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Asymptotic limit of oscillatory integrals
with certain smooth phases

By

Joe KAMIMOTO* and Toshihiro NOSE**

Abstract

Asymptotic limit of the oscillatory integral is explicitly computed in the case when its
smooth phase contains some flat function.

§1. Introduction

Let us consider the oscillatory integral:

 I_{f}(t;\varphi) = e^{itf(x)}\varphi(x)dx t > 0,
 \mathbb{R}^{n}

where  f and  \varphi are real‐valued  C^{\infty} smooth functions defined on an open neighborhood
 U of the origin in  \mathbb{R}^{n} and the support of  \varphi is compact and is contained in  U . Here,  f

and  \varphi are called the phase and the amplitude respectively.

The oscillatory integral appears in many fields in mathematics and the information

of its behavior as  t  arrow  \infty often play important roles in the respective field (we only
refer to [1] and [13]). Until now, many strong results about its behavior have been
obtained. In particular, Varchenko [15] shows that the behavior can be described by
using the geometry of the Newton polyhedron of the phase when the phase is real analytic

and satisfies some conditions. Here, the Newton polyhedron is an important concept
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in singularity theory (see [1]). Later, his result has been improved and generalized in
many kinds of cases. To be more specific, the following result about the asymptotic

limit has been obtained in many cases ([12], [3], [5], [4], [11], [2], [7], [8], [9], [10], etc.):

(1.1)   \lim_{tarrow\infty}t^{1/d(f)}(\log t)^{-m(f)+1}\cdot I_{f}(t;\varphi)=C_{f}
(\varphi) ,

where  d(f) and  m(f) are simply defined through the geometry of the Newton polyhedron

of  f (see [1]):  d(f) is a positive number, called the Newton distance of  f , and  m(f)
is contained in the set  \{ 1, . . . ,  n\} , called the multiplicity of  d(f) . Moreover,  C_{f}(\varphi) is a

constant, which is nonzero when  \varphi(0) is positive and  \varphi is nonnegative on  U . We remark

that the constant  C_{f}(\varphi) has been exactly computed in many cases ([12], [3], [11], [2],
[7], [8], [9], [10], etc.).

But, unfortunately, the above result (1.1) cannot be extended to the general  C^{\infty}

smooth case. The purpose of this note is to show the following theorem:

Theorem 1.1. When  f(x_{1}, x_{2})  =x_{2}^{q}+e^{-1/|x_{1}|^{p}} , where  p is a positive real num‐

ber and  q is an integer not less than 2, and the support of  \varphi is compact, we have

  \lim_{tarrow\infty}t^{1/q}(\log t)^{1/p}. \mathbb{R}^{2}e^{itf(x_{1},x_{2})}
\varphi(x_{1}, x_{2})dx_{1}dx_{2}=C_{q}\varphi(0,0) ,

where  C_{q} is a nonzero constant defined by

 C_{q}=  \{\begin{array}{l}
4\Gamma(1/q+1)\cdot e^{\frac{\pi}{2q}i} (q is even);
4\Gamma(1/q+1)\cdot\cos\frac{\pi}{2q} (q is odd).
\end{array}
When  q  =  2 , Iosevich and Sawyer [6] have given an estimate from the above:

 |I_{f}(t;\varphi)|  \leq Ct^{-1/2}(\log t)^{-1/p} , with  C>0.

The above theorem implies that equality (1.1) does not hold in the above case
(note that  d(f)  =  q and  m(f)  =  1 ) and, moreover, the behavior of the oscillatory
integral cannot always be determined by the information of only Newton polyhedron

of the phase when the phase is smooth. On the other hand, the above theorem shows

that for any positive number  \alpha , there exists a phase whose oscillatory integral satisfies

  \lim_{tarrow\infty}t^{1/d(f)}(\log t)^{\alpha}\cdot I_{f}(t;\varphi)  =C\varphi(0,0) with  C\neq 0 in the two‐dimensional case.

Throughout this article, we sometimes use the symbol:  X  :=\log t for brief descrip‐

tion. Moreover, we often use the same symbols  t_{0} and  C to express various constants

which are independent of  t.

§2. Behavior of an associated one‐dimensional integral

To prove Theorem 1.1, we prepare some auxiliary lemma concerning about an

associated one‐dimensional integral. Let  \psi be a smooth function defined on  \mathbb{R} whose
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support is compact. Let  L(t;\psi) be the integral defined by
 \infty

 L(t;\psi)= e^{ite^{-1/x^{p}}}\psi(x)dx,
 0

where  p is a positive real number. Moreover,  L(t;\psi) can be written as

 L(t;\psi) =L^{(1)}(t;\psi)+L^{(2)}(t;\psi) ,

with

 L^{(1)}(t; \psi)=\int_{0}^{\frac{1}{(\log t^{1/p}}}e^{ite^{-1/x^{p}}}\psi(x)dx,
 \infty

 L^{(2)}(t;\psi)= e^{ite^{-1/x^{p}}}\psi(x)dx.
  \frac{1}{\log t^{1/p}}

The asymptotic behaviors of the integrals  L(t;\psi) ,  L^{(1)}(t;\psi) and  L^{(2)}(t;\psi) as  t  arrow  \infty

are seen as follows.

Lemma 2.1.

(i)

  \lim_{tarrow\infty}(\log t)^{1/p}\cdot L^{(1)}(t;\psi)=\psi(0) .

(ii)
 \infty e^{iw}

  \lim_{tarrow\infty}(\log t)^{1/p+1}\cdot L^{(2)}(t;\psi)=\psi(0) —  dw.
1  w

In particular, we have

  \lim_{tarrow\infty}(\log t)^{1/p}\cdot L(t;\psi)=\psi(0) .

Proof. We may assume that the support of  \psi is contained in  ( \frac{-1}{\log 2}, \frac{1}{\log 2}) from the

principle of stationary phase (see [1], [13]).

(i). By exchanging the integral variable  x by  u as

 x=  \frac{1}{[X(u+1)]^{1/p}} \Leftrightarrow u= \frac{1}{x^{p}X}-1 (X :=\log t) ,

the integral  L^{(1)}(t;\psi) can be written as

 L^{(1)}(t; \psi)=\frac{1}{p(\log t)^{1/p}} 0^{\infty}e^{it^{-u}}
\frac{\psi(\frac{1}{[X(u+1)]^{1/p}})}{(u+1)^{1+1/p}}du.
Therefore, the Lebesgue convergence theorem implies

  \lim_{tarrow\infty}(\log t)^{1/p}\cdot L^{(1)}(t;\psi)=\frac{1}{p}\psi(0) 
0^{\infty}\frac{du}{(u+1)^{1+1/p}} =\psi(0) .
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(ii). By exchanging the integral variable  x by  u as

 u=e^{-1/x^{p}}  \Leftrightarrow x= (\frac{-1}{\log u})^{1/p},
the integral  L^{(2)}(t;\psi) can be written as

(2.1)  L^{(2)}(t; \psi)= 1/t1/2_{e^{itu}\frac{1}{u}} (\frac{-1}{\log u})^{1/p+1}\tilde
{\psi}(u)du.
Here, let  \tilde{\psi} be the function defined on  [0 , 1) satisfying that  \tilde{\psi}(u)  :=   \psi((\frac{-1}{\log u})^{1/p}) for
 u  \in  (0,1) and  \tilde{\psi}(0)  :=\psi(0) . Note that  \tilde{\psi} is continuous on  [0 , 1), smooth in  (0 , 1  ) and
its support is contained in  [0 , 1/2). Applying integration by parts to (2.1), we have

(2.2)  L^{(2)}(t;\psi)=M^{(1)}(t)+M^{(2)}(t) ,

with

 M^{(1)}(t)= [ \frac{1}{it}e^{itu}\frac{1}{u} (\frac{-1}{\log u})^{1/p+1}\tilde{
\psi}(u)]_{1/t}^{1/2},
 M^{(2)}(t)=- \frac{1}{it} 1/t1/2_{e^{itu}\frac{d}{du}}\{\frac{1}{u} (\frac{-1}{
\log u})^{1/p+1}\tilde{\psi}(u)\}du.

The behaviors of  M^{(1)}(t) and  M^{(2)}(t) as   tarrow\infty can be seen as follows.

(Estimate for  M^{(1)}(t). )
Noticing that the support of  \tilde{\psi} is contained in  [0 , 1/2), we have

 M^{(1)}(t)=   \frac{2\tilde{\psi}(1/2)}{(\log 2)^{1/p+1}} .   \frac{e^{it/2}}{it}+ie^{i}\frac{\tilde{\psi}(1/t)}{(\log t)^{1/p+1}}  =ie^{i} \frac{\tilde{\psi}(1/t)}{(\log t)^{1/p+1}}.
Therefore

(2.3)   \lim_{tarrow\infty}(\log t)^{1/p+1}M^{(1)}(t)=ie^{i}\tilde{\psi}(0)=ie^{i}\psi
(0) .

(Estimate for  M^{(2)}(t). )
By a simple computation, the integral  M^{(2)}(t) can be written as

(2.4)  M^{(2)}(t)=-- a(u)du, -1it 1/t1/2_{e^{itu}\frac{1}{u^{2}}} ( \frac{-1}{\log u})^{1/p+1}
where  a is a smooth function defined on  (0,1) defined by

 a(u)  :=

 [-1+  (\begin{array}{l}
-+11
p
\end{array}) (\frac{-1}{\log u})]  \psi  (( \frac{-1}{\log u})^{1/p})  + \frac{1}{p}\psi
’  (( \frac{-1}{\log u})^{1/p})  ( \frac{-1}{\log u})^{1/p+1} .
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Note that  a can be naturally extended to be continuous on  [0 , 1) and its support is
contained in  [0 , 1/2). Moreover, by exchanging the integral variable  u by  v as

 u=   \frac{e^{v}}{t}  \Leftrightarrow v=\log (ut),

(2.4) can be rewritten as

 M^{(2)}(t)=- -1it 0^{\log t-\log 2_{e^{ie^{v}}}} ( \frac{t}{e^{v}})^{2} (\frac{-l}{v-\log t}
)^{1/p+1}a(\frac{e^{v}}{t}) \frac{e^{v}}{t}dv
(2.5)  = \frac{i}{X^{1/p+1}} 0^{X-\log 2_{e^{ie^{v}}e^{-v}}} (\frac{1}{1-v/X})^{1/p+1}
a(\frac{e^{v}}{t})dv.
Since the following inequality always holds:

  \frac{1}{1-v/X}  \leq   \frac{v}{\log 2}+1 forv  \in  [0, X-\log 2],
the integrand in (2.5) can be estimated as follows. There exists a positive number  C

such that

 |e^{ie^{v}}e^{-v}  ( \frac{1}{1-v/X})^{1/p+1}a(\frac{e^{v}}{t})|(2.6)

 \leq Ce^{-v}  ( \frac{v}{\log 2}+1)^{1/p+1} for   v\in  (0, X-\log 2) .

Since the right hand side of (2.6) is integrable on  [0, \infty ), the Lebesgue convergence
theorem implies that

 \infty

  \lim_{tarrow\infty}(\log t)^{1/p+1}\cdot M^{(2)}(t)=i 0 e^{ie^{v}}e^{-v}a(0)dv
(2.7)  \infty e^{iw}

 =-i\psi(0) \overline{2}^{dw}.
1  w

by exchanging the integral variable  v by  w :  w=e^{v}.

Putting (2.2), (2.3), (2.7) together, we obtain (ii) in Lemma 2.1. Note that inte‐
gration by parts implies

 i (e^{i}- 1^{\infty} \frac{e^{iw}}{w^{2}}dw) = 1^{\infty}\frac{e^{iw}}{w}dw.
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Remarks.

1. In the above proof of (ii), integration by parts for  L^{(2)}(t;\psi) is crusial. Indeed, the
behavior of  M^{(2)}(t) can be more easily understood. The essential difference between

 L^{(2)}(t;\psi) and  M^{(2)}(t) is seen in the powers of  u (i.e.,  1/u in (2.1) and  1/u^{2} in (2.4)
respectively) and it plays useful roles in the above computation.

2. The integral in (ii) in Lemma 2.1 seems difficult to express its value in more clear
form. But, by using the integrals:

si  (z)=-  z \infty\frac{\sin x}{x}dx , Ci  (z)=-  z \infty\frac{\cos x}{x}dx,  E_{n}(z)=  n \infty\frac{e^{-zx}}{x}dx,
the value of the integral can be expressed as  -Ci(1)-isi(1)  =E_{1}(-i) . The above

integrals are the so‐called sine integral, cosine integral, exponetial integral, respec‐

tively, which are some kinds of error functions. (See, for example, [14], p.6, p.60.)

§3. The proof of Theorem 1.1

We respectively define the integrals:
 \infty  \infty

 \tilde{I}^{(\pm)}(t)= e^{it[\pm x_{2}^{q}+e^{-1/|x|^{p}}]}1\varphi(x_{1}, x_{2}
)dx_{1}dx_{2}.
 0  0

The integral  I_{f}(t;\varphi) can be written as
 \infty  \infty

 I_{f}(t; \varphi)=\sum_{(\theta_{1},\theta_{2})\in\{\pm 1,\pm 1\}} 0 0 
e^{it[\theta_{2}^{q}x_{2}^{q}+e^{-1/|x|^{p}}]}1\varphi(\theta_{1}x_{1}, 
\theta_{2}x_{2})dx_{1}dx_{2}.
Therefore, in order to prove the theorem, it suffices to show

(3.1)   \lim_{tarrow\infty}t^{1/q}(\log t)^{1/p}\cdot\tilde{I}^{(\pm)}(t)=\Gamma(1/q+
1)\cdot e^{\pm\frac{\pi}{2q}i}\cdot\varphi(0,0) .

Since the form of  \tilde{I}^{(-)}(t) is similar to that of  \tilde{I}^{(+)}(t) , we only consider the case of the

integral  \tilde{I}^{(+)}(t) .

Now, the integral  \tilde{I}^{(+)}(t) can be devided as follows.

(3.2)  \tilde{I}^{(+)}(t)=J^{(1)}(t)+J^{(2)}(t) ,

with

 J^{(1)}(t)= \int_{0}^{\infty}\int_{0}^{\frac{1}{(\log t^{1/p}}}e^{it[x_{2}^{q}+
e^{-1/|x|^{p}}]}1\varphi(x_{1}, x_{2})dx_{1}dx_{2},
(3.3)  \infty  \infty

 J^{(2)}(t)= e^{it[x_{2}^{q}+e^{-1/|x|^{p}}]}\varphi(x_{1}, x_{2})dx_{1}dx_{2}1.
 0   \frac{1}{\log t^{1/p}}

The behaviors of  J^{(1)}(t) and  J^{(2)}(t) as   tarrow\infty are seen as follows.

Lemma 3.1.
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(i)

  \lim_{tarrow\infty}t^{1/q}(\log t)^{1/p}\cdot J^{(1)}(t)=\Gamma(1/q+1)\cdot e^
{\frac{\pi}{2q}i}\cdot\varphi(0,0) .

(ii) There exist positive numbers  C and  t_{0} independent of  t such that

 |J^{(2)}(t)|  \leq   \frac{C}{t^{1/q}(\log t)^{1/p+1}} for  t\geq t_{0}.

From (3.2), the above lemma easily implies the equation (3.1).

§4. The proof of Lemma 3.1

Let us prove Lemma 3.1. Let  \alpha be a smooth function defined on  \mathbb{R} satisfying that

 \alpha(x)=1 for  |x|  \leq  1 and  \alpha(x)=0 for  |x|  \geq 2 , and let  \beta(x)  :=1-\alpha(x) .

(i). Let  P(x_{1}, x_{2})  :=e^{x_{2}^{q}}\varphi(x_{1}, x_{2}) . It is easy to see

 P(x_{1}, x_{2})=P(x_{1},0)+x_{2} 0^{1} \frac{\partial P}{\partial x_{2}}(x_{1},
sx_{2})ds.
By using the functions  \alpha and  \beta , we have

 P(x_{1}, x_{2})=P(x_{1},0)-\beta(x_{2})P(x_{1},0)+x_{2}e^{x_{2}^{q}}R(x_{1}, x_
{2})
 =\alpha(x_{2})P(x_{1},0)+x_{2}e^{x_{2}^{q}}R(x_{1}, x_{2}) ,

where

 R(x_{1}, x_{2})=e^{-x_{2}^{q}} ( \frac{1}{x_{2}}\beta(x_{2})P(x_{1},0)+ 0^{1}
\frac{\partial P}{\partial x_{2}}(x_{1}, sx_{2})ds) .

Noticing that the supports of  P(x_{1}, x_{2}) and  \alpha(x_{2})P(x_{1},0) are compact, we see that  R

is a smooth function on  \mathbb{R}^{2} with a compact support. Since  \varphi(x_{1}, x_{2})  =e^{-x_{2}^{q}}P(x_{1}, x_{2}) ,

 \varphi can be expressed as

(4.1)  \varphi(x_{1}, x_{2})=e^{-x_{2}^{q}}\varphi(x_{1},0)-e^{-x_{2}^{q}}\beta(x_{2})
\varphi(x_{1},0)+x_{2}R(x_{1}, x_{2}) .

By substituting (4.1) into (3.3) and applying Fubini’s theorem, the integral  J^{(1)}(t) can
be expressed as

 J^{(1)}(t)=K^{(1)}(t)-K^{(2)}(t)+K^{(3)}(t) ,

with

 K^{(1)}(t)=L^{(1)}(t; \varphi(\cdot, 0)) \int_{0}^{\infty}e^{-[1-it]x_{2}^{q}}
dx_{2},
 \infty

(4.2)  K^{(2)}(t)=L^{(1)}(t;\varphi(\cdot, 0)) .  e^{-[1-it]x_{2}^{q}}\beta(x_{2})dx_{2},
 0

 \infty

 K^{(3)}(t)= e^{itx_{2}^{q}}L^{(1)}(t;R(\cdot, x_{2}))x_{2}dx_{2}.
 0
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Now, let us investigate the behaviors of the above three functions as  tarrow\infty.

(Behavior of  K^{(1)}(t). )
First, let us consider the integral  K^{(1)}(t) . Setting  z=  [1-it]^{1/q}x_{2} and noting that

the rapid decay of  e^{-z^{q}} allows us to replace the contour  [1-it]^{1/q}\cdot[0, \infty ) by  [0, \infty ), we
see that

 0^{\infty}e^{-[1-it]x_{2}^{q}}dx_{2}=   \frac{1}{(1-it)^{1/q}} .  0^{\infty}e^{-z^{q}}dz=   \frac{\Gamma(1/q+1)}{(1-it)^{1/q}}  =   \frac{1}{t^{1/q}}\frac{\Gamma(1/q+1)}{(1/t-i)^{1/q}}.
On the other hand, Lemma 2.1 (i) implies

  \lim_{tarrow\infty}(\log t)^{1/p}\cdot L^{(1)}(t;\varphi(\cdot, 0))=\varphi(0,
0) .

Applying the above equalities to (4.2), we have

  \lim_{tarrow\infty}t^{1/q}(\log t)^{1/p}\cdot K^{(1)}(t)=\Gamma(1/q+1)e^{\frac
{\pi}{2q}i}\cdot\varphi(0,0) .

(Estimate of  K^{(2)}(t). )
Let  N be an arbitrary natural number. Applying  N‐times integrations by parts,

we have

 0^{\infty}e^{-[1-it]x_{2}^{q}}\beta(x_{2})dx_{2}=   \frac{1}{q^{N}[1-it]}  0^{\infty}e^{-[1-it]x_{2}^{q}}  ( \frac{\partial}{\partial x_{2}} . \frac{1}{x_{2}^{q-1}})  \beta(x_{2})dx_{2}.

A simple computation implies that there exist positive numbers  t_{N} and  C_{N} such that

 |  0^{\infty}e^{-[1-it]x_{2}^{q}}\beta(x_{2})dx_{2}|  \leq   \frac{C}{t} for  t\geq t_{N}.

Therefore, from (4.2) and Lemma 2.1 (i), there exist positive numbers  \tilde{t}_{N} and  \tilde{C}_{N} such
that

 |K^{(2)}(t)|  \leq   \frac{\tilde{C}}{t^{N}(\log t)^{1/p}} for  t\geq\tilde{t}_{N}.

(Estimate of  K^{(3)}(t). )
For the proof of (i), it suffices to show that the integral  K^{(3)}(t) is dominated by

 Ct^{-2/q}(\log t)^{-1/p} for large  t.

The integral  K^{(3)}(t) can be written as follows:

(4.3)  K^{(3)}(t)=H^{(1)}(t)+H^{(2)}(t) ,

with

 H^{(1)}(t)= \int_{0}^{\infty}e^{itx_{2}^{q}}L^{(1)}(t;R(\cdot, x_{2}))\alpha(t^
{1/q}x_{2})x_{2}dx_{2},
 \infty

 H^{(2)}(t)= e^{itx_{2}^{q}}L^{(1)}(t;R(\cdot, x_{2}))\beta(t^{1/q}x_{2})x_{2}
dx_{2},
 0
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where the functions  \alpha and  \beta are as in the beginning of this subsection.

Let us investigate the behaviors of the functions  H^{(1)}(t) and  H^{(2)}(t) as  tarrow\infty.

(Behavior of  H^{(1)}(t). )
Exchanging the integral variable  x_{2} by  u_{2} :  u_{2}  =t^{1/q}x_{2} , we have

(4.4)  H^{(1)}(t)=  \frac{1}{t^{2/q}} 0^{2_{e^{iu_{2}^{q}}L^{(1)}}}(t;R(\cdot, 
\frac{u_{2}}{t^{1/q}}))\alpha(u_{2})u_{2}du_{2}.
In order to investigate the behavior of  L^{(1)}(t;R( \cdot, \frac{u_{2}}{t^{1/q}})) as   tarrow\infty , consider the following

inequality:

 |( \log t)^{1/p}\cdot L^{(1)}(t;R(\cdot, \frac{u_{2}}{t^{1/q}}))-R(0,0)|
(4.5)   \leq (\log t)^{1/p}|L^{(1)}(t;R(\cdot, \frac{u_{2}}{t^{1/q}}))-L^{(1)}(t;
R(\cdot, 0))|

 +|(\log t)^{1/p}L^{(1)}(t;R(\cdot, 0))-R(0,0)|
The first term in the right hand side of (4.5) is dominated by

 (\log t)^{1/p}  0^{\frac{1}{\log t^{1/p}}}  |R(x_{1},  \frac{u_{2}}{t^{1/q}})-R(x_{1},0)|dx_{1} for  u_{2}  \in  [0 , 2  ].

The uniform of the continuity of the function  R implies that the above integral tends

to zero as  t  arrow  \infty . Moreover, from Lemma 2.1 (i), the second term in the right hand
side of (4.5) tends to zero as   tarrow\infty . Therefore, we have

(4.6)   \lim_{tarrow\infty}(\log t)^{1/p}L^{(1)}(t;R(\cdot, \frac{u_{2}}{t^{1/q}}))=
R(0,0) for  u_{2}  \in  [0 , 2  ].

Note that the limit in (4.6) is uniform with respect to  u_{2}  \in  [0 , 2  ] . Applying the equality
(4.6) to (4.4), we can easily get

2

(4.7)   \lim_{tarrow\infty}t^{2/q}(\log t)^{1/p} .  H^{(1)}(t)=R(0,0) .
 0

 e^{iu_{2}^{q}}\alpha(u_{2})u_{2}du_{2}.

(Estimate for  H^{(2)}(t). )
By applying two‐times integrations by parts to the integral  H^{(2)}(t) ,  H^{(2)}(t) can be

written as

 H^{(2)}(t)= ( \frac{-1}{qit})^{2} 0^{\infty}e^{itx_{2}^{q}}L^{(1)}(t;F(\cdot, 
x_{2};t))dx_{2},
where

 F(x_{1}, x_{2};t)=  \frac{\partial}{\partial x_{2}} (\frac{1}{x_{2}^{q-1}} . 
\frac{\partial}{\partial x_{2}} (\frac{1}{x_{2}^{q-1}} . x_{2}R(x_{1}, x_{2})
\beta(t^{1/q}x_{2}))) .
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A simple computation shows that there is a positive constant  C independent of  x_{1} and
 t such that

(4.8)  |F(x_{1}, x_{2};t)|  \leq   \frac{C}{x_{2}^{2q-1}} for  x_{2}  >0.

Note that  t^{1/q} is dominated by  2/x_{2} when  t^{1/q}x_{2} is contained in the support of  \beta'
Moreover, there exist positive numbers  t_{0},  C such that

 |L^{(1)}(t;F(\cdot, x_{2};t))| \leq |0   \frac{1}{1ogt^{1/p}}   e^{ite^{-1}}   
x_{1}^{p}   F(x_{1},x_{2};t)dx_{1}|(4.9)

 \leq  0^{\frac{1}{\log t^{1/p}}}  |F(x_{1}, x_{2};t)|dx_{1}  \leq   \frac{C}{x_{2}^{2q-1}(\log t)^{1/p}} for  x_{2}  >0,  t\geq t_{0}.

By noticing that  2q-  1  \geq  3  (> 1) and that the support of  F(u_{1}, \cdot;t) is contained in

 (t^{-1/q}, \infty) , the inequalities in (4.9) imply that

 |H^{(2)}(t)|   \leq\frac{C}{t^{2}(\log t)^{1/p}} .  t-1/q \infty\frac{1}{x_{2}^{2q-1}}dx_{2}
(4.10)

  \leq\frac{C}{t^{2}(\log t)^{1/p}\cdot t^{-2+2/q}}  \leq   \frac{C}{t^{2/q}(\log t)^{1/p}} for  t\geq t_{0}.

We remark that the function  F with the estimate (4.8) was obtained by applying inte‐
gration by parts and it played an important role in the estimate (4.10) of the integral
 H^{(2)}(t) (see also the first remark in the end of Section 2).

Putting (4.3), (4.7), (4.10) together, we can get the desired estimate:

 |K^{(3)}(t)|  \leq   \frac{C}{t^{2/q}(\log t)^{1/p}} for  t\geq t_{0}.

(ii). By using the functions  \alpha and  \beta in the beginning of Section 4, the integral
 J^{(2)}(t) can be devided as

(4.11)  J^{(2)}(t)=N^{(1)}(t)+N^{(2)}(t) ,

with

 N^{(1)}(t)= \int_{0}^{\infty}e^{itx_{2}^{q}}L^{(2)}(t;\varphi(\cdot, x_{2}))
\alpha(t^{1/q}x_{2})dx_{2},
(4.12)  \infty

 N^{(2)}(t)= e^{itx_{2}^{q}}L^{(2)}(t;\varphi(\cdot, x_{2}))\beta(t^{1/q}x_{2})
dx_{2}.
 0

To obtain the estimate in (ii) in Lemma 3.1, we give appropriate estimates for  N^{(1)}(t)
and  N^{(2)}(t) .
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(Estimate for  N^{(1)}(t). )
Exchanging the integral variable  x_{2} by  u_{2} :  x_{2}  =u_{2}/t^{1/q} , we have

(4.13)  N^{(1)}(t)=  \frac{1}{t^{1/q}} 0^{2_{e^{iu_{2}^{q}}L^{(2)}}}(t;\varphi(\cdot, 
\frac{u_{2}}{t^{1/q}}))\alpha(u_{2})du_{2}.
From Lemma 2.1 (ii), there exist positive numbers  t_{0},  C independent of  t and  x_{2}

such that

 |L^{(2)}(t;\varphi(\cdot, x_{2}))|  \leq   \frac{|\varphi(0,x_{2})|+C}{(\log t)^{1/p+1}}  \leq   \frac{C}{(\log t)^{1/p+1}} for  t\geq t_{0},  x_{2}  >0.

Therefore, applying the above estimate to (4.13), we have

(4.14)  |N^{(1)}(t)|  \leq   \frac{C}{t^{1/q}(\log t)^{1/p+1}} for  t\geq t_{0}.

(Estimate for  N^{(2)}(t). )
By appying integration by parts to (4.12), the integral  N^{(2)}(t) can be written as

 N^{(2)}(t)=  \underline{-1} .  \infty e^{itx_{2}^{q}}L^{(2)}(t;G(\cdot, x_{2};t))dx_{2},
 qit 0

where

 G(x_{1}, x_{2};t)=  \frac{\partial}{\partial x_{2}} (\frac{1}{x_{2}^{q-1}}
\varphi(x_{1}, x_{2})\beta(t^{1/q}x_{2})) .

Let  \tilde{G}(x_{1}, x_{2};t)  =  x_{2}^{q}G(x_{1}, x_{2};t) . A simple computation shows that  \tilde{G} is bounded on

 [0, \infty)^{3} . Note that  t^{1/q} is dominated by  2/x_{2} when  t^{1/q}x_{2} is contained in the support

of  \beta' . From Lemma 2.1 (ii),

  \lim_{tarrow\infty}(\log t)^{1/p+1} .  L^{(2)}(t;\tilde{G}(\cdot, x_{2};t))=ie^{i}\cdot\tilde{G}(0, x_{2};t) .

The boundedness of  \tilde{G} implies that there exist positive numbers  t_{0} and  C independent
of  t,  x_{2} such that

(4.15)  |L^{(2)}(t;\tilde{G}(\cdot, x_{2};t))|  \leq   \frac{C}{(\log t)^{1/p+1}} for  t\geq t_{0},  x_{2}  >0.

Therefore, by noticing that the support of  \tilde{G}(x_{1}, \cdot;t) is contained in  (t^{-1/q}, \infty) , (4.15)
implies that there exist positive numbers  t_{0} and  C independent of  t such that

 |N^{(2)}(t)|  =   \frac{1}{qt}|\int_{0}^{\infty}e^{itx_{2}^{q}}L^{(2)}(t;G(\cdot, x_{2};t))
dx_{2}|
 =   \frac{1}{qt}|  0^{\infty}e^{itx_{2}^{q}} \frac{1}{x_{2}^{q}}L^{(2)}(t;\tilde{G}(\cdot, x_{2};
t))dx_{2}|

(4.16)
 \leq   \frac{C}{t} .  t^{-1/q} \infty\frac{1}{x_{2}^{q}}\frac{1}{(\log t)^{1/p+1}}dx_{2}
 \leq   \frac{C}{t}   \frac{1}{t^{1/q-1}}   \frac{1}{(\log t)^{1/q+1}}  =   \frac{C}{t^{1/q}(\log t)^{1/p+1}} fort  \geq t_{0}.
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Putting (4.11), (4.14), (4.16) together, we can get (ii) in Lemma 3.1.
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