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Positive representations, multiplier Hopf algebra,
and continuous canonical basis

By

Ivan IP*

Abstract

We introduce the language of multiplier Hopf algebra in the context of positive represen‐
tations of split real quantum groups, and discuss its applications with a continuous version
of Lusztig‐Kashiwara’s canonical basis, which may provide a key to prove the closure of the
positive representations under tensor products, and harmonic analysis of quantized algebra of
functions in the sense of locally compact quantum groups.

§1. Introduction

The notion of positive principal series representations, or positive representations

for short, was introduced by I. Frenkel and the author [12] as a new research program
devoted to the representation theory of split real quantum groups  \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) , where  q=

 e^{\pi ib^{2}} and its dual  \overline{q}=e^{\pi ib-2} . It uses the concept of modular double for quantum groups
[7, 8], and has been studied extensively for  U_{q\overline{q}}(\mathfrak{s}((2, \mathbb{R})) by Teschner et al. [2, 31, 32]
in the context of Liouville conformal field theory. Explicit construction of the positive

representations  \mathcal{P}_{\lambda} of  \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) associated to a simple Lie algebra  \mathfrak{g} has been obtained
for the simply‐laced case in [17] and non‐simply‐laced case in [18], where the generators
 \{E_{i}, F_{i}, K_{i}\} of the quantum groups are realized by positive, unbounded, essentially self‐
adjoint operators acting on  L^{2}(\mathbb{R}^{l(w_{0})}) . Here  l(w_{0}) is the length of the longest element
 w_{0} in the Weyl group  W . Furthermore, the so‐called transcendental relations of the

(rescaled) generators:

(1.1)   \overline{e_{i}}=e^{\frac{1}{ib_{i}^{2}}}, \overline{f_{i}}= \frac{1}{ib_{i}
^{2}}, \overline{K_{i}}=K_{i}^{\frac{1}{b_{i}^{2}}}
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give the self‐duality between different parts of the modular double, while in the non‐

simply‐laced case, new explicit analytic relations between the quantum group  \mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})
and its Langlands dual  \mathcal{U}_{\overline{q}}(^{L}\mathfrak{g}_{\mathbb{R}} ) have been observed [18].

It becomes clear in the work [15, 19] that the positivity of the generators is imme‐
diately connected with the notion of multiplier Hopf algebra introduced by van Daele

[35]. Namely, by taking complex powers of the generators as unbounded op erators, we
can define a  C^{*} ‐algebraic version of the Drinfeld‐Jimbo quantum groups  \mathcal{U}_{q^{\frac{}{q}}}^{C^{*}}(\mathfrak{g}_{\mathbb{R}}) that is

in some sense dual to certain locally compact quantum groups [24, 25], based on earlier
work by Baaj and Skandalis [1], Woronowicz [36] and others. This allows us to define
the modular double as a quasi‐triangular multiplier Hopf algebra with the universal R‐

operator being the canonical element of the corresponding multiplier Drinfeld’s double,

giving a braiding structure of the positive representations.

More importantly, we believe that this establishes a link between the  C^{*} ‐algebraic

theory of Connes’ non‐commutative geometry and Woronowicz’s matrix quantum groups,

and the theory of Drinfeld‐Jimbo type quantum groups at the algebraic and combina‐

toric level, providing both sides with new machineries.

The construction of  \mathcal{U}_{q\overline{q}}^{C^{*}}(\mathfrak{g}_{\mathbb{R}}) involves a continuous version of the PBW basis, and

subsequently the concept of a continuous version of the canonical basis, generalizing the

finite dimensional concept first discovered by Lusztig [27, 28], and subsequently proved
to exist by Kashiwara [21], using a different method under the name of lobal crysta
basis. One can think of it as an analogue to the relation between the (discrete) Fourier
series in the harmonic analysis over the circle, which is compact, and the (continuous)
Fourier transform in the harmonic analysis over the real line, which is non‐compact, with

the exponential functions in both cases being the corresponding basis. Furthermore,

the use of the remarkable quantum dilogarithm function  G_{b}(x) and its variant  g_{b}(x)
introduced earlier by Faddeev and Kashaev [9], will play the role of the  q‐factorial as
well as quantum exponential function in the (continuous) split real setting.

We believe that the nice properties of the canonical basis, especially its behavior

under the decomposition of tensor products [21, 29], can be generalized to the continuous
version in certain settings, which enables us to complete the proof of the tensor category

structure of the category  Rep^{+}(\mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}})) of positive representations.

Moreover, the use of the multiplier Hopf algebra also allows us to study the dual  0

 \mathcal{U}_{q^{\frac{}{q}}}^{C^{*}}(\mathfrak{g}_{\mathbb{R}}) , which appears to be the right object for the harmonic analysis of quantized

algebra of functions, and coincides with the notion of matrix quantum groups in the

locally compact quantum groups setting [24, 25]. With the machinery of the multi‐
plicative unitary, the language of multiplier Hopf algebra provides insight in proving a

version of Peter‐Weyl theorem for the modular double of split real quantum groups.

As a final remark, the modular double  \mathcal{U}_{q\overline{q}}(\mathfrak{s}((2, \mathbb{R})) arising from Liouville theory
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is known to be closely related to quantum TeichmUller theory through the construction

of conformal blocks [33]. On the other hand, it can also be constructed out of the
representation theory of the Borel part of  \mathcal{U}_{q\overline{q}}(\mathfrak{s}((2, \mathbb{R})) , which is the quantum plane

[13]. With the help of the continuous canonical basis in the higher rank, the restriction
of the positive representations of the modular double to the Borel part  Ub\subset \mathcal{U}_{q\overline{q}}^{C^{*}}(\mathfrak{g}_{\mathbb{R}})
is recently studied in [20], which allows us to construct a quantized version of the higher
TeichmUller theory as introduced by Fock and Goncharov [11], and connect with Toda
field theories [10, 37].

§2. Multiplier Hopf Algebra

In this section let us recall the basic definitions of multiplier Hopf algebra. For

further details please refer to [35]. One of the original motivation of multiplier Hop
algebra is the following. Consider continuous functions  C[G] on a compact group  G.

Then the multiplication on  G induces a coproduct  \triangle :  C[G]  arrow C[G]\otimes C[G] given by

(2.1)  \triangle f(g_{1}, g_{2})=f(g_{1}g_{2}) .

When we discuss locally compact group  G , due to the Gelfand‐Naimark theorem, it is

natural to consider the  C^{*} ‐algebra  C_{0}(G) of functions vanishing at infinity. However,

the formula for  \triangle above may no longer maps to  C_{0}(G)\otimes C_{0}(G) . Nonetheless,  \triangle f is still

bounded and multiplication with elements in  C_{0}(G)\otimes C_{0}(G) stays in the same space.

Hence it is natural to extend the definition of the coproduct and introduce the following
notion.

Definition 2.1. Let  \mathcal{B}(\mathcal{H}) be the algebra of bounded linear operators on a

Hilbert space  \mathcal{H} . Then the multiplier algebra  M(\mathcal{A}) of a  C^{*} ‐algebra  \mathcal{A}  \subset  \mathcal{B}(\mathcal{H}) is

the  C^{*} ‐algebra of operators

(2.2)  M(\mathcal{A})=\{b\in \mathcal{B}(\mathcal{H}) : b\mathcal{A}\subset 
\mathcal{A}, \mathcal{A}b\subset \mathcal{A}\}.

In particular,  \mathcal{A} is an ideal of  M(\mathcal{A}) .

Definition 2.2. A multiplier Hopf  *‐algebra is a  C^{*} ‐algebra  \mathcal{A} together with
the antipode  S , the counit  \epsilon , and the coproduct map

(2.3)  \triangle:\mathcal{A}arrow M(\mathcal{A}\otimes \mathcal{A}) ,

all of which can be extended to a map from  M(\mathcal{A}) , such that the usual properties of a

Hopf algebra holds on the level of  M(\mathcal{A}) .
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In particular, the standard example is  \mathcal{A}=C_{0}(G) , and  M(\mathcal{A}) will be the algebra

of bounded functions  C_{b}(G) on the locally compact group  G.

Another motivation comes from the definition of the universal  R‐matrix, which is a

very important solution to the Yang‐Baxter equation in the theory of compact quantum

groups giving the category of finite dimensional representation a bbaiding structure [5].
However,  R is defined as an element of certain completion  \mathcal{U}_{\hbar}(\mathfrak{g})\otimes \mathcal{U}_{\hbar}(\mathfrak{g})
\wedge which is not

very natural in the split real setting. In particular, for the theory of modular double

 \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) , the universal  R operator is defined by an integral transformation, and therefore

the expression using generators of the split real quantum group does not lie in any

algebraic completions. The following definition gives a natural interpretation of  R as

an element of a multiplier Hopf algebra.

Definition 2.3. A quasi‐triangular multiplier Hopf algebra is a multiplier Hop

algebra  \mathcal{A} together with an invertible element  R\in M(\mathcal{A}\otimes \mathcal{A}) such that

(2.4)  (\triangle\otimes id)(R)=R_{13}R_{23}\in M(\mathcal{A}\otimes \mathcal{A}
\otimes \mathcal{A}) ,

(2.5)  (id\otimes\triangle)(R)=R_{13}R_{12} \in M(\mathcal{A}\otimes \mathcal{A}
\otimes \mathcal{A}) ,

(2.6)  \triangle^{op}(a)R=R\triangle(a) \in M(\mathcal{A}\otimes \mathcal{A}) , 
\forall a\in M(\mathcal{A}) ,

(2.7)  (\epsilon\otimes id)(R)=(id\otimes\epsilon)(R)=1\in M(\mathcal{A}) .

In Section 4, we will discuss the construction of a  C^{*} ‐algebraic version of the

Drinfeld‐Jimbo type quantum group  \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) using a continuous version of the canonical

basis, such that  R naturally arises as the canonical element of this multiplier algebra.

Finally in Section 6, we discuss the application of multiplier Hopf algebra in the

context of harmonic analysis on the quantized algebra of functions on  G_{q\overline{q}}^{+}(\mathbb{R}) , which is

certain dual algebra to  \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) . Here the power of multiplier Hopf algebra comes with

the tool  W called the multiplicative unitary. More precisely,

Definition 2.4. Given a GNS‐representation of the multiplier Hopf aglebra  \mathcal{A}

on the Hilbert space  \mathcal{H} , a multiplicative unitary is a unitary operator  W  \in  \mathcal{B}(\mathcal{H}\otimes \mathcal{H})
satisfying the pentagon equation

(2.8) W23  W_{12}=W_{12}W_{13}W_{23},

where the leg notation is used.

Then the following key properties are needed:

Proposition 2.5. The multplicative unitary encodes the information of the co‐

product,  i.e.

(2.9)  W^{*}(1\otimes x)W=\triangle(x) , x\in \mathcal{A}

as operators on  \mathcal{H}\otimes \mathcal{H}.
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Proposition 2.6. The multiplicative unitary encodes the information of the Hopf

dual Â,  i.e.

(2.10)  \^{A}:=\{(\omega\otimes 1)W:\omega\in B(\mathcal{H})^{*}\}^{norm} closure  \subset B(\mathcal{H}) ,

and we have W  \in M(   \mathcal{A}\bigotimes Â).

Proposition 2.7. The multiplicative unitary gives the (left) regular co‐representatio
of  \mathcal{A} by

(2.11)  \Pi :  \mathcal{H}arrow \mathcal{H}\otimes M(\mathcal{A})

(2.12)  f\mapsto W'(f\otimes 1) ,

where  W' is  W_{21} viewed as an element in  B(\mathcal{H})\otimes \mathcal{A} . By taking the dual we also obtai

the (left) regular representation for the dual algebra.

We refer to [15, 34] for more detailed discussions.

§3. Positive Representations of  \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}})

The central object in the representation theory of split real quantum groups is the

notion of positive representations [12]. In this section we will review its definitions and
properties. For simplicity of this exposition, let us only consider simple Lie algebra  \mathfrak{g}0

simply‐laced type [17]. Details for the non‐simply‐laced case can be found in [18].
Let  q=e^{\pi ib^{2}} with  0<b<  1,  b^{2}  \in \mathbb{R}\backslash \mathbb{Q} , and consider the usual Drinfeld‐Jimbo type

quantum group  \mathcal{U}_{q}(\mathfrak{g}) generated by  \{E_{i}, F_{i}, K_{i}\} for  i\in I the root indices, satisfying:

(3.1)  K_{i}E. =q^{a_{ij}}E\cdot K_{i},

(3.2)  K_{i}F_{j} =q^{-a_{ij}}F_{j}K_{i},

(3.3)  [E_{i}, F_{j}] = \delta_{ij}\frac{K_{i}-K_{i}^{-1}}{q-q-1},
together with the Serre relations for   i\neq :

(3.4)  E_{i}^{2}E_{j}-(q+q^{-1})E_{i}E_{j}E_{i}+E_{j}E_{i}^{2}=0,
(3.5)  F_{i}^{2}F_{j}-(q+q^{-1})F_{i}F\cdot F_{i}+F\cdot F_{i}^{2}=0,

where  A:=  (a_{ij}) is the Cartan matrix.

Theorem 3.1. [12, 17] Let

(3.6)  e_{i} :=2\sin(\pi b^{2})E_{i}, f_{i} :=2\sin(\pi b^{2})F_{i}.
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Note that 2  \sin(\pi b^{2})  =  ( \frac{i}{q-q-1})^{-1}  >0 . Then there exists a representation  \mathcal{P}_{\lambda} of  \mathcal{U}_{q}(\mathfrak{g})
parametrized by the  \mathbb{R}_{+} ‐span of the cone of positive weights  \lambda\in P_{\mathbb{R}}^{+} , or equivalently by

 \lambda\in \mathbb{R}_{+}^{n} where  n=rank(\mathfrak{g}) , such that

 \bullet The generators  e_{i},  f_{i},  K_{i} are represented by positive essentially self‐adjoint operators

acting on  L^{2}(\mathbb{R}^{l(w_{0})}) , where  l(w_{0}) is the length of the longest element  w_{0}  \in  W of

the Weyl group.

 \bullet Define the transcendental generators:

(3.7)  \overline{e_{i}}  :=e^{\frac{1}{ib^{2}}},  \overline{f_{i}}  :=f^{\frac{1}{ib^{2}}},  \overline{K_{i}}  :=K_{i}^{\frac{1}{b^{2}}}

Then the representations of the generators  \overline{e_{i}},  \overline{f_{i}},  \overline{K_{i}} are obtained by replacing  b with
 b^{-1} in the representations of the generaeors  e_{i},  f_{i},  K_{i} , and they generate the othe

part of the modular double  \mathcal{U}_{\overline{q}}(\mathfrak{g}_{\mathbb{R}}) with  \overline{q}=e^{\pi ib^{-2}}

 \bullet The generators  e_{i},  f_{i},  K_{i} and  \overline{e_{i}},  \overline{f_{i}},  \overline{K_{i}} commute weakly up to a sign.

The Theorem implies that  \mathcal{P}_{\lambda} is simultaneously a representation for the split real

form  \mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}}) and  \mathcal{U}_{\overline{q}}(\mathfrak{g}_{\mathbb{R}}) by positive operators. Hence we will call  \mathcal{P}_{\lambda} the positive

representation of the modular double

 \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) :=\mathcal{U}_{q}
(\mathfrak{g}_{\mathbb{R}})\otimes \mathcal{U}_{\overline{q}}(\mathfrak{g}
_{\mathbb{R}}) .

For the non‐simply‐laced case, the transcendental relations give rise to a direct analytic

relation between the quantum group and its Langlands dual [18].
Let us present the expressions of  \mathcal{P}_{\lambda} in the case of type  A_{1} and  A_{2} . By abuse  0

notation, let us denote by

(3.8)  [u]e(p) :=e^{\pi b(-u+2p)}+e^{\pi b(u+2p)},

which is an unbounded positive operator. Here  p:=   \frac{1}{2\pi i}\overline{\partial u} is the standard momentum

operator.

Proposition 3.2. [2, 32] The positive representation  P_{\lambda} of  \mathcal{U}_{q\overline{q}}(\mathfrak{s}((2, \mathbb{R})) with
 \lambda\in \mathbb{R}+ acting on  f(u)  \in L^{2}(\mathbb{R}) is given by

 e=[u-\lambda]e(-p)=e^{\pi b(-u+\lambda-2p)}+e^{\pi b(u-\lambda-2p)},
 f=[-u-\lambda]e(p)=e^{\pi b(u+\lambda+2p)}+e^{\pi b(-u-\lambda+2p)},

 K=e^{-2\pi bu}
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Proposition 3.3. [17] The positive representation  \mathcal{P}_{\lambda} of  \mathcal{U}_{q\overline{q}}(\mathfrak{s}((3, \mathbb{R})) with pa‐
rameters  \lambda  :=  (\lambda_{1}, \lambda_{2})  \in  \mathbb{R}_{+}^{2} , corresponding to the reduced expression  w_{0}  =  s_{2}s_{1}s_{2},

acting on  f(u, v, w)  \in L^{2} (R3), is given by

 e_{1} =[v-w]e(-p_{v})+[u]e(-p_{v}+p_{w}-p_{u}) ,

 e_{2}=[w]e(-p_{w}) ,

 f_{1} =[-v+u-2\lambda_{1}]e(p_{v}) ,

 f_{2}=[-2u+v-w-2\lambda_{2}]e(p_{w})+[-u-2\lambda_{2}]e (pu),

 K_{1} =e^{-\pi b(-u+2v-w+2\lambda_{1})},
 K_{2}=e^{-\pi b(2u-v+2w+2\lambda_{2})}.

§4. Continuous Canonical Basis

Again for simplicity, in the following let us consider only the simply‐laced case,

further discussions can be found in [19]. Recall that in the theory of canonical basis
introduced by Lusztig [27, 28], the necessary ingredients are the rescaled simple root
generators

(4.1)  E_{i}^{(N)} := \underline{E_{i}}
 [N]_{q}!

’

where  [n]_{q}  =   \frac{q^{n}-q^{-n}}{q-q-1} is the quantum number, and the non‐simple roots vectors given

by Lusztig’s isomorphism  T_{i} :

(4.2)  E_{\alpha_{k}}^{(c)} :=T_{i_{1}}\ldots T_{i_{k-1}}(E_{i_{k}}^{(c)}) ,

such that the canonical basis is given by certain linear combinations of the PBW‐basis
of the form

(4.3)  E_{i}^{c}:=E_{\alpha_{N}}^{(c_{N})}\ldots E_{\alpha_{2}}^{(c_{2})}E_{\alpha_{1}
}^{(c_{1})},
where  w_{0}=s_{i_{1}}\ldots s_{i_{N}} is an expression of the longest element of the Weyl group  W.

In the context of positive representations, the generators  \{E_{i}\}_{i\in I} of  \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) are

represented on  \mathcal{P}_{\lambda} by positive self‐adjoint operators. Although the defining formula for

Lusztig’s isomorphism:

(4.4)  T_{i}(E_{i}) :=-F_{i}K_{i}^{-1}, T_{i}(E_{j}) :=q^{\frac{1}{2}}E_{j}E_{i}-q^{-
\frac{1}{2}}E_{i}E_{j}
in the compact case does not respect the positivity of the positive representations, it

turns out that we can consider instead our favorite rescaled generators  \{e_{i}, f_{i}\} from

(3.6), and modify the scaling to obtain

(4.5)  T_{i}( e_{i}) :=qf_{i}K_{i}^{-1}, T_{j}(e_{i}) :=e_{ij} := \frac{q^{\frac{1}{2}
}e\cdot e_{i}-q^{-\frac{1}{2}}e_{i}e}{q-q-1},
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which are again positive self‐adjoint, and obey the transcendental relations

(4.6)   e^{\frac{1}{ijb^{2}}} =\overline{e_{ij}} := \frac{\overline{q}^{\frac{1}{2}}
\overline{e_{j}}\overline{e_{i}}-\overline{q}^{-\frac{1}{2}}\overline{e_{i}}
\overline{e_{j}}}{\overline{q}-\overline{q}-1}.
Furthermore,  T_{i} is shown to be represented by conjugation by a unitary element  w_{i},

called the quantum Weyl element. Hence all generators of the form (cf. (4.2))

(4.7)  e_{\alpha_{k}} :=T_{i_{1}}\ldots T_{i_{k-1}}(e_{i_{k}})

are positive self‐adjoint and satisfy the transcendental relations. In particular, the

expression  e_{\alpha_{k}}^{ib^{-1}t} is a well‐defined bounded unitary operator acting on  \mathcal{P}_{\lambda} , and invariant

under the  b\ovalbox{\tt\small REJECT} b^{-1} duality.

Therefore together with the notation  K_{i}=q^{H_{i}} , we generalize the PBW‐basis (4.3)
and the following definition is well‐defined [19]:

Definition 4.1. Let  n  = rank(g) and  N  =  l(w_{0}) . We define the  C^{*} ‐algebraic
version of the Borel subalgebra

Ub  :=\mathcal{U}_{q^{\frac{}{q}}}^{C^{*}}(b_{\mathbb{R}}^{+})

as the operator norm closure of the linear span of all bounded operators on  \mathcal{P}_{\lambda}=L^{2}(\mathbb{R}^{N})
of the form

(4.8)  :=F_{0}( H)\prod_{k=1}^{N} c^{F_{k}(t_{k})\frac{e_{\alpha_{k}}^{ib^{-1}t_{k}}}
{G_{b}(Q+it_{k})}dt_{k}} ’

where  Q=b+b^{-1},  e_{\alpha_{k}} is given by (4.7) and

(4.9)  F_{0}(H) :=F_{0}(ibH_{1}, \ldots, ibH_{n})

is a smooth compactly supported functions on the positive operators  ibH_{k} , and  F_{k}(t_{k})
are entire analytic functions that have rapid decay along the real direction. Finally the

contour  C is along the real axis which goes above the pole of  G_{b} at  t_{k}=0.

Theorem 4.2.

(1) Ub is a multiplier Hopf algebra;

(2) it is invariant under the modular duality  b\ovalbox{\tt\small REJECT} b^{-1} ;

(3) it is independent of the choice of the parameter  \lambda ;

(4) it is independent of the choice of reduced expression of the longest element  w_{0}  \in W.
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Proof. (1) The quantum dilogarithm function  G_{b} appearing in the definition en‐
sures that Ub is indeed a multiplier Hopf algebra, where the coproduct of  e_{\alpha_{k}} will pick

up factors of  G_{b}(Q+it_{k}) due to the  q‐binomial formula (Lemma A.3) and mutually
cancel, giving the correct analytic properties of the bounded operators. We see im‐

mediately that  G_{b}(Q+it) plays the role of the  q‐factorial  [n]_{q}! factors in the compact
canonical basis.

(2) The transcendental relations (1.1) and the duality properties (A.3) of  G_{b} ensures
that the expression is invariant under  b  \ovalbox{\tt\small REJECT}  b^{-1} , hence it indeed incorporates the

properties of the modular double.

(3) From the explicit expression of  \mathcal{P}_{\lambda} , one notes that the dependence of  \lambda only
appears as linear terms in  H_{i} , and the positive representation is injective (see [17]).
Hence the algebra does not depend on  \lambda . In fact, there exists a unitary equivalence

between  \mathcal{P}_{\lambda}\simeq \mathcal{P}_{\lambda'} for any  \lambda,  \lambda' when restricted to the Borel part, considered in [20].
 ib^{-1}t_{k}

(4) Finally, we prove in [19] that the continuous span by the basis   \prod_{k=1}\frac{e_{\alpha_{k}}}{G_{b}(Q+it_{k})}
does not depend on the choice of the expression of the longest element  w_{0} . More

precisely, the change of words of  w_{0} induces an integral transformation on the coefficients

 F_{k}(t_{k}) that preserves their analytic properties. (In the non‐simply‐laced case however,
the explicit formula is not known for type  G_{2}. ) It also shows the existence of the
antipode  S on the multiplier Hopf algebraic level as an unbounded operator.  \square 

Now we can apply the construction of Drinfeld’s double in the setting of multiplier

Hopf algebra [3] to obtain  \mathcal{D}  :=  \mathcal{D}(Ub) , which is known [4] to be a quasi‐triangular
multiplier Hopf algebra, where  R is given by the canonical element, which is the unique
element in  M(\mathcal{D}\otimes \mathcal{D}) such that

(4.10)  \langle R, b\otimes a\rangle= \langle a, b\rangle, a\in \mathcal{A}, b\in 
\mathcal{A}'.

Definition 4.3. We define

(4.11)  U :=\mathcal{U}_{q^{\frac{}{q}}}^{C^{*}}(\mathfrak{g}_{\mathbb{R}}) :=
\mathcal{D}(Ub)/(H_{i}'=(A^{-1})_{ij}H_{j})

to be the Drinfeld’s double of the Borel subalgebra Ub modulo the Cartan subalgebra

 \mathfrak{h}  \subset Ub^{-}

It follows naturally from the explicit expression of the universal  R‐operator con‐

structed in [19] which generalizes [22, 26]:
 N

(4.12)  R= \prod_{ij}q^{\frac{1}{2}(A^{-1})_{ij}H_{i}\otimes H_{j}}\prod_{k=1}g_{b}(e_{
\alpha_{k}}\otimes f_{\alpha_{k}})\prod_{ij}q^{\frac{1}{2}(A^{-1})_{ij}H_{i}
\otimes H_{j}},
together with the integral transformation (A.12) of  g_{b} (replacing the usual  q‐exponential
function), and the Hopf pairing between Ub and  Ub^{-} involving  G_{b}(x) (replacing the
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usual  q‐factorial , that the canonical element is given precisely by  R . Therefore  U is

indeed a quasi‐triangular multiplier Hopf algebra. Furthermore, due to Lemma A.6,  R

induces a unitary transformation between  \mathcal{P}_{\lambda_{1}}  \otimes \mathcal{P}_{\lambda_{2}}  \simeq  \mathcal{P}_{\lambda_{2}}  \otimes \mathcal{P}_{\lambda_{1}} , hence giving the

braiding structure of the positive representations.

Remark 4.4. In the compact case, Lusztig’s canonical basis is certain linear
combinations of the PBW‐basis that is invariant under the bar involution  q\ovalbox{\tt\small REJECT} q^{-1} . In

the non‐compact case, it is expected that the true notion of a continuous canonical basis

will be certain integral transformations of the continuous PBW‐basis constructed above,

which obeys some form of non‐compact bar involutions involving complex conjugations.

Here the positivity condition is expected to play an important role in its definition.

§5. Tensor Products of  \mathcal{P}_{\lambda}

The notion of continuous canonical basis may provide the key to study the de‐

composition of tensor products of positive representations. In the finite dimensional

situation generated by a highest weight vector  \xi_{\lambda} with dominant integral weight  \lambda , the

 \mathcal{U}_{q}(\mathfrak{g}) module is generated by basis of the form  \{E_{i}^{c}\xi_{\lambda}\} where  E_{i}^{c} is given as in (4.3). The
decomposition of tensor product is then, roughly speaking, given by the tensor product

of the corresponding basis giving the same weight, modulo certain monomial terms with

higher order of  q in the coefficients [29]. In the setting of positive representations, there
are no highest weight vector anymore, but still one can fix an initial weight vector  \xi_{\lambda}

and define  \mathcal{P}_{\lambda} to be “generated” by generalized   \prodfunctions such as

(5. 1)  \mathcal{P}_{\lambda}= “continuous span”   \{\prod_{k=1}\frac{e_{\alpha_{k}}^{ib^{-1}t_{k}}}{G_{b}(Q+it_{k})}
\xi_{\lambda}\} :

As an example, in the case of  \mathcal{U}_{q\overline{q}}(\mathfrak{s}((2, \mathbb{R})) , one can regard  \mathcal{P}_{\lambda}=L^{2}(\mathbb{R}) as generated by

the initial weight vector  \delta(x) , (where  K acts as  e^{-2\pi b\lambda} ), and look at the action of  e^{ib^{-1}t}
on  \delta(x)  [19] :

(5.2)  e^{ib^{-1}t} .   \delta(x)=e^{\pi it-2\lambda t}2\frac{G_{b}(\frac{Q}{2}-i\lambda+it)}{G_{b}
(\frac{Q}{2}-i\lambda)}\delta(x-t) .

In particular, in the analytic continuation  tarrow-ib, we recover the action of  e given in

Proposition 3.2.

One can then take these continuous basis and follow the decomposition in the

compact case, generalizing the formula for the decomposition  \mathcal{P}_{\lambda_{1}}  \otimes \mathcal{P}_{\lambda_{2}} . In principle
this will recover the intertwiner:

(5.3)  \mathcal{P}_{\lambda_{1}}\otimes \mathcal{P}_{\lambda_{2}} \simeq \mathcal{P}_{
\lambda}\sinh(2\pi b\lambda)\sinh(2\pi b^{-1}\lambda)d\lambda
 \mathbb{R}_{+}
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given by a series of integral transformations involving  G_{b}(x) proved in [30, 32].
Of course, one has to be careful when dealing with such generalized functions in

terms of functional analysis. Nevertheless, investigating this observation, we have the

following more precise conjecture for the higher rank case.

Conjecture 5.1. The positive representations  for\mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) is closed under takin

the tensor product, and it decomposes a

(5.4)  \mathcal{P}_{\alpha}\otimes \mathcal{P}_{\beta}\simeq \mathcal{P} d\mu( ) ,
 \mathbb{R}_{+}^{N}

where  = \sum_{\alpha\in\triangle_{+}}\gamma_{\alpha}\omega_{\alpha} suming over all the positive roots, where  \gamma_{\alpha}  \in \mathbb{R}_{+} and  \omega_{\alpha} are

the fundamental weights, with the abuse of notation  \omega_{\alpha}  :=\omega_{\alpha_{1}}+\omega_{\alpha_{2}} if  \alpha  :=\alpha_{1}+\alpha_{2} is

not simple. The Plancherel measure is given by

 d \mu ( )=\prod_{\alpha\in\triangle_{+}}\sinh(2\pi b\gamma_{\alpha})\sinh(2\pi 
b^{-1}\gamma_{\alpha})d\gamma_{\alpha}.
Remark 5.2. It was pointed out by Masahito Yamazaki that this Plancherel

measure naturally comes from a somewhat indirect connection from supersymmetric

gauge theory, which is discussed for example in [6, 14].

In particular, in the simply‐laced case, we believe it suffices to prove

Conjecture 5.3. The tensor product ofpositive representations  for\mathcal{U}_{q\overline{q}}(\mathfrak{s}((3, \mathbb{R}))
decomposes as

(5.5)  \mathcal{P}_{(\alpha_{1},\alpha_{2})}\otimes \mathcal{P}_{(\beta_{1},\beta_{2})
} \simeq \mathcal{P}_{(\gamma_{1}+\gamma_{3},\gamma_{2}+\gamma_{3})}d\mu( ) .
 \mathbb{R}_{+}^{3}

Finally, let us remark that the situation is simpler if we restrict the positive repre‐

sentations  \mathcal{P}_{\lambda} to the Borel part  b_{\mathbb{R}}  \subset \mathfrak{g}_{\mathbb{R}} . Using the notion of  \mathcal{U}_{q^{\frac{}{q}}}^{C^{*}}(b_{\mathbb{R}}) and the theory

of multiplicative unitary associated to its GNS‐representations, it is shown in a recent

study [20] that the positive representations  \mathcal{P}_{\lambda} restricted to  b_{\mathbb{R}} does not depend on
 \lambda , and it is closed under taking tensor products. This construction induces the quan‐

tum mutation operator  T which will be a key ingredient to obtain a candidate for the

quantum higher TeichmUller theory, generalizing earlier work by Frenkel‐Kim [13].

§6. Harmonic Analysis of  L^{2}(G_{q\overline{q}}^{+}(\mathbb{R}))

In the last section, we would like to discuss the application of multiplier Hop

algebra in the context of harmonic analysis on the quantized algebra of functions on
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 G_{q\overline{q}}^{+}(\mathbb{R}) , which is certain dual algebra to  \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) . This is motivated from the following

form of Peter‐Weyl theorem [15, 31]

(6.1)  L^{2}(SL_{q\overline{q}}^{+}(2, \mathbb{R}))\simeq \mathcal{P}_{\lambda}\otimes
\mathcal{P}_{\lambda}^{*}d\mu(\lambda)
 \mathbb{R}_{+}

as left and right regular representations of  \mathcal{U}_{q\overline{q}}(\mathfrak{s}((2, \mathbb{R})) , where the Plancherel measure

 d\mu(\lambda) is the same as before.

Here, the Hilbert space  L^{2}(SL_{q\overline{q}}^{+}(2, \mathbb{R})) is constructed as follows. Starting with the

quantum plane generated by positive self‐adjoint elements  \{A, B\} with  AB=q^{2}BA,
one define the  C^{*} ‐algebraic version  \mathcal{A}_{q\overline{q}} similar to the construction of Ub, giving it a

multiplier Hopf algebra structure, as well as imposing the modular duality  b\ovalbox{\tt\small REJECT} b^{-1}.

With the existence of a Haar functional and certain density conditions,  \mathcal{A}_{q\overline{q}} can be

shown to be a locally compact quantum group in the sense of [24, 25]. Finally, by ap‐
plying Woronowicz’s quantum double construction, which is the dual of Drinfeld’s double

construction, we obtain a multiplier Hopf algebra  \mathcal{A}(SL_{q\overline{q}}^{+}(2, \mathbb{R})) , and the Hilbert space

 L^{2}(SL_{q\overline{q}}^{+}(2, \mathbb{R})) is defined by its von Neumann completion using the GNS representa‐

tion. The analysis utilizes the power of the multiplicative unitary  W associated to

the GNS representation of the quantum plane, and the corresponding quantum double

counterparts, which is the key ingredient to construct the regular representations  0

 \mathcal{U}_{q\overline{q}}(\mathfrak{s}((2, \mathbb{R})) .

One natural question is the extension of this result to the higher rank. In [16],
we define the Gauss‐Lusztig’s decomposition (for type  A_{n} ), which plays the role  0

Woronowicz’s quantum double construction. Here using Lusztig’s data for the totally

positive matrices, the space  G_{q\overline{q}}^{+}(\mathbb{R}) is given by an algebra generated by elements that

form interconnecting  q‐tori. Different parametrization of the Lusztig’s data gives inter‐

twiners that is also closely related to the positive representations on a combinatorial

level [17, 23]. Imposing positivity, we can mimic the construction in the case of the
quantum plane and give this algebra a multiplier Hopf algebra structure, as well as

it’s von Neumann completion, hence the Hilbert space  L^{2}(G_{q\overline{q}}^{+}(\mathbb{R})) . One can then dis‐

cuss the regular representations of  \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) acting on this space, and give the following

conjecture.

Conjecture 6.1. We have the decompositio
 \ovalbox{\tt\small REJECT}

(6.2)  L^{2}(G_{q\overline{q}}^{+}(\mathbb{R}))\simeq \mathcal{P}_{\lambda}\otimes 
\mathcal{P}_{\lambda}^{*}d\mu(\lambda)
 \mathbb{R}_{+}^{n}

as left and right regular representations of  \mathcal{U}_{q\overline{q}}(\mathfrak{g}_{\mathbb{R}}) . This time, however,  \lambda runs through

the fundamental weights  \omega_{i} corresponding to simple roots only.
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§A. Quantum Dilogarithms

First introduced by Faddeev and Kashaev [9], the quantum dilogarithm  G_{b}(x)
and its variant  g_{b}(x) play a crucial role in the study of positive representations  0

split real quantum groups, and also appear in many other areas of mathematics and

physics. In this appendix, let us recall the definition and some properties of the quantum

dilogarithm functions [2, 15, 32] that is needed in this paper.

Definition A.1. The quantum dilogarithm function  G_{b}(x) is defined on

 0\leq Re(z)  \leq Q by

(A. 1)  G_{b}(x)= \overline{\zeta_{b}}\exp(- \Omega\frac{e^{\pi tz}}{(e^{\pi bt}-1)(e^{
\pi b^{-1}t}-1)}\frac{dt}{t}) ,

where

(A.2)  \zeta_{b}=e^{\frac{\pi i}{2}(\frac{b^{2}+b-2}{6}+\frac{1}{2})},
and the contour goes along  \mathbb{R} with a small semicircle going above the pole at  t  =  0.

This can be extended meromorphically to the whole complex plane with poles at  x  =

 -nb-mb^{-1} and zeros at  x=Q+nb+mb^{-1} , for  n,  m\in \mathbb{Z}_{\geq 0} ;

The quantum dilogarithm  G_{b}(x) satisfies the following properties:

Proposition A.2. Self‐duality:

(A.3)  G_{b}(x)=G_{b-1}(x) ;

Functional equations:

(A.4)  G_{b}(x+b^{\pm 1})=(1-e^{2\pi ib^{\pm 1}x})G_{b}(x) ;

Reflection property:

(A.5)  G_{b}(x)G_{b}(Q-x)=e^{\pi ix(x-Q)} ;

Complex  con\cdot u ation:

(A.6)  \overline{G_{b}(x)}=   \frac{1}{G_{b}(Q-\overline{x})},
in particula

(A.7)  |G_{b}( \frac{Q}{2}+ix)|  =1 for  x\in \mathbb{R} ;

Asymptotic properties:

(A.8)   G_{b}(x)\sim  \{\begin{array}{l}
\overline{\zeta}_{b} Im(x) arrow+\infty
\zeta_{b}e^{\pi ix(x-Q)}Im(x) arrow-1'
\end{array}
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Lemma A.3 (  q‐binomial theorem). For positive self‐adjoint variables  U,  V with
 UV=q^{2} VU, we have:

(A.9)  (V+U)^{ib^{-1}t}=
 C  (\begin{array}{l}
it
i
\end{array})V^{ib^{-1}(t-\tau)}U^{ib^{-1}\tau}d\tau,

where the  q ‐beta function (or  q ‐binomial coefficient) is given by

(A. 10)  (^{t})^{b}=   \frac{G_{b}(Q+t)}{G_{b}(Q+\tau)G_{b}(Q+t-\tau)},
and  C is the contour along  \mathbb{R} that oes above the pole at  \tau  =  0 and below the pole at
 \tau=t.

Definition A.4. The function  g_{b}(x) is defined by

(A. 11)  g_{b}(x)=   \frac{\overline{\zeta_{b}}}{G_{b}(\frac{Q}{2}+\frac{\log x}{2\pi ib})},
where  \log takes the principal branch of  x.

Lemma A.5. [2, (3.31), (3.32)] We have the following Fourier transformatio
formula:

(A. 12)  \underline{e^{-\pi it^{2}}}X^{ib^{-1}}tdt=g_{b}(X) ,
 \mathbb{R}+i0G_{b}(Q+it)

where  X is a positive operator and the contour oes above the pole at  t=0.

Lemma A.6. By (A.7 ,  |g_{b}(x)|  =  1 when  x  \in  \mathbb{R}+ , hence  g_{b}(X) is a unitary
operator for any positive operator X. Furthermore we have the self‐duality of  g_{b}(x)
given by

(A. 13)  g_{b}(X)=g_{b-1}(X \frac{1}{b^{2}}) .
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