21). By (5.22) we have

 w_{y}=-g (x_{1}( \zeta_{0}), \cdot \cdot \cdot x_{n-1}(\zeta_{0}), \zeta_{0};y+
\tilde{\zeta}_{0})\frac{1}{(\nabla_{u}f_{0})_{j}}
(5.30)  +g(x_{1}( \zeta), \cdot \cdot \cdot x_{n-1}(\zeta), \zeta;y)\frac{1}
{(\nabla_{u}f_{0})_{j}}.
Using (5.30) we have the latter inequality of (5.21) by the same argument as  \Vert w\Vert_{c} since
 (\nabla_{u}f_{0})_{j} is bounded.  \square 

We shall solve (5.3) in  \mathcal{H}_{c}(D, \Omega) . Write

(5.31)   \nabla_{u}f_{0}(x, v_{0})\frac{\partial\hat{u}}{\partial y} =\nabla_{u}f_{0}
(x, 0)\frac{\partial\hat{u}}{\partial y}+(\nabla_{u}f_{0}(x, v_{0})-\nabla_{u}f_
{0}(x, 0))\frac{\partial\hat{u}}{\partial y}.
Since  \Vert\nabla_{u}f_{0}(x, v_{0})-\nabla_{u}f_{0}(x, 0)\Vert  =  O(\Vert v_{0}\Vert) when  \Vert v_{0}\Vert  arrow  0 , the second term is esti‐

mated by  K_{4}\epsilon\Vert(U)_{y}\Vert_{c} for arbitrarily small  \epsilon and some constant  K_{4}.

We define the approximate sequence  U_{k}  (k=0,1,2, \ldots) by  U_{0}=0 and

(5.32)  \wedge 1=-P_{0}\mathcal{L}v_{0}

(5.33)   \wedge 2=P_{0}\sum_{|\beta|\geq 2}r_{\beta}(x, v_{0})\frac{\partial}{\partial 
y}(u_{1})_{*}^{\beta}-P_{0}\mathcal{L}v_{0}+P_{0}R(x)\frac{\partial}{\partial y}
\wedge 1
 +P_{0}( \nabla_{u}f_{0}(x, v_{0})-\nabla_{u}f_{0}(x, 0))\frac{\partial\hat{u}
_{1}}{\partial y},

(5.34)   \wedge k+1=P_{0}\sum_{|\beta|\geq 2}r_{\beta}(x, v_{0})\frac{\partial}
{\partial y}(u_{k})_{*}^{\beta}-P_{0}\mathcal{L}v_{0}+P_{0}R(x)\frac{\partial}
{\partial y}\wedge k
 +P_{0}( \nabla_{u}f_{0}(x, v_{0})-\nabla_{u}f_{0}(x, 0))\frac{\partial\hat{u}
_{k}}{\partial y},

where  k=1 , 2, . . . Then we have

Lemma 5.6. Assume (2.7) and (2.8). Let  D be as in Lemma 5.5. Then there
exists a constant  K3>0 independent of  k such that

(5.35)  \Vert U_{k}\Vert_{c}\leq C\epsilon K_{3},  \Vert(U_{k})_{y}\Vert_{c}\leq C\epsilon K_{3},  k=0 , 1, 2, . . .
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The proof of Lemma 5.6 is done by the same arugument in proving Lemma 5.6  0

[3] once we have proved Lemmas 5.2, 5.3, 5.4 and 5.5. The following lemma implies
the solvability of (5.3) in  \mathcal{H}_{c}(D, \Omega) .

Lemma 5.7. Under the same assumptions as in Lemma 5.6 we have that  U_{k}

 (k=1,2, \ldots) converges in  \mathcal{H}_{c}(D, \Omega) .

The proof is done by the same argument of that of Lemmas 5.7 of [3] by using
Lemma 5.6.

Proof of Theorem 5. 1. First we shall solve (5.3) in  \mathcal{H}_{c}(D, \Omega) . We remark that
the solvability of (5.3) yields the summability on  D . Set  T_{0}  =  \{\zeta | \epsilon_{0}r_{0} < |\zeta| < r_{0}\},
 r_{0}  =  |\zeta_{0}| and take an open connected and simply connected set  A_{0}  \subset  T_{0} . Let  D be

such that  (x_{1}(\zeta), \ldots, x_{n-1}(\zeta), \zeta)  \in  D for every  \zeta  \in  A_{0} , where  x_{k}(\zeta) is given by (5.6).
By Lemma 5.7 we have the solvability of (5.3) on  D . Next, take a set  A_{1}  \subset  T_{0} with
the same property as  A_{0} such that  A_{0}\cap A_{1}  \neq  \emptyset . Then we have the summability on

some  D_{1} corresponding to  A_{1} . By virtue of the uniqueness of the Borel sum two sums

corresponding to  A_{0} and  A_{1} coincide on the set  A_{0}\cap A_{1} . Hence we have an analytic

continuation of the solution of (5.3) to the domain corresponding to  A_{0} ∪  A_{1} . By
repeating the arguement we have the solvability of (5.3) for  D corresponding to  T_{0}.

Next we take annulus  T_{1} with  r_{0} replaced by  r_{1} such that  T_{0}\cap T_{1}  \neq  \emptyset . Then we

have the summability on the domain corresponding to  T_{1} . Moreover, in the proof  0

Lemma 5.5 the constant  c_{1} in the estimate in (5.21) depends on  \epsilon_{0} and is independent
of  \zeta_{0} . Hence we have the solvability of (5.3) in the same domain because we have the
solvability in  \mathcal{H}_{c}(D_{1}, \Omega) for the same  c and  \Omega . By the uniqueness of the Borel sum

we can make analytic continuation with respect  \zeta . In order to show that the analytic

continuation of the soution û is possible to a small neighborhood of the origin except

for the origin  \zeta  \neq  0 we note that the length of the analytic continuation is given by

 1-\epsilon_{0}+(1-\epsilon_{0})\epsilon_{0}+(1-\epsilon_{0})\epsilon_{0}^{2}+
\cdots=1 because  0<\epsilon_{0}  <  1 . We denote the solution by
 D.

Let  D' be any domain such that   D\cap D'\neq\emptyset and let  U_{D} and  U_{D'} be the corresponding

solution in  D and  D' , respectively. By the uniqueness for every  x , we have that  U_{D}  =U_{D'}

on  D\cap D' , from which we have an analytic continuation of  U_{D} to  D ∪  D' . By choosing the

sequence of open sets  D we make an analytic continuation of  U_{D} to the set  (\mathbb{C}\backslash 0)^{n}\cap B_{0},
where  B_{0} is a small open ball centered at the origin. By the uniqueness the analytic

continuation of  U_{D}(x, y) with respect to  x to the set  (\mathbb{C}\backslash 0)^{n}\cap B_{0},   y\in\Omega is single‐valued.

We also note that in view of the construction of  U_{D} the growth estimate with respect to

 y of  U_{D}(x, y) is uniform for   x\in  (\mathbb{C}\backslash 0)^{n}\cap B_{0} . Therefore we can define  U(x, y)  :=U_{D}(x, y)
on   x\in  (\mathbb{C}\backslash 0)^{n}\cap B_{0} and   y\in\Omega by taking  x\in D.

The function  U(x, y) may have singularity on  x  \in  (\mathbb{C}^{n} \backslash  (\mathbb{C}\backslash 0)^{n})  \cap B_{0},  y  \in  \Omega.

We shall prove that the singularity is removable. First, consider the singularity with
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codimension 1. For simplicity, let us take  y_{0}  \in  \Omega,  x\'{O}=  (x_{2}^{0}, \ldots, x_{n}^{0}) with  x_{j}^{0}  \neq  0 and

consider the expansion

(5.36)   \wedge(x, y)=\sum_{\nu\geq 0,j\underline{>}0}\wedge\nu,j(x_{1})(x'-x_{0}')
^{\nu}(y-y_{0})^{j}.
By what we have proved in the above, the right‐hand side is convergent if  x'-x\'{O} and

 y-y_{0} are sufficiently small and  x_{1}  \neq  0 . Moreover, by the boundedness of  U(x, y)
when  x_{1}  arrow 0 and the Cauchy’s integral formula we have that  U_{\nu,j}(x_{1}) is holomorphic

and single‐valued and bounded in some neighborhood of the origin except for  x_{1}  =  0.

Hence, its singularity is removable. In the same way, one can show that the singularity
of codimension 1 is removable.

Next we consider the singularity of codimension 2. For the sake of simplicity,

consider the one  x_{1}  =x_{2}  =0,  x_{0}"  =  (x_{3}^{0}, \ldots, x_{n}^{0}) with  x_{j}^{0}  \neq 0 . By arguing in the same

way as in the codimension‐one case we have the expansion similar to (5.36) where  x' ‐xÓ
and  U_{\nu,j}(x_{1}) are replaced by  x"-x_{0}" and  \hat{u}_{\nu,j}(x_{1}, x_{2}) , respectively. Because  U_{\nu,j}(x_{1}, x_{2})
is holomorphic and single‐valued except for  x_{1}  =x_{2}  =0 , we see that the singularity is

removable by Hartogs’ theorem. As for the singularity of higher codimension  \geq 3 we can

argue in the same way by using Hartogs’ theorem. We see that  U(x, y) is holomorphic

and single‐valued on  x\in \mathbb{C}^{n}\cap B_{0},  y\in\Omega.

The exponential growth of  U(x, y) when  y  arrow  \infty in  y  \in  \Omega for  x  \in  \mathbb{C}^{n}\cap B_{0} can

be proved by putting some  c_{k} to be zero when constructing  U_{D}(x, y) . Indeed, we have

already proved the fact in the above argument. Hence we have proved the solvability  0

(5.3). This completes the proof of Theorem 5.1.
End of the proof of Theorem 2.1. We shall prove the summability in the direction

 \arg\eta with  \pi/2+\theta_{1}  <\arg\eta<3\pi/2-\theta_{2} . By multiplying (2.2) with  e^{-i\theta} we see that  \eta,

 \lambda_{k},  \mu_{j} are replaced by  \eta e^{-i\theta},  \lambda_{k} and  \mu_{j}e^{-i\theta} , respectively. We choose  \theta  \geq  0 such that

 \Re(\mu_{j}e^{-i\theta}) and  \Re\mu_{j} have the same sign for every  j . In view of the definition of  C_{0}^{\pm}
we see that the requirement holds for  \theta such that  0  \leq  \theta  <  \pi/2-\theta_{2}^{\pm} . Recalling that
 \theta_{2}  = \max\{\theta_{2}^{+}, \theta_{2}^{-}\} , these inequalities are equivalent to  0\leq\theta<\pi/2-\theta_{2} . Therefore the

summability follows for  \eta  =  e^{i(\pi+\theta)} with  0  \leq  \theta  <  \pi/2-\theta_{2} , namely, for  \pi  \leq  \arg\eta  <

 3\pi/2-\theta_{2}.
Next we set  u=ve^{i\theta} , and consider the equation of  v . Clearly,  \eta and  \mu_{k} are relaced

by  \eta e^{i\theta} and  \mu_{k}e^{i\theta} , respectively, while  \lambda_{k} does not change. On the other hand, the

reduced equation satisfies that  \Re(\mu_{j}e^{-i\theta}) and  \Re\mu_{j} have the same sign for every  j when
 0  \leq  \theta  <  \pi/2-\theta_{1} . It follows that the summability holds for  \pi/2+\theta_{1}  <  \arg\eta  \leq  \pi.

Therefore, the summability holds for  \pi/2+\theta_{1}  <  \arg\eta  <  3\pi/2-\theta_{2} . In view of the
definition of Borel sum we have the latter half of the assertion. This ends the proof  0

Theorem 2.1.
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