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The derivation of conservation laws for nonlinear

Schrödinger equations with power type nonlinearities

By

Kazumasa FUJIWARA * and Hayato MIYAZAKI **

Abstract

For nonlinear Schrödinger equations with power type nonlinearities, a new approach to
derive the conservation law of the momentum and the pseudo conformal conservation law is
obtained. The approach involves properties of solutions provided by the Strichartz estimate.

§1. Introduction

In this paper, we consider the nonlinear Schrödinger equations with power type
nonlinearities

(1.1)  \{\begin{array}{l}
i\partial_{t}u+\frac{1}{2}\triangle u=f(u) , (t, x) \in \mathbb{R}^{1+n},
u(0, x) =\phi(x) , x\in \mathbb{R}^{n},
\end{array}
where  u(t, x) :  \mathbb{R}^{1+n}arrow \mathbb{C} , the initial data  \phi is a complex valued function on  \mathbb{R}^{n} , and  f is
a nonlinear term of gauge invariance. The equation (1.1) has been extensively studied
both in physical and mathematical literatures (see [1], [5]). The conservation law  0

the momentum and the pseudo conformal conservation law play a role to investigate

asymptotic behavior of the solution to (1.1). For example, using the conservation law  0

the momentum, we study blow‐up in finite time and dynamics of blow‐up solutions (see
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[3]). Moreover, the pseudo conformal conservation law implies that if  f(u)  =\lambda|u|^{p-1}u
with  p  \geq  1  +4/n and  \lambda  >  0 , then we have a time decay estimate for the solution
  u\in  C([0, T], \Sigma) of (1.1) such that  \Vert u(t)\Vert_{L^{r}}  \leq  C|t|^{-n(\frac{1}{2}-\frac{1}{r})} for any  r  \in  [2, \alpha(n)] , where
 \alpha(n)=1+4/(n-2) if  n\geq 3,  \alpha(n)=1 if  n=1 , 2 and  \Sigma=\{u\in H^{1}(\mathbb{R}^{n}) |xu\in L^{2}(Rn)\}
(see §7 of [1]). According to [1, 4], we set the assumptions of nonlinearity  f(u) as follows:

(A1)  f\in C^{1}(\mathbb{C}, \mathbb{C}) ,  f(0)=0 and for some  p>  1,  f satisfies

 |f'(z)| \leq C(1+|z|^{p-1})

for any  z\in \mathbb{C} , where  |f'(z)|  = \max(|\frac{\partial f}{\partial z}|, |\frac{\partial f}{\partial\overline{z}
}|) ,

(A2)  {\rm Im}(\overline{z}f(z))=0 for all  z\in \mathbb{C},

(A3) There exists  V\in C^{1}(\mathbb{C}, \mathbb{R}) such that  V(0)  =0 and  f(z)=\partial V/\partial\overline{z}.

Note that if  f satisfies (A2) and (A3), then  V(z)  =  V(|z|) . Hence, we simply write
 V'(z)=   \frac{d}{dr}(r)|_{r=|z|}.

We can obtain formally the conservation law of the momentum  P(u) by multiplying

the equation (1.1) by  \nabla u ,(integrating over  \mathbb{R}^{n} , and taking the real part as follows:

 0=2{\rm Re}(i \partial_{t}u+\frac{1}{2}\triangle u-f(u), \nabla u)_{L^{2}}
 =2{\rm Re}(i \partial_{t}u, \nabla u)_{L^{2}} -2{\rm Re}(f(u), \nabla u)_{L^{2}
} = \frac{d}{dt}P(u(t)) ,

where

 P(u) ={\rm Im} u\nabla\overline{u}dx.
 \mathbb{R}^{n}

We present a formal argument to derive the pseudo conformal conservation law

  \frac{1}{2}\Vert J(t)u(t)\Vert_{L^{2}}^{2}+t^{2} \mathbb{R}^{n}V(u(t))dx
 =  \frac{1}{2}\Vert x \Vert_{L^{2}}^{2}+ 0^{t}S ( \mathbb{R}^{n}(n+2)V(u(s))-
\frac{n}{2}V'(u(s))|u(s)|dx)ds,

where   J(t)=x+it\nabla . Applying the operator  J to (1.1), we have a equation

(1.2)  (i \partial_{t}+\frac{1}{2}\triangle)J(t)u=J(t)f(u) .

Furthermore we can obtain the pseudo conformal conservation law by multiplying (1.2)
by  J(t)u(t) , integrating over  \mathbb{R}^{n} , and taking the imaginary part as follows:

 0=2{\rm Im}(i \partial_{t}J(t)u(t)+\frac{1}{2}\triangle J(t)u(t)-J(t)f(u(t)), J
(t)u(t))_{L^{2}}
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 =2{\rm Im}(i\partial_{t}J(t)u(t), J(t)u(t))_{L^{2}} -2{\rm Im}(J(t)f(u(t)), 
J(t)u(t))_{L^{2}}

 =  \frac{d}{dt}\Vert J(t)u(t)\Vert_{L^{2}}^{2}-2{\rm Im}(f(u), J(t)^{2}u)
_{L^{2}}
 =  \frac{d}{dt}\Vert J(t)u(t)\Vert_{L^{2}}^{2}+4t{\rm Re}(xf(u), \nabla u)
_{L^{2}}
 +2nt{\rm Re}(f(u(t)), u(t))_{L^{2}}+4t^{2}{\rm Re}(f(u(t)), \partial_{t}u(t))
_{L^{2}}

 =  \frac{d}{dt}\Vert J(t)u(t)\Vert_{L^{2}}^{2}-2nt \mathbb{R}^{n}V(u(t))dx
 +nt V'(u(t))|u(t)|dx+2t^{2}\underline{d} V(u(t))dx.

 \mathbb{R}^{n}  dt \mathbb{R}^{n}

To justify the procedures above, we require that at least  u is an  H^{2} ‐solution and  H^{2,1_{-}}

solution, respectively, where  H^{2,1}  :=  \{u \in H^{2}(\mathbb{R}^{n});(1+ |x|^{2})^{1/2}u \in L^{2}(\mathbb{R}^{n})\} . For an
 H^{s} ‐solution with  s<2 , there are basically two methods to justify the procedure. One

is that from the continuous dependence of solutions on the initial data, the solution is

approximated by a sequence of  H^{2} solutions. Other is to use a sequence of regularized

equations of (1.1) whose solutions have enough regularities to perform the procedure
above (see [4]). However, these two methods involve a limiting procedure on approxi‐
mate solutions.

On the other hand, Ozawa [4] gave a direct proof of conservation laws of the charge
and the energy by using solutions of the associated integral equation. Especially, he jus‐

tifies the computation only by the Strichartz estimates. In order to state the Strichartz

estimates, we introduce the following notations:

Notation. For a Banach space  X,   p\in  [1, \infty] and an interval  I\subset \mathbb{R},  L_{t}^{p}X denotes the

Banach space  L^{p}(I, X) equipped with its natural norm. Let  U(t) be the Schrödinger

operator  e^{\frac{it}{2}\triangle} . For  s\in \mathbb{R} and  p,   q\in  [1, \infty] , let  B_{p,q}^{s}(\mathbb{R}^{n})  =B_{p,q}^{s} be the inhomogeneous

Besov space in  \mathbb{R}^{n}.

Definition 1.1.

1. A positive exponent  p' is called the dual exponent of  p if  p and  p' satisfy  1/p+1/p'=
 1.

2. A pair of two exponents  (p, q) is called an admissible pair if  (p, q) satisfies  2/p+n/q=
 n/2,  p\geq 2 and  (p, q)\neq(2, \infty) .

The Strichartz estimates are described as the following lemma:

Lemma 1.2 (Strichartz estimates, see [1]). Let  s\in \mathbb{R} and  I\subset \mathbb{R} be an interva
with  0\in\overline{I}.  (p_{1}, q_{1}) and  (p_{2}, q_{2}) denote admissible pairs. Let  t_{0}  \in\overline{I} . The

1. for all  f\in L^{2}(\mathbb{R}^{n}) ,

 \Vert U(t)f\Vert_{L^{p_{1}}(\mathbb{R},L^{q_{1}}(\mathbb{R}^{n}))} \leq C\Vert 
f\Vert_{L^{2}(\mathbb{R}^{n})},
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2. for any  \varphi\in H^{s}(\mathbb{R}^{n}) ,

 \Vert U(t)\varphi\Vert_{L^{1}(\mathbb{R},H^{s}(\mathbb{R}^{n}))} \leq 
C\Vert\varphi\Vert_{H^{s}(\mathbb{R}^{n})},

 \Vert U(t)\varphi\Vert_{L^{p_{1}}(\mathbb{R},B_{q_{1},2}^{s}(\mathbb{R}^{n}))} 
\leq C\Vert\varphi\Vert_{H^{s}(\mathbb{R}^{n})},

3. for all  f\in Lp\'{i} (I, Lqí (Rn)),

 \Vert  t_{0}t  U  (t - \tau)f(\tau)d  \Vert_{L^{p_{2}}(I,L^{q_{2}}(\mathbb{R}^{n}))}  \leq  c\Vert f\Vert_{L^{p_{1}'}(I} , Lqí  (\mathbb{R}^{n}) )’

4. for any  f\in L^{1} (  I,  H^{s} (Rn)),

 \Vert t_{0}tU(t-\tau)f(\tau)d \Vert_{L^{1}(I,H^{s}(\mathbb{R}^{n}))} \leq 
C\Vert f\Vert_{L^{1}(I,H^{s}(\mathbb{R}^{n}))},
5. for all  f\in Lp\'{i} (I,  B_{q_{1},2}^{s} (Rn)),

 \Vert t_{0}tU(t-\tau)f(\tau)d \Vert_{L^{p_{2}}(I,B_{q_{2},2}^{s}(\mathbb{R}^{n}
))} \leq C\Vert f\Vert_{L^{p_{1}'}(I,B_{q_{1}',2}^{s}(\mathbb{R}^{n}))},
where pí and  p_{2}' are the dual exponents of  p_{1} and  p_{2} , respectively.

§2. Main results

The aim of this paper is to revisit the conservation law of the momentum and the

pseudo conformal conservation law with solutions of the following integral equation:
 t

(2.1)  u(t)=U(t) -i U(t-\tau)f(u(\tau))d\tau.
 0

Firstly, the momentum is computed as follows:

Proposition 2.1. Assume that  f satis es  (Al)-(A3) . Let  1/2 \leq s<\min\{1, n/2\}.
Let an admissible pair  (\gamma, \rho) be as follows:

(2.2)   \rho= \frac{n(p+1)}{n+s(p-1)}, \gamma= \frac{4(p+1)}{(p-1)(n-2s)}.
Let  u\in C([0, T], H^{s}(\mathbb{R}^{n}))\cap L^{\gamma} (  0,  T;B_{\rho,2}^{s} (Rn)) be a solution of the integral equation (2.1)
for some  \phi\in H^{s}(\mathbb{R}^{n}) and  T>0 . The

 t

 P(u(t))=P( )-2 0 {\rm Re}\langle f(u(\tau)) , \overline{\nabla u(\tau)}\rangle 
d
for all   t\in  [0, T] , where the time integral of the scalar product to the RHS in the above
is understood as the duality coupling on  (L_{t}^{\infty}H^{1/2}+L_{t}^{\gamma'}B_{\rho,2}^{1/2})\cross(L_{t}^{\infty}H^{
-1/2}\cap L_{t}^{\gamma}B_{\rho,2}^{-1/2}) .
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Remark 1. Cazenave‐Weissler [2] proved that if  0  <  s  <   \min\{1, n/2\},  \phi  \in  H^{s}

and  1  \leq p  <  1+4/(n-2s) , then the Cauchy problem (1.1) have an unique solution

 u\in C([0, T], H^{s})\cap L^{\gamma}(0, T;B_{\rho,2}^{s}) with some admissible pair  (\gamma, \rho) as in (2.2). We remark
that  u\in L_{t}^{\infty}H^{S}\cap L_{t}^{\gamma}B_{2}^{s} implies  f(u)  \in L_{t}^{\infty}H^{S}+L_{t}^{\gamma'}B_{\rho,2}^{s}.

It seems difficult to cancel out the error term

 t

 0 {\rm Re}\langle f(u(\tau)) , \overline{\nabla u(\tau)}\rangle d
without any approximation. However, since we have

 \Vert f(u)-f(u)\Vert_{L^{2}+L\rho'} \leq (1+\Vert u\Vert_{B_{\rho,2}^{s}}^{p-1}
+\Vert u\Vert_{B_{\rho,2}^{s}}^{p-1}) \Vert u-u\Vert_{L^{2}\cap L\rho},
if  \mathscr{S}\ni u_{j}  arrow u in  H^{s}\cap B_{\rho,2}^{s} as  j  arrow 1 , then  f(u_{j})  arrow f(u) in  L^{2}+L^{\rho'} . Hence, noting

that  {\rm Re}\langle f(g) ,  \nabla g\rangle  =0 for any  g\in \mathscr{S} , the error term is computed to be  0 , where  \mathscr{S} is

the Schwartz space in  \mathbb{R}^{n} . Therefore, we obtain the conservation law of the momentum

as a corollary of Proposition 2.1.

Next, we compute the pseudo conformal conservation law as follows:

Proposition 2.2. Assume that  f satisfies (A1) ‐ (A3 . Denote an admissi‐
ble pair  (q, r) by  (q, r)  =  (4 (p+ 1)/n(p- 1),p+ 1) . Let  u  \in  C (  [0,  T],  H^{1} (Rn))  \cap

 L^{q}(0, T;W^{1,r}(\mathbb{R}^{n})) be a solution of the integral equation (2.1) for some  \in  \Sigma and
 T>0 . The

 \Vert J(t)u(t)\Vert_{L^{2}}^{2} = \Vert x\phi\Vert_{L^{2}}^{2}+2{\rm Im} 0^{t}
\langle J(s)f(u(s)) , \overline{J(s)u(s)}\rangle ds
for all   t\in  [0, T] , where the time integral of the scalar product to the RHS in the above
is understood as the duality coupling on  (L_{t}^{1}L^{2}+L_{t}^{q'}L^{r'})  \cross  (L_{t}^{\infty}L^{2}\cap L_{t}^{q}L^{r}) .

Remark 2. It is also known that if  f satisfies (A1) ‐ (A3) and  1  <  p  <  \alpha(n) ,
where  \alpha(n)=1+4/(n-2) if  n\geq 3,  \alpha(n)=1 if  n=1 , 2, then for any  \in H^{1} , there

exists  T  >  0 such that (1.1) has a unique solution  u  \in  C([0, T], H^{1})\cap L^{q}(0, T;W^{1,r}) ,
where a pair  (q, r) is the same as in Proposition 2.2. Furthermore, if  \in  \Sigma , then

 u\in C([0, T], \Sigma) . For detail, we refer the reader to [1].

Remark 3. Immediately, under the assumption of Proposition 2.2, we see that

 Ju\in C([0, T], L^{2})\cap L^{q}(0, T;L^{r}) and Ju satisfies a integral equation

 t

(2.3)  J(t)u(t)=U(t)x -i U(t-s)J(s)f(u(s))ds.
 0

Note that Jf(u)  \in L_{t}^{\infty}L^{2}+L_{t}^{q'}L^{r'} .
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It also seems difficult to calculate the error term

 2{\rm Im} 0^{t}\langle J(s)f(u(s)) , \overline{J(s)u(s)}\rangle ds,
further without any approximation. However, for any  s\in \mathbb{R} and  g\in \mathscr{S},

(2.4)  {\rm Im}\langle J(s)f(g) , J(s)g\rangle=-2t{\rm Re}\langle xf(g) , \nabla 
g\rangle-nt{\rm Re}\langle f(g) , g\rangle-t^{2}{\rm Im}\langle f(g) , \triangle
g\rangle.

Hence, noting that there exists  \{u\cdot\}_{j\in \mathbb{N}}^{\infty}  \subset  \mathscr{S} such that  u_{j}  arrow  u in  H^{1}  \cap W^{1,r} , from

(2.4), the error term is computed as

 2{\rm Im} 0^{t}\langle J(s)f(u(s)) , \overline{J(s)u(s)}\rangle ds
 t

(2.5)  =-4{\rm Re}
 0

 s  \langle xf  (u(s)) ,  \overline{\nabla u(s)}\rangle ds
 t  t

 -2n{\rm Re} 0 s\langle f(u(s)) , \overline{u(s)}\rangle ds-4{\rm Re} 0 s^{2}
\langle f(u(s)) , \overline{\partial_{t}u(s)}\rangle ds,
where the time integral of the scalar product to each term of the RHS to (2.5) is
understood as the duality coupling on  (L_{t}^{1}L^{2} +L_{t}^{q'}L^{r'})  \cross  (L_{t}^{\infty}L^{2} \cap L_{t}^{q}L^{r}) ,  (L_{t}^{1}L^{2}  +

 L_{t}^{q'}L^{r'})  \cross  (L_{t}^{\infty}L^{2}\cap L_{t}^{q}L^{r}) and  (L_{t}^{1}H^{1}+L_{t}^{q'}W^{1,r'})  \cross  (L_{t}^{\infty}H^{-1}\cap L_{t}^{q}W^{-1,r}) , respectively,

and from the equation (1.1), it holds that

 {\rm Im}\langle f(u) , \overline{\triangle u}\rangle_{(H^{1}+W^{1,r'})
\cross(H\cap W^{-1,r})}-1
 = \lim_{\varepsilonarrow 0}{\rm Im}\langle(1-\epsilon\triangle)^{-1}f(u) , 
\overline{\triangle u}\rangle_{H^{1}\cross H-1}
 = \lim_{\varepsilonarrow 0}2{\rm Im}\langle(1-\epsilon\triangle)^{-1}f(u) , 
f(u)-i\partial_{t}u\rangle_{H^{1}\cross H-1}
 =2{\rm Re}\langle f(u) , \overline{\partial_{t}u}\rangle_{(H^{1}+W^{1,r'})
\cross(H\cap W^{-1,r})}-1.

The ident ty (2.5) implies

 2{\rm Im}  0^{t}\langle J(s)f(u(s)) ,  \overline{J(s)u(s)}\rangle ds

 =2 0^{t_{S}} (  \mathbb{R}^{n}(n+2)V(u(s))-\frac{n}{2}V'(u(s))|u(s)|dx)ds-
2t^{2} \mathbb{R}^{n}V(u(t))dx.
Therefore, we obtain the pseudo conformal conservation law as a corollary of Proposition
2.2.

§3. The proof of main results

Proof of Proposition 2.1. Note that   \int_{\mathbb{R}^{n}}u\nabla\overline{u}dx is a pure imaginary number. For

all   t\in  [0, T] , we obtain

 iP(u(t))=\langle u,  \overline{\nabla u}\rangle_{H^{1/2}\cross H-1/2}
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 =\langle U(-t)u, \overline{U(-t)\nabla u}\rangle_{H^{1/2}\cross H-1/2}
 =\langle\phi, \overline{\nabla\phi}\rangle_{H^{1/2}\cross H-1/2}

 +\{\begin{array}{lll}
      \overline{t}
\phi   -i   U(-\tau)\nabla f(u(\tau))d0
\end{array}\}
 +\langle-i 0^{t}U(-\overline{\tau})f(u(\overline{\tau}))d\overline{\tau}, 
\overline{\nabla}\rangle_{H^{1/2}\cross H-1/2}
 +\{-i 0^{t}U(-\overline{\tau})f(u(\overline{\tau}))d\overline{\tau}, \overline{
-i0^{t}U(-\tau)\nabla f(u(\tau))d}\}_{H^{1/2}\cross H-1/2}
 =iP( )

‐  0^{t}\langle U(\tau)\phi,  \overline{i\nabla f(u(\tau))}\rangle d\tau-  0^{t}  \langle if  (u(\overline{\tau})) ,  \overline{U(\overline{\tau})\nabla\phi}\rangle d\overline{\tau}
‐  0^{t}  \{if(u(\overline{\tau})), -i 0^{\overline{\tau}_{U}}(\overline{\tau}-\tau)
\nabla f(u(\tau))d \}d\overline{\tau}
‐  0^{t}\langle-i  0

 U(\tau-\overline{\tau})f(u(\overline{\tau}))d\overline{\tau},  \overline{i\nabla f(u(\tau))}\rangle d\tau,
where concatenating the Strichartz estimates and Remark 1, the time integral of the

scalar product to each term of the last line in the above is understood as the duality

coupling on  (L_{t}^{\infty}H^{1/2} \cap L_{t}^{\gamma}B_{\rho,2}^{1/2})  \cross  (L_{t}^{\infty}H^{-1/2} +L_{t}^{\gamma'}B_{\rho,2}^{-1/2}) ,  (L_{t}^{\infty}H^{1/2} +L_{t}^{\gamma'}B_{\rho,2}^{1/2})  \cross

 (L_{t}^{\infty}H^{-1/2}\cap L_{t}^{\gamma}B_{\rho,2}^{-1/2}) ,  (L_{t}^{\infty}H^{1/2}+L_{t}^{\gamma'}B_{\rho,2}^{1/2})\cross(L_{t}^{\infty}H^{
-1/2}\cap L_{t}^{\gamma}B_{\rho,2}^{-1/2}) , and  (L_{t}^{\infty}H^{1/2}\cap

 L_{t}^{\gamma}B_{\rho,2}^{1/2})  \cross  (L_{t}^{\infty}H^{-1/2}+L_{t}^{\gamma'}B_{\rho,2}^{-1/2}) , respectively. Using the integral equation (2.1), we
compute

 iP(u(t))=iP(  )-  0^{t}\langle u(\tau) ,  \overline{i\nabla f(u(\tau))}\rangle d\tau-  0^{t}  \langle if  (u(\overline{\tau})) ,  \overline{\nabla u(\overline{\tau})}\rangle d\overline{\tau}
 t

 =iP(\phi)-2i 0 {\rm Re}\langle f(u(\tau))\overline{\nabla u(\tau)}\rangle 
d\tau,
which completes the proof.  \square 

Proof of Proposition 2.2. We can give the proof in a way similar to Ozawa [4].
For all   t\in  [0, T] , from (2.3), we obtain

 \Vert J(t)u(t)\Vert_{L^{2}}^{2}
 = \Vert U(-t)J(t)u(t)\Vert_{L^{2}}^{2}

(31)  =  \Vert x\phi\Vert_{L^{2}}^{2}  -2{\rm Im}(x\phi, 0^{t}U(-s)J(s)f(u(s))ds)_{L^{2}}
 +\Vert 0^{t}U(-s)J(s)f(u(s))ds\Vert_{L^{2}}^{2}
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The second term on the RHS  o((3.1) satisfies the following equality:

 -2{\rm Im}(x\phi, 0^{t}U(-s)J(s)f(u(s))ds)_{L^{2}}
(3.2)

 =-2{\rm Im} 0^{t}\langle U(s)x , \overline{J(s)f(u(s))}\rangle ds,
where combining the Strichartz estimates with  Jf(u)  \in L_{t}^{1}L^{2}+L_{t}^{q'}L^{r'} , the time integral

of the scalar product is understood as the duality coupling on  (L_{t}^{\infty}L^{2}\cap L_{t}^{q}L^{r})\cross(L_{t}^{1}L^{2}+
 L_{t}^{q'}L^{r'}) . For the last term on the RHS of (3.1), Fubini’s theorem implies

 \Vert 0^{t}U(-s)J(s)f(u(s))ds\Vert_{L^{2}}^{2}
(3.3)

 =2{\rm Re} 0^{t}\{J(s)f(u(s)) , \overline{0^{s_{U(s-s')J(s')f(u(s'))ds'\}ds}}},
where the time integral of the scalar product is understood as the duality coupling on

 (L_{t}^{1}L^{2}+L_{t}^{q'}L^{r'})  \cross  (L_{t}^{\infty}L^{2}\cap L_{t}^{q}L^{r}) . Concatenating (3.1) ‐ (3.3), we compute

 \Vert J(t)u(t)\Vert_{L^{2}}^{2}

 = \Vert x\phi\Vert_{L^{2}}^{2} -2{\rm Im} 0^{t}\langle U(s)x\phi, 
\overline{J(s)f(u(s))}\rangle ds
 +2{\rm Re} 0^{t}\{J(s)f(u(s)) , \overline{0^{s_{U(s-s')Jf(u(s'))ds'\}ds}}}
 = \Vert x\phi\Vert_{L^{2}}^{2}+2{\rm Im} 0^{t}\langle J(s)f(u(s)) , \overline{U
(s)x\phi}\rangle ds
 +2{\rm Im} 0^{t}\{J(s)f(u(s)), \overline{-i0^{s}U(s-s')J(s')f(u(s'))ds'}\}ds
 = \Vert x \Vert_{L^{2}}^{2}+2{\rm Im} 0^{t}\langle J(s)f(u(s)) , \overline{J(s)
u(s)}\rangle ds,

where the last equality in the above holds by (2.3).  \square 
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