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Area‐constrained Willmore surfaces of small area in

Riemannian three‐manifolds: an approach via
Lyapunov‐Schmidt reduction

By

Norihisa IKOMA, * Andrea MAICHIODI**and Andrea MONDINO***

Abstract

The goal of the present note is to survey and announce recent results by the authors
about existence of embedded Willmore surfaces with small area constraint in Riemannian three‐

manifolds. The common feature about the results presented here is that the constructions rely
on suitable Lyapunov‐Schmidt reductions.

§1. Introduction

The goal of the present note is to survey and announce recent results by the authors
about existence of embedded Willmore surfaces with small area constraint in Rieman‐

nian three‐manifolds. First of all, we introduce the Willmore functional. Let  \Sigma be a

closed (compact, without boundary) two‐dimensional surface and  (M, g) a Riemannian
3‐manifold. Let us consider an immersion  f :  \Sigma  arrow  M . Then for  f , we define the

Willmore functional  W(f) by

(1.1)  W(f) := H^{2}d\sigma.
 \Sigma

Received December 17, 2015. Revised July 4, 2016.
2010 Mathematics Subject Classification(s):  49Q10,  53C21,  53C42,  35J60,  58E05

Key Words: Willmore functional, Hawking mass, non linear PDE, fourth order PDE.
The second author has been supported by the project PRIN 2015  2015KB29WPT_{-}001 and by the
grant ” Geometric Variational Problems” from Scuola Normale Superiore. He is also a member  0

INdAM.
 *

Kanazawa University, Ishikawa, 9201192, Japan.
 e‐mail: ikoma@se. kanazawa -u . ac.

 **

Scuola Normale Superiore, 56126 Pisa, Italy.
 e‐mail: andrea.malchiodi@sns. it

 ***

University of Warwick, CV4  7AL Coventry, UK
 e‐mail: A. Mondino@warwick. ac. uk

© 2017 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



32 Ikoma, Malchiodi and Mondino

Here   d\sigma is the area form induced by  f,  H  :=\overline{g}^{ij}A_{ij} the mean curvature,  \overline{g}_{ij} the induced
metric and  A_{ij} the second fundamental form.

When an immersion  f is a critical point of  W with respect to normal variations,

 f is said to be a Willmore surface (or Willmore immersion). It is known that  f is a
Willmore surface if and only if  f satisfies the following Euler‐Lagrange equation

(1.2)  \triangle_{\overline{g}}H+H|\mathring{A}|^{2}+HRic(n, n)=0.

See, for instance, Lamm‐Metzger‐Schulze [23]. In the above equation,  \triangle_{\overline{g}} is the Laplace‐
Beltrami operator,  \mathring{A}_{ij}  :=A_{ij}- \frac{1}{2}H\overline{g}_{ij} the trace free second fundamental form,  n a unit

normal to  f and  Ric the Ricci tensor of  (M, g) . We remark that (1.2) is a fourth‐order
nonlinear elliptic PDE in the immersion map  f.

We point out that the Willmore functional appears not only in mathematics but

also in various fields. For example, in a biology, the Willmore functional appears as a

special case of Helfrich energy ([16, 17, 45]). In general relativity, the Hawking mass
contains the Willmore functional as the main term and see below for the definition  0

the Hawking mass. There are other examples, that is, Polyakov’s extrinsic action, free

energy of the nonlinear plate Birkhoff theory and so on.

In mathematics, the Willmore functional was studied by Blaschke and Thomsen in

the  1920s and  1930s in the case where  (M, g) is the Euclidean space. They tried to find

a conformally invariant theory which contains minimal surfaces. Here we remark that

minimal surfaces are solutions of (1.2) due to  H\equiv 0 , and the Willmore functional  W in
the Euclidean space is conformally invariant. For a proof, see Willmore [51]. Therefore,
they detected the class of Willmore surfaces as a conformally invariant generalization

of minimal surfaces, and Willmore surfaces were called conformal minimal surfaces.

After that, Willmore rediscovered this topic in  1960s . He proved that round spheres

are only the global minimizers of  W among all closed immersed surfaces into the Eu‐

clidean space. See Willmore [51]. Furthermore, he conjectured that the Clifford torus
and its images under Möbius transformations are the global minimizers among surfaces

with higher genus. This Willmore conjecture was recently solved by Marques‐Neves

[28] through minimax techniques. We refer to previous results toward the Willmore
conjecture obtained by Li‐Yau [26], Montiel‐Ros [38], Ros [44], Topping [47] and others.
We also refer to a result by Urbano [48] which plays a crucial role in the proof of the
Willmore conjecture. Let us also mention other fundamental works on the Willmore

functional. Simon [46] proved the existence of a smooth genus one minimizer of  W in
 \mathbb{R}^{m} . Later the result was generalized to the higher genus case by Bauer‐Kuwert [5],
Kusner [18] and Rivière [42, 43]. We also wish to mention the work by Bernard‐Rivière
[6] on bubbling and energy‐identities phenomena and by Kuwert‐Schätzle [20] on the
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Willmore flow.

Here it is worth to emphasizing that all the aforementioned results about Willmore

surfaces treat immersions into the Euclidean space or equivalently into a round sphere

due to the conformal invariance. On the other hand, Willmore immersions into curved

Riemannian manifolds are paid much attentions recently. The first existence result

was [32] in which the third author showed the existence of embedded Willmore spheres
(Willmore surface with genus equal to  0 ) in a perturbative setting. We also refer to
[33] and [8] in collaboration with Carlotto for related topics. Under the area constraint
condition, the existence of Willmore type spheres and their properties have been in‐

vestigated by Lamm‐Metzger‐Schulze [23], Lamm‐Metzger [21] and the third author in
collaboration with Laurain [24].

In addition, the global problem, i.e. the existence of smooth immersed spheres

minimizing quadratic curvature functionals in compact Riemannian three‐manifolds,

was also studied by Lamm‐Metzger [22] and the third author in collaboration with
Kuwert and Schygulla in [19]. We also mention the work [37] for the non‐compact
case. Moreover, in collaboration with Rivière [35, 36], the third author developed the
necessary tools for the calculus of variations of the Willmore functional in Riemannian

manifolds and proved the existence of area‐constrained Willmore spheres in homotopy

classes as well as the existence of Willmore spheres under various assumptions and
constraints.

As we already mentioned, some of the above results [21, 22, 23, 24, 35, 36] regard
the existence of Willmore spheres under area constraint. Such immersions satisfy the

equation

(1.3)  \triangle_{\overline{g}}H+H|\mathring{A}|^{2}+HRic(n, n)=\lambda H,

for some  \lambda  \in  \mathbb{R} playing the role of Lagrange multiplier. Seeking critical points of  W

under the area constraint condition is linked to the Hawking mass

 m_{H}(f) :=  \frac{\sqrt{Area(f)}}{64\pi^{3/2}}(16\pi-W(f))
in the sense that critical points of the Hawking mass under the area constraint condition

are equivalent to the area‐constrained Willmore immersions. Here we refer to [10, 23]
and the references therein for more material about the Hawking mass.

The aim of this note is to survey and announce three papers of the authors [12, 13,
14]. In those papers, we aimed to understand the following questions:

 \bullet Genus  0 : In the aforementioned results it was established the existence of Willmore

spheres (possibly under area constraint). What about their multiplicity? Can we
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show there is a foliation by Willmore spheres under some geometric conditions on
the ambient manifold?

 \bullet Genus 1: since all the above results are about spherical Willmore surfaces in mani‐

folds, what about the existence (and multiplicity) of Willmore tori (possibly under
area constraint)?

§2. Foliation of area‐constrained Willmore spheres and multiplicity

As mentioned above, the literature about (both area‐constrained and free) Willmore
spheres in Riemannian 3‐manifolds has seen a fast development in the last years [8, 19,
21, 22, 23, 24, 32, 33, 35, 36, 37]. In particular let us mention those works which are
particularly related to our new results:

 \bullet Lamm‐Metzger [22] showed that, given a closed 3‐dimensional Riemannian manofold
 (M, g) , there exists  \epsilon_{0}  >  0 with the following property: for every  \epsilon  \in  (0, \epsilon_{0} ] there
exists an area‐constrained Willmore sphere minimizing the Willmore energy among

immersed spheres of area equal to  4\pi\epsilon^{2} . Moreover, as  \epsilonarrow 0 , such area‐constrained

Willmore spheres concentrate to a critical point of the scalar curvature and, after

suitable rescaling, they converge in  W^{2,2} ‐sense to a round sphere.

 \bullet The above result has been generalized in two ways. On the one hand Rivière and

the third author [35, 36] proved that it is possible to minimize the Willmore energy
among (bubble trees of possibly branched weak) immersed spheres of fixed area,
for every positive value of the area. On the other hand Laurain and the third

author [24] showed that any sequence of area‐constrained Willmore spheres with
areas converging to zero and Willmore energy strictly below   32\pi (no matter if they
minimize the Willmore energy) have to concentrate to a critical point of the scalar
curvature and, after suitable rescaling, they converge smoothly to a round sphere.

A natural question then arises: Is it true that around any critical point  P of the scalar

curvature we can find a sequence of area‐constrained Willmore spheres having area equal

to  4\pi\epsilon_{n}^{2}arrow 0 and concentrating at  P?

§2.1. Main results

The goal of our paper [14] is exactly to investigate this kind of question above. More pre‐
cisely, on the one hand we reinforce the assumption by asking that  P is a non‐degenerate

critical point on the scalar curvature (in the sense that the Hessian expressed in local
coordinates is an invertible matrix); on the other hand we do not just prove existence
of area‐constrained Willmore spheres concentrating at  P but we show that there exists
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a regular foliation of a neighborhood of  P made by area‐constrained Willmore spheres.

The precise statement is the following.

Theorem 2.1. Let  (M, g) be a 3‐dimensional Riemannian manifold and let   P\in

 M be a non‐degenerate critical point of the scalar curvature Sc. Then there exist  \epsilon_{0}  >0

and a neighborhood  U of  P such that  U\backslash \{P\} is foliated by area‐constrained Willmore

spheres  \Sigma_{\epsilon} having area  4\pi\epsilon^{2},  \epsilon  \in  (0, \epsilon_{0}) . More precisely, there is a diffeomorphis
 F :  S^{2}  \cross  (0, \epsilon_{0})  arrow  U\backslash \{P\} such that  \Sigma_{\epsilon}  :=  F(S^{2}, \epsilon) is an area‐constrained Willmore

sphere having area equal to  4\pi\epsilon^{2} . Moreove

 \bullet If the index of  P as critical point of Sc is equal to  3-k  1
, then each surface  \Sigma_{\epsilon} is

an area‐constrained critical point of  W of index  k.

 \bullet If  Sc_{P}  >0 then the surfaces  \Sigma_{\epsilon} have strictly positive Hawking mass.

 \bullet The foliation is regular at  \epsilon  =  0 in the following sense. Fix a system of norma

coordinates of  U centred at  P and indentify  U with an open subset of  \mathbb{R}^{3} ; then,

called  F_{\epsilon}  :=   \frac{1}{\epsilon}F(\cdot, \epsilon) :  S^{2}  arrow \mathbb{R}^{3} , as  \epsilonarrow 0 the immersions  F_{\epsilon} converge smoothly to

the round unit sphere of  \mathbb{R}^{3}.

 \bullet The foliation is unique in the following sense. Let   V\subset  U be another neighborhood

of  P  \in  M such that  V\backslash \{P\} is foliated by area‐constrained Willmore spheres  \Sigma_{\epsilon}'
having area  4\pi\epsilon^{2},  \epsilon  \in  (0, \epsilon_{1}) , and satisfying   \sup_{\epsilon\in(0,\epsilon_{1})}W(\Sigma_{\epsilon}')  <   32\pi . Then there

exists  \epsilon_{2}  \in  (0,  \min(\epsilon_{0}, \epsilon_{1})) such that  \Sigma_{\epsilon}=\Sigma_{\epsilon}' for every  \epsilon\in  (0, \epsilon_{2}) .

 \bullet The foliation  F can be obtained by a smooth deformation of the foliation of  \mathbb{R}^{3}

by round spheres: there exists a differentiable map  G :  S^{2}  \cross  (0, \epsilon_{0})  \cross  [0, 1]arrow
such that the surfaces  G(S^{2}, \epsilon, \tau) are area‐constrained Willmore spheres in metric

 (1-\tau)g_{\epsilon}+\tau\delta , and  G(S^{2}, \epsilon, 0) is a round sphere in  \mathbb{R}^{3} of area  4\pi\epsilon^{2} . We used the
notation that  \delta_{ij} is the euclidean metric in  \mathbb{R}^{3} and  (g_{\epsilon})_{ij}  =  \epsilon^{-2}g_{ij} is the natura

rescaling of the metric  g expressed in normal coordinates on  U centered at  P.

Foliations by area‐constrained Willmore spheres have been recently investigated by

Lamm‐Metzger‐Schulze [23] who proved that a non‐compact 3‐manifold which is asymp‐
totically Schwartzschild with positive mass is foliated at infinity by area‐constrained

Willmore spheres of large area. Even if both ours and theirs construction rely on a

suitable application of the Implicit Function Theorem, the two results and proofs are

actually quite different: the former is a local foliation in a small neighborood of a point

and the driving geometric quantity is the scalar curvature. On the other hand, the latter

1The index of a non‐degenerate critical point  P of a function  h :  Marrow \mathbb{R} is the number of negative
eigenvalues of the Hessian of  h at
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is a foliation at infinity and the driving geometric quantity is the ADM mass of the man‐

ifold. Let us also mention that local foliations by spherical surfaces in manifolds have

already been investigated in literature, but mostly by constant mean curvature spheres.

In particular we have been inspired by the seminal paper of Ye [52] where the author
constructed a local foliation of constant mean curvature spheres near a non‐degenerate

critical point of the scalar curvature. On the other hand let us stress the difference

between the two problems: finding a foliation by constant mean curvature spheres is a

second order problem since the mean curvature is a second order elliptic operator, while

finding a foliation by area‐constrained Willmore spheres is a forth order problem since

the area‐constrained Willmore equation (1.3) is of order four.

Let us also discuss the relevance of Theorem 2.1 in connection with the Hawking mass.

Recall that, from the note of Christodoulou and Yau [10], if  (M, g) has non negative
scalar curvature then isoperimetric spheres (and more generally stable CMC spheres)
have positive Hawking mass; on the other hand it is known (see for instance [11] or [40])
that, if  M is compact, then small isoperimetric regions converge to geodesic spheres

centered at a maximum point of the scalar curvature as the enclosed volume converges

to  0 . Moreover, from the aforementioned paper of Ye [52] it follows that near a non‐
degenerate maximum point of the scalar curvature we can find a a foliation by stable

CMC spheres, which in particular by [10] will have positive Hawking mass. Therefore
a link between Hawking mass and critical points of the scalar curvature was already

present in literature, but Theorem 2.1 expresses this relation precisely.

In the paper [14] we also investigate multiplicity of area‐constrained Willmore spheres
and generic multiplicity of foliations. Let us mention that, despite the rich literature

about existence of area‐constrained Willmore spheres, this is the first multiplicity result

in general Riemannian manifolds.

Theorem 2.2. Let  (M, g) be a compact 3‐dimensional Riemannian manifold.
Let

 \bullet  k=2, if  M is simply connected  (i.e . if and only if  M is diffeomorphic to  S^{3} by the

recent proof of the Poincaré conjecture);

 \bullet  k=3, if  \pi_{1}(M) is free and not trivial;

 \bullet  k=4 , otherwise.

Then there exists  \epsilon_{0}  >  0 such that for every  \epsilon  \in  (0, \epsilon_{0}) there exist at least  k distinct

area‐constrained Willmore spheres of area  4\pi\epsilon^{2}.
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Examples of manifolds having non‐trivial free fundamental group are for instance
 M=S^{1}\cross S^{1}\cross S^{1} or  M=S^{1}\cross S^{2} ; the 3‐dimensional real projective space  \mathbb{R}\mathbb{P}^{3} is instead

an example of manifold where  k=4 . An expert reader will notice that  k=Cat(M)+1,
where Cat (M) is the Lusternik‐Schnirelmann category of  M . This is not a case, indeed
Theorem 2.2 is proved by combining a Lyapunov‐Schmidt reduction with the celebrated

Lusternik‐Schnirelmann theory.

We conclude by stating the generic multiplicity of foliations. First notice that, fixed a

compact manifold  M , for generic metrics the scalar curvature is a Morse function.

Remark 2.3. Let  (M, g) be a compact 3‐dimensional manifold such that the scalar
curvature Sc :  Marrow \mathbb{R} is a Morse function and denote with  b_{k}(M) the  k^{th} Betti number

of  M,  k  =  0 , . . . , 3. Then, by the Morse inequalities, Sc has at least  b_{k}(M) non‐

degenerate critical points of index  k and, by Theorem 2.1, each one of these points has

an associated foliation by area‐constrained Willmore spheres of index  3-k . In particular

there exists  \epsilon_{0}  >0 such that, for  \epsilon\in  (0, \epsilon_{0}) , there exist  b_{k}(M) distinct area‐constrained

Willmore spheres of area  4\pi\epsilon^{2} and index  3-k , for  k=0 , . . . , 3; therefore there exist at

least   \sum_{k=0}^{3}b_{k}(M) distinct area‐constrained Willmore spheres of area  4\pi\epsilon^{2}.

Example 2.4. Since the Morse inequalities hold by taking the Betti numbers

with coefficients in any field, we are free to choose  \mathbb{R} or  \mathbb{Z}_{2}  :=\mathbb{Z}/2\mathbb{Z} depending on conve‐

nience. Let us discuss some basic example to illustrate the last multiplicity statement.

 \bullet  M=S^{3} . Then  b_{0}(M, \mathbb{R})  =b_{3}(M, \mathbb{R})  =  1,  b_{1}(M)  =b_{2}(M)  =0 so generically there

exits 2 distinct foliations of area‐constrained Willmore spheres.

 \bullet  M  =  S^{2}  \cross  S^{1} . Then  b_{k}(M, \mathbb{R})  =  1 for  k  =  0 , . . . , 3, so generically there exist 4

distinct foliations of area‐constrained Willmore spheres.

 \bullet  M=\mathbb{R}\mathbb{P}^{3} . Then  b_{k}(M, \mathbb{Z}_{2})=1 for  k=0 , . . . , 3, so generically there exist 4 distinct
foliations of area‐constrained Willmore spheres.

 \bullet  M=S^{1}  \cross S^{1}  \cross S^{1} . Then  b_{k}(M, \mathbb{R})  =  1 for  k=0 , 3 and  b_{k}(M, \mathbb{R})  =3 for  k=1 , 2,

so generically there exist 8 distinct foliations of area‐constrained Willmore spheres.

§2.2. Outline of the strategy

The construction relies on a classical method in nonlinear analysis called the Lyapunov‐

Schmidt reduction and in what follows we summarize such a technique. As done by

Ambrosetti‐Badiale [1, 2], we incorporate here the variational structue of the problem.
For details, we refer to the monograph of Ambrosetti and the second author [3].
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Let us consider a family of functionals  (I_{\epsilon}) on an infinite dimensional Banach space

or manifold  X where  \epsilon>0 is a small parameter and we would like to find critical points

of  (I_{\epsilon}) . We first suppose that for every small  \epsilon  >  0 , there exists a finite dimensional

manifold  Z_{\epsilon}  \subset  X such that each element of  Z_{\epsilon} is almost critical points of  I_{\epsilon} . This

means that as  \epsilon  arrow  0,  I_{\epsilon}' converges to  0 on  Z_{\epsilon} in a suitable sense. Furthermore, we

assume that the second differential  I_{\epsilon}" is non‐degenerate on a topological complement

of the tangent space of  Z_{\epsilon} in  X (or the tangent bundle  TX ).
Under these conditions, one can solve the equation  I_{\epsilon}'=0 up to a component in the

tangent space of  Z_{\epsilon} by modifying elements of  Z_{\epsilon} slightly via the implicit function theo‐

rem. Using this modification, we can define a functional  \Phi_{\epsilon} :  Z_{\epsilon}arrow \mathbb{R} with the property

that critical points of  \Phi_{\epsilon} are critical points of the original functional  I_{\epsilon} . Therefore, we

can reduce the existence of critical points of  I_{\epsilon} into finding critical points of  \Phi_{\epsilon} and the

advantage of this reduction is that  \Phi_{\epsilon} is a function defined on the finite dimensiona

manifold  Z_{\epsilon}.

In our case, the functional  I_{\epsilon} is of course the Willmore energy  W defined in (1.1)
and  X the space of smooth immersions (with area constraint  4\pi\epsilon^{2} ) from the round 2‐
sphere  S^{2} into the Riemannian manifold  (M, g) . For a choice of  Z_{\epsilon} , we first remark that

we deal with small scale objects due to the area constraint, that a Riemannian metric

approaches the Euclidean one in such a scale and that the round spheres are critical

points of the Euclidean Willmore functional  W_{\mathbb{R}^{3}} . Hence, one naturally expects that

the images of small round spheres via exponential map, the so called geodesic spheres,

are almost critical points of  W . This is exactly what we first prove, with quantitative

estimates. Furthermore, it is known that the second derivative of  W_{\mathbb{R}^{3}} at the spheres is

given by  \triangle(\triangle+2) (for instance, see [23, 32]) and its kernel consists of the Jacobi fields
of translations and dilations. Therefore, under the area constraint, one can check that
 W is non‐degenerate in the above sense provided  \epsilon>0 is small.

After that, we shall move to the finite‐dimensional reduction of the problem. In

this case, for every (exponentiated) sphere, we will construct a graphical perturbation
which will solve (1.3) up to some Lagrange multipliers given by the Jacobi fields  0

translations and introduce the reduced functional  \Phi_{\epsilon} :  Z_{\epsilon}  arrow \mathbb{R} . In order to take care

of these Lagrange multipliers, we compute the expansion of  \Phi_{\epsilon} for small  \epsilon and get

(compare also with [21] and [32])

(2.1)   \Phi_{\epsilon}(P)=16\pi-\frac{8\pi}{3}Sc_{P}\epsilon^{2}+o(\epsilon^{2}) .

The abstract reduction procedure explained above implies that  P is a critical point  0

 \Phi_{\epsilon} if and only if we can find a small perturbation of a geodesic sphere centered at  P and

with area  4\pi\epsilon^{2} which is an area‐constrained Willmore sphere. After careful estimates

of the remainder  o(\epsilon^{2}) in  C^{2} ‐norm, the expansion (2.1) shows indeed that if  P is a
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non‐degenerate critical point of the scalar curvature then we can find critical points

of  \Phi_{\epsilon} near  P and therefore we get the existence of small area‐constrained Willmore

spheres centered near  P . Moreover, one can show indeed that they form a foliation of a

neighborhood of  P satisfying the claims of Theorem 2.1. The multiplicity results follows

respectively by applying Lusternik‐Schnirelmann theory to the reduced functional  \Phi_{\epsilon},

and Morse theory to the function Sc:  Marrow \mathbb{R}.

§3. Construction of small Willmore tori

In Section 2, we deal with the existence of Willmore surfaces with area constraint

and genus equal to  0 in general curved spaces. Meanwhile, in this section, we concentrate

on the second question in Introduction, that is, the existence (and multiplicity)  0

Willmore surfaces with genus equal to 1 (Willmore tori) in 3‐Riemannian manifolds.
Before proceeding to the results of our papers [12, 13], we remark that when the

ambient space  (M, g) admits some symmetry property, the equation (1.2) is simplified
and this enables us to obtain Willmore tori. Here we mention the works by Wang [49]
and Barros‐Ferrández‐Lucas‐Merono [4] who consider the case where  (M, g) is a product
and the metric is given by warped product, respectively. We also refer to Chen‐Li [9]
in which they study the existence of stratified weak branched immersions of arbitrary

genus minimizing quadratic curvature functionals under various constraints.

The aim of our work [12, 13] is to construct smooth embedded Willmore tori with
small area constraint in Riemannian three‐manifolds, under curvature conditions. In

contrast to the aforementioned papers, we do not assume any symmetry assumption

on  (M, g) here. We shall show the existence of such a surface by a Lyapunov‐Schmidt

reduction as in Section 2, but with some extra parameters. To find critical points of the

reduced functional  \Phi_{\epsilon} , we employ a minimization (or maximization) procedure in [12].
On the other hand, in [13], we shall utilize the Morse theory. We divide the discussion
in two subsections corresponding to the two papers.

§3.1. Existence via a minimization procedure

The main result of the first paper [12] is the following:

Theorem 3.1. Let  (M, g) be a compact 3‐dimensional Riemannian manifold.

Denote by  Ric and Sc the Ricci and the scalar curvature of  (M, g) respectively, and

suppose eithe

(3.1)  3 \sup_{P\in} (Sc_{P}-|\nu|_{g}=1inRic_{P}(\nu, \nu)) >2\sup_{P\in} Sc_{P},
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or else

(3.2)  3 P \in i\in (Sc_{P}-\sup_{|\nu|_{g}=1}Ric_{P}(\nu, \nu)) <2_{P\in}i\in Sc_{P}.
Then there exists  \epsilon_{0}  >0 such that for every  \epsilon\in  (0, \epsilon_{0}) there exists a smooth embedded

Willmore torus in  (M, g) with constrained area equal to 4  2\pi^{2}\epsilon^{2}  (4  2\pi^{2} is the area of

the Clifford torus  \mathbb{T} in  \mathbb{R}^{3} ).
More precisely, these surfaces are obtained as normal graphs over exponentiated

(Möbius transformations of) Clifford tori and the corresponding graph functions, once
dilated by a factor   1/\epsilon , converge to  0 in  C^{4,\alpha} ‐norm as  \epsilonarrow 0 with decay rate  O(\epsilon^{2}) .

Now we give a remark on the conditions (3.1) and (3.2).

Remark 3.2. (i) When both conditions (3.1) and (3.2) hold in Theorem 3.1, then
we can find at least two Willmore tori in  (M, g) with constrained area equal to 4  2\pi^{2}\epsilon^{2}.

(ii) It might be convenient to express the quantity  Sc_{P}-Ric_{P}(\nu, \nu) in (3.1) and (3.2)
by the sectional curvatures. Let  \{e_{1}, e_{2}, e_{3}\} be an orthogonal basis of  T_{P}M . Write  K_{ij}
for the sectional curvature at  P\in M spanned by  \{e_{i}, e_{j}\} . We first recall the following
relations between  K_{ij},  R_{ij} and  Sc_{P} :

 R_{11}  =K_{12}+K_{13},  R_{22}=K_{12}+K_{23} , R33  =K_{13}+K_{23},  Sc_{P}=R_{11}+R_{22}+R_{33}.

From these relations, it is easily seen that

  Sc_{P}-Ric_{P}(e_{3}, e_{3})= \frac{1}{2}Sc_{P}+K_{12}=2K_{12}+K_{13}+K_{23}.
In the rest of this subsection, we shall comment that we may apply Theorem 3.1

(and its arguments) for a large class of manifolds to find a smooth embedded Willmore
torus with small constrained area. In this sense, our assumptions (3.1) and (3.2) are
mild.

First, we consider compact 3‐manifolds having constant scalar curvature.

Corollary 3.3. Let  (M, g) be a compact 3‐dimensional manifold with constant

scalar curvature. Then there exists  \epsilon_{0}  >  0 such that for every  \epsilon  \in  (0, \epsilon_{0}) there exist

at least two smooth embedded Willmore tori in  (M, g) with constrained area equal to
4  2\pi^{2}\epsilon^{2}.

Proof. Suppose that Sc  \equiv  S  \in  \mathbb{R} and the sectional curvature of  (M, g) is not

constant. Then by Schur’s lemma, we may find a  P  \in  M at which  (M, g) is not

isotropic. Noting the expressions in Remark 3.2 (ii) and Sc  \equiv S , one can observe that
both of (3.1) and (3.2) hold. Hence, there are at least two Willmore tori with constrained
area equal to 4  2\pi^{2}\epsilon^{2} according to Remark 3.2 (i).
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On the other hand, let us assume that  (M, g) has constant sectional curvature
 \overline{K}\in R. Then it is conformally equivalent to the Euclidean space  \mathbb{R}^{3} . Indeed either it

is a quotient of the three‐sphere  S^{3} or of the Hyperbolic three‐space  \mathbb{H}^{3} , and both  0

them are conformally equivalent to the Euclidean three‐space  \mathbb{R}^{3} . Now it is well known
that the functional

 W_{cnf} (i)  :=  \Sigma[H^{2}+4\overline{K}]d\sigma=W(i)+4\overline{K} Area(i)

is conformally invariant (see for instance [50]). Notice also that the area‐constrained
critical points of  W are exactly the area‐constrained critical points of  W_{cnf} . By con‐

formal invariance of  W_{cnf} and the fact that the Clifford torus  \mathbb{T} and its images via the

Möbius transformations are critical points of  W_{cnf} in  \mathbb{R}^{3} , rescaled Clifford tori are crit‐

ical points of  W_{cnf} . Thus these are also critical points of  W under the area constraint

and we complete the proof.  \square 

Remark 3.4. The class of compact 3‐manifolds with constant scalar curvature

include many remarkable examples of ambient spaces which play an important role

in contemporary surface theory. Trivial cases are manifolds with constant sectional

curvature (notice that the same existence result applies to the standard non‐compact
space forms as explained above), but more generally any homogeneous three manifold
has constant scalar curvature. Examples of compact homogeneous spaces are  S^{2}  \cross S^{1},
Berger spheres and any compact quotient of a three‐dimensional Lie Group. The study

of special surfaces (minimal, constant mean curvature, totally umbilic) in homogeneous
spaces is a very active area of research, see for instance [27, 29, 30] and references
therein. Let us mention that most of the results in this setting are for genus  0 surfaces

and for second order problems, so the originality of our result lies in both exploring

higher genus surfaces and higher order problems (recall that the Willmore equation is
of fourth order, while minimal, CMC, and totally umbilical surface equations are  0

second order).

Second, we turn to the existence of Willmore tori with area constraint in non‐

compact manifolds. Here we shall point out that our argument to prove Theorem 3.1 ap‐

plies to some non‐compact manifolds as well, and a typical example is the Schwarzschild

space. Before proceeding further, we recall the definition of the Schwarzschild space.

The Schwartzschild space is given by  (\mathbb{R}^{3}\backslash \{0\}, g_{Sch}) where  g_{Sch} denotes the Schwarzschild
metric of mass  m  >  0 and is defined as follows:  (g_{Sch})_{ij}(x)  :=  (1 +  \frac{m}{2r})^{4}\delta_{ij} and

 r  =  |x|  =  \sqrt{(x^{1})^{2}+(x^{2})^{2}+(x^{3})^{2}} . From the definition, it is easily seen that  g_{Sch} is

spherically symmetric, conformal to the Euclidean metric and asymptotically flat. Fur‐

thermore, the scalar curvature of  (\mathbb{R}^{3}\backslash \{0\}, g_{Sch}) is identically zero and the sphere at

 \{r=m/2\} is totally geodesic. In fact, the Schwarzschild metric is symmetric under the

mapping   r\mapsto   \frac{m^{2}}{4r} and therefore it has two asymptotically flat ends.
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Before stating the result, in the next remark we recall what is known about min‐

imal and CMC surfaces in Schwarzschild metric (we thank Alessandro Carlotto for a
discussion about this point).

Remark 3.5 (Minimal and CMC surfaces in Schwarzschild).

 \bullet In the Schwarzschild space there are no non‐spherical closed minimal surfaces: in‐

deed arguing by maximum principle using comparison with CMC slices (i.e. the
spheres  \{r=const\} ), it is possible to show that the only immersed closed minimal
hypersurface in  (\mathbb{R}^{3}\backslash \{0\}, g_{Sch}) is the horizon  \{r =m/2\} , which in fact is totally

geodesic.

 \bullet Regarding CMC surfaces in  (\mathbb{R}^{3}\backslash \{0\}, g_{Sch}) , it was proved by Brendle [7] that the
only embedded closed CMC surfaces in the outer Schwarzschild  (\mathbb{R}^{3}\backslash B_{m/2}(0), g_{Sch})
are the spherical slices  \{r=const\} (let us mention that the results of Brendle in‐
clude a larger class of warped products metrics). The embeddedness assumption is
crucial for this classification result, in view of possible phenomena analogous to the

Wente tori (which are immersed and CMC) in  \mathbb{R}^{3} . It is also essential that the closed
surfaces do not intersect the horizon  \{r=m/2\} . Indeed, solving the isoperimetric

problem in  (\mathbb{R}^{3}\backslash \{0\}, g_{Sch}) for small volumes, it is expected (by perturbative ar‐
guments á la Pacard‐Xu [41]) that the isoperimetric surfaces are spherical surfaces
intersecting  \{r=m/2\}.

Summarizing, it is known that in  (\mathbb{R}^{3}\backslash \{0\}, g_{Sch}) there are no non‐spherical embedded
minimal surfaces and it is expected there are no non‐spherical embedded CMC surfaces.

Now we are in position to state our result in the Schwarzschild space. In sharp

contrast to the aforementioned situation, our next theorem asserts the existence  0

embedded tori which are critical points of the Hawking mass under area constraint.

Theorem 3.6. Let  (\mathbb{R}^{3}\backslash \{0\}, g_{Sch}) , with  g_{ij}(x)  =  (1+ \frac{m}{2r})^{4}\delta_{ij} , be the Schwarzschild

metric of mass  m  >  0 . Then there exists  \epsilon_{0}  >  0 such that for every  \epsilon  \in  (0, \epsilon_{0}) there

exist two smooth embedded Willmore tori in  (\mathbb{R}^{3}\backslash \{0\}, g_{Sch}) with constrained area equa

to 4  2\pi^{2}\epsilon^{2} , which are distinguished by the the values of W. By spherical symmetry,

there are infinitely many Willmore tori, hence critical points of the Hawking mass with
constrained area.

In fact, by direct computations, we can check that both (3.1) and (3.2) hold for
 (\mathbb{R}^{3}\backslash \{0\}, g_{Sch}) . Hence, arguing as in [12], we can find a local maximum and a local
minimum of the reduced function  \Phi_{\epsilon} whose values are distinct. Therefore, there are at
least two Willmore tori in  (\mathbb{R}^{3}\backslash \{0\}, g_{Sch}) .
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Remark 3.7. By analogous arguments to the proof of Theorem 3.6, one can prove
the existence of at least two smooth embedded Willmore tori with small area constraint

in asymptotically locally Euclidean (ALE) scalar flat 3‐manifolds. As in Theorem 3.6,
they are distinguished by the values of  W and critical points of the Hawking mass under
the area‐constraint condition.

More precisely, the following three conditions are sufficient for our arguments.

1)  (M, g) is a complete non‐compact 3‐manifold whose scalar curvature vanishes
identically: Sc  \equiv 0.

2) Fixed some base point  x_{0}  \in M , there exists  r  >  0 with the following property:
for every  \epsilon  >  0 there exists  R_{\epsilon}  >  0 such that for any  x  \in  M\backslash B_{R_{\in}}(x_{0}) there exists a

diffeomorphism  \Psi :  B_{r}^{\mathbb{R}^{3}}(0)  arrow B_{r}^{M}(x) satisfying  \Vert\delta_{ij}-(\Psi^{*}g)_{ij}\Vert_{C^{2}(B_{r}^{R^{3}}(0))}  \leq\epsilon.

3) At some point  x_{1}  \in M , the Ricci tensor is not zero.
Notice that condition 1) is equivalent to the constrained Einstein equations in the vac‐
uum case, and 2) is a mild uniform control of the local geometry of  M together with a
mild asymptotic condition. Regarding 3), if  Ric  \equiv  0 on  M,  (M, g) becomes flat since
 (M, g) is 3‐dimensional and the Riemann curvature tensor determined by the Ricci ten‐

sor (see, for example, Lee‐Parker [25]). Moreover, from 3) and Sc  \equiv 0 , we find that the
Ricci tensor at  x_{1} has both positive and negative eigenvalues, which implies that both

(3.1) and (3.2) hold.

§3.2. Outline of the strategy for a proof of Theorem 3.1

As in subsection 2.2, the construction relies on a Lyapunov‐Schmidt reduction.
Here,  I_{\epsilon} is the Willmore functional  W and  X a set of smooth immersions from the

Clifford torus  \mathbb{T} into the Riemannian manifold  (M, g) whose area is equal to 4  2\pi^{2}\epsilon^{2}.

As we also treat small scale objects, a candidate of  Z_{\epsilon} is a set of Willmore tori
in the Euclidean space whose areas are equal to 4  2\pi^{2} as in subsection 2.2. Since the

Euclidean Willmore functional  W_{\mathbb{R}^{3}} is conformally invariant,  t\sqrt{}e Clifford torus  \mathbb{T} and its

images under the Möbius transformations with area equal to 4  2\pi^{2} form a non‐compact

critical manifold of  W_{\mathbb{R}^{3}} . Moreover, by the result of Weiner [50], the second variation
of  W is non‐degenerate in the sense of subsection 2.2 and by the recent gap‐theorem

proved by Nguyen and the third author [34], this critical manifold is isolated in energy
from the next Willmore torus. As expected, we can prove that the images of small
Clifford tori via exponential map form a manifold of almost critical points of  W.

Next, the finite‐dimensional reduction of the problem is carried out. Through the

implicit function theorem, for every exponentiated torus, we shall find a perturbation

which solve our problem up to Lagrange multipliers and define the reduced function
 \Phi_{\epsilon} . In this case, the Lagrange multiplies are given by the Jacobi fields of translations,

rotations and Möbius inversions (in other words, spherical inversions). The main diffi‐
culty here is the non‐compactness of the critical manifold  Z_{\epsilon} derived from the Möbius
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inversions. In fact, we can construct the Möbius inversions which preserve the area  0

the Clifford torus  \mathbb{T} and make  \mathbb{T} degenerate into a round sphere with the area equal to
4  2\pi^{2}.

To overcome this issue, we employ the variational structure of the problem and

compare the Willmore energy of the exponentiated symmetric torus  \mathbb{T} and degenerating

tori via the Möbius inversions. For the energy expansion at  R\mathbb{T},  R\in SO(3) and  P\in M,

we prove the following expansion in which a combination of the scalar curvature and

the sectional curvature of the plane of symmetry of  R\mathbb{T} plays a role (cf Remark 3.2 (ii)):

(3.3)  \Phi_{\epsilon}=8\pi^{2}-4  2\{Sc_{P}-Ric_{P}(R\nu, R\nu)\}\epsilon^{2}+ higher order term

where  \nu represents the axial vector of T. Here  8\pi^{2}=W_{\mathbb{R}^{3}}(\mathbb{T}) and the same quantity to

(3.1) appears in the second term of the right hand side in (3.3).
On the other hand, degenerating tori look like geodesic spheres with small handles.

We show that the handle parts are negligible and check the following expansion in which

the scalar curvature plays a role as in (2.1):

(3.4)   \Phi_{\epsilon}=8\pi^{2}-\frac{82}{3}\pi^{2}Sc_{P}\epsilon^{2}+ higher order term.

Now combining the expansions (3.3) and (3.4) with our assumption (3.1), the
Möbius degenerations cost more in the sense of the Willmore energy and we can rule out

the degenerations by the minimization procedure. Thus  \Phi_{\epsilon} achieves a minimum and

one finds a smooth embedded Willmore torus satisfying the area constraint. Similarly,

if (3.2) holds, then we use the maximizing procedure instead of the minimization to find
a critical point of  \Phi_{\epsilon}.

Finally, we comment that the expansions (3.3) and (3.4) (as well as those in the
next subsection) are probably the main contribution of the work. We also believe that
they might play a role in further developments of the topic, especially in ruling‐out

possible degeneracy phenomena under global (non‐perturbative) variational approaches
to the problem. This has already happened for the case of Willmore spheres.

§3.3. Existence and multiplicity via Morse theory

In our second paper [13] we construct smooth embedded Willmore tori with small
area constraint in Riemannian 3‐manifolds, under some curvature/topological condition
different from the ones in Theorem 3.1. More precisely we obtain the following existence
result.

Theorem 3.8 (Existence). Assume that
(M1)  (M, g) is closed, connected and orientable three‐manifold.
(M2) The scalar curvature Sc of  (M, g) is a Morse function.
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(M3) If  P is a critical point of Sc, then the Ricci tensor  Ric_{P} has three distinct eigen‐
values.

Then there exists  \epsilon_{0}  >0 such that for every  \epsilon\in  (0, \epsilon_{0} ] there exists a smooth embedded
Willmore torus in  (M, g) with constrained area equal to 4  2\pi^{2}\epsilon^{2} . More precisely, the

above surfaces are obtained as normal graphs over exponentiated (Möbius transforma‐
tions of) Clifford tori and the corresponding graph functions (dilated by a factor   1/\epsilon)
converge to  0 in  C^{4,\alpha} ‐norm as  \epsilonarrow 0 with decay rate  O(\epsilon^{2}) .

Remark 3.9. (i) The assumptions in Theorem 3.8 are generic in the metric  g.

(ii) If the Ricci tensor is not a multiple of the identity at all points of global
maximum and minimum of the scalar curvature, then we have at least two critical tori.

For the details, we refer to [13, Remark 5.4] and its argument there.

Next we turn to a multiplicity result. Before stating the result, we need some

preparations. First, we suppose  (M1)-(M3) in Theorem 3.8. Next, we introduce some

numbers depending on the scalar curvature as follows. For  q=0 , . . . , 3, set

 C_{q}  :=\# {  P_{i}\in M :  \nabla Sc(P_{i})=0 , index  (-\nabla^{2}Sc(P_{i}))=q}

and define

(3.5)  \tilde{C}_{0}=\tilde{C}_{1}  :=0 ;  \tilde{C}_{2}  :=4C_{0} ;  \tilde{C}_{q}:=4C_{q-2}+2C_{q-3} for  q=3 , 4, 5;  \tilde{C}_{6}  :=2 C3.

The meaning of  \tilde{C}_{q} is explained from the Morse theory on a manifold with boundary (see
Morse‐Van Schaack [39]) and the expansion of the Willmore energy and its derivative
in the Möbius inversions. See the end of subsection 3.4.

Next, let us consider the Betti numbers of  M with  \mathbb{Z}_{2} coefficients

 \beta_{q}  :=rank_{\mathbb{Z}_{2}} (  H_{q} (  M ;Z2));  q\geq 0,

and define

(3.6)
 \tilde{\beta}_{0}=1 ;  \tilde{\beta}_{1}  =\beta_{1}+1 ;  \tilde{\beta}_{2}  =\tilde{\beta}_{3}  =\beta_{1}+\beta_{2}+1 ;  \tilde{\beta}_{4}=\beta_{2}+1 ;  \tilde{\beta}_{5}=1 ;  \tilde{\beta}_{k}=0 for  k\geq 6.

These numbers are the Betti numbers with  \mathbb{Z}_{2} coefficients of the finite dim  \sqrt{}nsional

manifold  Z_{\epsilon} consisting of the exponentiated Clifford tori with the area equal to 4  2\pi^{2}\epsilon^{2}.

For details, we refer to Remark 3.12 and subsection 3.4.

Now we are ready to state our second main theorem.

Theorem 3.10 (Generic multiplicity). Assume (M1 . Then for generic metrics
 g , if  \tilde{\beta}_{q}-\tilde{C}_{q}  >  0 holds for some  q  \in  \{0 , . . . , 4  \} , then there exists  \epsilon_{0}  >  0 such that fo
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every  \epsilon  \in  (0, \epsilon_{0} ] there are at least  \tilde{\beta}_{q}-\tilde{C}_{q} smooth embedded Willmore tori in  (M, g)
with constrained area equal to 4  2\pi^{2}\epsilon^{2} and with index  q . In particular there are at least

  \sum_{q=0}^{4}(\tilde{\beta}_{q}-\tilde{C}_{q})^{+} area‐constrained Willmore tori.

Remark 3.11. Notice that we always have  \tilde{\beta}_{q}  -  \tilde{C}_{q}  >  0 , for  q  =  0 , 1, so the

above result implies in particular that for generic metrics there exist at least two area‐

constrained Willmore tori, one with index zero and the other with index one, the index

being intended for critical points of the Willmore functional under area constraint.

Also, as the Morse inequalities on  M imply  C_{q}  \geq\beta_{q} for generic metrics, the condition

 \tilde{\beta}_{q}-\tilde{C}_{q}  >0 is not satisfied for  q=5 or  q=6.

Remark 3.12.

(i) The numbers  \tilde{\beta}_{q} are the Betti numbers (with  \mathbb{Z}_{2} coefficients) of the projective
tangent bundle over  M . By a classical result of differential topology due to Stiefel (see
for instance [31, page 148]), three‐dimensional oriented manifolds are parallelizable, i.e.,
the tangent bundle is trivial:  TM\simeq M\cross \mathbb{R}^{3} . As a consequence, the projective tangent

bundle is homeomorphic to  M  \cross  \mathbb{R}\mathbb{P}^{2} . Since  H_{k} (RP2,  \mathbb{Z}_{2} )  =  \mathbb{Z}_{2} for  0  \leq  k  \leq  2 and
zero otherwise, the  \tilde{\beta} ’s in (3.6) can be computed as a direct application of Künneth’s
formula.

(ii) Using the homology of  M with  \mathbb{Z}_{2} coefficients is more convenient than using
standard  \mathbb{Z} coefficients for a number of reasons: first of all Künneth’s formula turns out

to be easier. Secondly, the Betti numbers with  \mathbb{Z}_{2} coefficients of a compact manifold  X

are always bounded below by the Betti numbers with  \mathbb{Z} coefficients, this because they

also keep track of the  \mathbb{Z}_{2} ‐torsion part. The precise relation between the two is given by

the Universal Coefficients Theorem (see for instance [15, Chapter 3.  A] ), which implies
that  H_{k}(X, \mathbb{Z}_{2}) consists  0

 \bullet  a\mathbb{Z}_{2} summand for each  \mathbb{Z} summand of  H_{k}(X, \mathbb{Z}) ,

 \bullet  a\mathbb{Z}_{2} summand for each  \mathbb{Z}_{2^{n}} summand in  H_{k}(X, \mathbb{Z}) ,   n\geq  1,

 \bullet  a\mathbb{Z}_{2} summand for each  \mathbb{Z}_{2^{n}} summand in  H_{k-1}(X, \mathbb{Z}) ,   n\geq  1.

In particular, in our case of  X  =  M\cross \mathbb{R}\mathbb{P}^{2} , the  \mathbb{Z}‐Betti numbers vanish in dimension

larger than three while the  \mathbb{Z}_{2} ‐Betti numbers do not vanish in dimension 4 and 5. Clearly

this permits stronger conclusions in terms of existence and multiplicity of critical points

via Morse‐theoretic arguments.

Example 3.13. If  M is homeomorphic to  S^{3},  S^{2}  \cross S^{1} or  S^{1}  \cross S^{1}  \cross S^{1} , we get
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the following values for  \tilde{\beta}_{k}.

 M=S^{3} :  \tilde{\beta}_{k}  =1 for  k=0 , . . . , 5,  \tilde{\beta}_{k}  =0 for  k\geq 6.

 M=S^{2}  \cross S^{1} :  \tilde{\beta}_{0}=\tilde{\beta}_{5}=1,  \tilde{\beta}_{1}  =\tilde{\beta}_{4}=2,  \tilde{\beta}_{2}=\tilde{\beta}_{3}=3,  \tilde{\beta}_{k}=0 for  k\geq 6.

 M=(S^{1})^{3} :  \tilde{\beta}_{0}=\tilde{\beta}_{5}=1,  \tilde{\beta}_{1}  =\tilde{\beta}_{4}=4,  \tilde{\beta}_{2}=\tilde{\beta}_{3}=7,  \tilde{\beta}_{k}=0 for  k\geq 6.

§3.4. Outline of the strategy for proofs of Theorems 3.8 and 3.10

We use a similar approach to that of subsection 3.2. The difference from the

previous one is that we shall use a Morse theoretical approach instead of the minimizing

(or maximizing) to find critical points of the reduced functional  \Phi_{\epsilon} :  Z_{\epsilon}  arrow R.  A

difficulty here is same to the previous one, that is the degeneration of the Clifford tori.

To avoid it and apply Morse theory on a manifold with boundary due to Morse‐Van

Schaack [39], for which it is important to observe behaviors of the derivative of  \Phi_{\epsilon} with
respect to Möbius inversions. This corresponds to understanding the behaviors of the

normal derivative of  \Phi_{\epsilon} on the boundary.

To apply Morse theory, we first consider the topology (the Betti numbers) of the
finite dimensional manifold  Z_{\epsilon} . For this purpose, since  M is parallelizable, we observe

that  Z_{\epsilon} is diffeomorphic to  M  \cross BRP2 where BRP2  \subset TRP2 consists of the couples
 (P, v)  \in  \mathbb{R}\mathbb{P}^{2}  \cross  T_{P}\mathbb{R}\mathbb{R}^{2} satisfying  |v|  <  1 . The degeneration of the Clifford tori is

represented by  |v|  \nearrow  1 . Since BRP2 can be deformed into  \mathbb{R}\mathbb{P}^{2}  \cross  \{0\} continuously, by
Remark 3.12 (i), one can check that the  \tilde{\beta}_{q} ’s are the Betti numbers of  Z_{\epsilon}.

Next, we need to compute the derivative of  \Phi_{\epsilon} in the parameter of the Möbius

inversions at the boundary where the Clifford tori are close to a round sphere with a

small handle. Since the tori are degenerating, this computation is delicate and contains

singularities. After a careful analysis, we find that the following function  \mathcal{F}(P, R) plays
a crucial role to detect the behaviors of the normal derivative of  \Phi_{\epsilon} : for  P  \in  M and

 R\in SO(3) ,

 \mathcal{F}(P, R) :=Ric_{p}(Re_{P,2}, Re_{P,2})-Ric_{P}(Re_{P,3}, Re_{P,3})
where  \{e_{P,1}, e_{P,2}, e_{P,3}\}_{P\in M} is an orthonormal frame at  P,  e_{P,3} the axial vector of  \mathbb{T}

and  Re_{P,1} denotes the direction of the shrinking handle. Here we remark that we use

another parametrization  (P, R, r)  \in  M\cross SO(3)  \cross  (0,1) of  Z_{\epsilon} instead of  M\cross B\mathbb{R}\mathbb{P}^{2},  r

represents the degeneracy of the torus and when  r  arrow  1 , the torus degenerates. Then

the assumptions of Theorem 3.8 or Theorem 3.10 give the following non‐degeneracy
condition for  Sc_{P} and  \mathcal{F} :

(ND1) The function  P\mapsto Sc_{P} :  Marrow \mathbb{R} is a Morse function. In particular, Sc has finitely
many critical points  P_{1} , . . . ,  P_{k}.

(ND2) For each  i=1 , . . . ,  k,  \mathcal{F}_{i}(R)  :=\mathcal{F}(P_{i}, R) :  SO(3)  arrow \mathbb{R} is a Morse function for every
 1\leq i\leq k , and  \mathcal{F}_{i}(R)\neq 0 if  \nabla \mathcal{F}_{i}(R)=0.
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By (ND2), every  \mathcal{F}_{i} has finitely many critical points and we call them  R_{i,1} , . . . ,  R_{i,\ell_{i}}.
Then by our energy expansions, if  r is close to 1, it turns out that the  \tilde{C}_{q} ’s in (3.5)
satisfy (for details, see [13])
(3.7)

 \tilde{C}_{q}=   \frac{1}{2}\#\{(P_{i}, R_{i,\ell})  \in M\cross SO(3) : index  (-\nabla^{2}Sc(P_{i}))+ index  (-\nabla^{2}\mathcal{F}_{i}(R_{i,\ell}))=q

and  \mathcal{F}_{i}(R_{i,\ell})  <0\}

 =   \frac{1}{2}\#\{(P, R)  \in M\cross SO(3) .:  \nabla_{P,R}\Psi_{\epsilon,r}(P, R)=0,  \nabla\Phi_{\epsilon}(P, R, r) points inward,

and index  (\nabla_{P,R}^{2}\Psi_{\epsilon,r}(P, R))  =q}

where  \Psi_{\epsilon,r}(P, R)  .:=  \Phi_{\epsilon}(P, R, r) . The factor   \frac{1}{2} in (3.7) is due to the symmetry of the
degenerate Clifford torus. Indeed for every degenerate Clifford torus, there exists a

nontrivial rotation  R\in SO(3) ,  R\neq Id leaving the surface invariant. Then applying the

results of [39] for  \Phi_{\epsilon} , we obtain the existence and generic multiplicity in Theorems 3.8
and 3.10.
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