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A note on the well‐posedness of the compressible
viscous fluid in the critical Besov space

By

Noboru CHIKAMI*

Abstract

We prove well‐posedness of the compressible Navier‐Stokes system in the Lagrangian
formulation by the use of absolute temperature. The purpose of this article is to illustrate
the difference between the use of the total energy along the flow in Chikami‐Danchin [3]  (J.
Difff. Eq, 258 (2015), 3435‐3467) and the absolute temperature.

§1. Introduction

We consider the Cauchy problem of the following compressible Navier‐Stokes system
with the full conservation law:

(1.1)  \{\begin{array}{l}
\partial_{t}\rho+div(\rho u)=0, (t, x) \in \mathbb{R}_{+} \cross \mathbb{R}^{n},
\partial_{t}(\rho u)+div(\rho u\otimes u)+\nabla P=div(\tau) , (t, x) \in 
\mathbb{R}_{+} \cross \mathbb{R}^{n},
\partial_{t}(\rho\theta)+div(u\rho\theta)+ Pdiv u=k\triangle\theta+\tau : \nabla
u, (t, x) \in \mathbb{R}_{+} \cross \mathbb{R}^{n},
(\rho, u, \theta)|_{t=0}=(\rho_{0}, u_{0}, \theta_{0}) , x\in \mathbb{R}^{n}
\end{array}
where  n\geq 3 . In the above,  \rho=\rho(t, x) ,  u=u(t, x) and  \theta=\theta(t, x) are the unknown func‐
tions, representing the fluid density, the velocity vector and the absolute temperature,

respectively. We assume that the stress tensor  \tau is given by

 \tau=2\mu D(u)+\lambda divu Id,

where Id denote the identity matrix. The deformation tensor  D(u) is defined by

 D(u)  :=   \frac{1}{2}(Du+\nabla u) with  (Du)_{ij}  :=\partial_{j}u^{i} and  (\nabla u)_{ij}  :=  (t(Du))_{ij}  =\partial_{i}u ’
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where  tA signifies the transpose of a matrix  A . The operation  \tau :  \nabla u signifies the trace

product of the two matrices  \tau and  \nabla u , which is given by  \tau :  \nabla u  =   \sum_{ij}\tau_{ij}\partial_{j}u_{i} . The

viscosity coefficients  \mu and  \lambda are the Lamé constants satisfying  \mu>0 and  \lambda+2\mu>0 and

the heat conductive coefficient  k is a positive constant. The given function  P represents

the pressure depending on  \rho and  \theta . In this article, we restrict ourselves to the following

ideal pressure law:

 P(\rho, \theta)=\theta\pi(\rho) ,

where  \pi is a smooth function of  \rho . We assume that the initial density  \rho_{0} is bounded

away from  0 , i.e.,

 0<\underline{\rho}\leq\rho_{0}(x)

and tends to some positive constant  \rho^{*} at infinity. We also assume that  \theta tends to a

positive constant  \theta^{*} at spatial infinity. In the rest of the article, we assume  k  =\rho^{*}  =

 \theta^{*}  =1 without loss of generality.

§1.1. Aim of this paper

Let us notice that system (1.1) considered is invariant under the scaling:  (\rho, u, \theta)arrow
 (\rho_{\nu}, u_{\nu}, \theta_{\nu}) with

(1.2)  \rho_{\nu}(t, x)=\rho(\nu^{2}t, \nu x) ,  u_{\nu}(t, x)=\nu u(\nu^{2}t, \nu x) and  \theta_{\nu}(t, x)=\nu^{2}\theta(\nu^{2}t, \nu x) .

This motivates us to introduce the idea of critical function spaces. The critical space

for (1.1) are defined as the function spaces invariant under the scaling transformation
(1.2). The idea of critical spaces was first adapted to the study of well‐posedness for
the (barotropic) compressible viscous fluid in [4], inspired by the work of [7] for the
incompressible Navier‐Stokes system. The work has given rise to a vast amount  0

results regarding the well‐posedness issues of the compressible fluids. See [2, 5, 8],
Chapter 10 of [1] and the references therein.

We employ homogeneous Besov spaces for defining the critical space for (1.1).
Hereafter, we denote by  L^{p} for  1  \leq  p  \leq  \infty the usual Lebesgue space over  \mathbb{R}^{n} and
 \ell^{p} as the sequence space over Z. Let us introduce the Besov spaces as follows: Let

 \{\phi_{j}\}_{j\in \mathbb{Z}} be the Littlewood‐Paley dyadic decomposition of unity. Namely, let  \hat{\phi}\in S is a

non‐negative radially symmetric function that satisfies

supp  \hat{\phi}\subset\{\xi\in \mathbb{R}^{n};2^{-1} < |\xi| <2\},

 \hat{\phi_{j}}(\xi)  :=\hat{\phi}(2^{-j}\xi) for all  j  \in \mathbb{Z} and   \sum_{j\in \mathbb{Z}}\hat{\phi_{j}}(\xi)=1 for all  \xi\neq 0.

Definition 1.1 (Besov space with the interpolation index 1 . Let  S' be the space
of tempered distributions on  \mathbb{R}^{n} and  \mathcal{P} be the space of all polynomials over  \mathbb{R}^{n} . For
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 s  \in \mathbb{R} and  1  \leq p\leq  \infty we define the homogeneous Besov space (with the interpolation
index 1)  \dot{B}_{p,1}^{s}(\mathbb{R}^{n})=\dot{B}_{p,1}^{s} as follows:

 p,1s  := {  u\in S ’  |   \sum_{j\in \mathbb{Z}}\phi_{j}*u=u in  S',  \Vert u\Vert_{\dot{B}_{p,1}^{s}}  := \sum_{j\in \mathbb{Z}}2^{js}\Vert\phi_{j}*u\Vert_{L^{p}}  <\infty }.
We denote by   \dot{S}_{m}u:=\sum_{j<m}\phi_{j}*u the frequency cut‐off of  u.

Given a Banach space  X , we denote by  L^{q}(0, T;X) the Bochner space, i.e.,

 L^{q}(0, T;X) := \{u\in S'|\Vert u\Vert_{L_{T}^{q}(X)} := ( 0 \Vert u(t)
\Vert_{X}^{q}dt)^{\frac{1}{q}} <\infty\}
for   1\leq q<\infty (with obvious modification when   q=\infty ). We define the space  E_{p}(T) for
some  T>0 by

(1.3)  E_{p}(T) :=  \{(v, \psi) | \psi\in C([0,T]:v\in C([0,T]: \frac{n}{pp},-
1\frac{n}{pp}-211))', \partial_{t}\psi,\nabla^{2}\psi\in L^{1}(0,T;\partial_{t}
v,\nabla^{2}v\in L^{1}(0,T; \frac{n}{pp},-1\frac{n}{pp}-211))'\}
whose norm is given by

  \Vert(v, \varphi)\Vert_{E_{p}(T)} :=\Vert v\Vert_{L_{\tau}^{\infty}(,)}
\frac{n}{pp}-1+\Vert\partial_{t}v1, \nabla^{2}v\Vert_{L_{\tau}^{1}(,)}\frac{n}
{pp}-11
 + \Vert\varphi\Vert_{L^{\infty}\tau(,1)}\frac{n}{pp}-2+\Vert\partial_{t}
\varphi, \nabla^{2}\varphi\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}-21^{\cdot}

We note that the energy conservation in system (1.1) can also be formulated by
the use of the total energy by unit volume  E that is interrelated with  \theta by

(1.4)  E= \rho(\frac{|u|^{2}}{2}+\theta) .

Then system for  (\rho, u, E) now writes:

(1.5)  \{\begin{array}{l}
\partial_{t}\rho+div(\rho u)=0,
\partial_{t}(\rho u)+div(\rho u\otimes u)+\nabla P=div(\tau) ,
\partial_{t}E+div(uE)- kdiv (\frac{1}{\rho}\nabla E)
=div[\tau\cdot u-\frac{k}{\rho^{2}}E\nabla\rho-k\nabla(\frac{|u|^{2}}{2})-
uP(\rho, \frac{E}{\rho}-\frac{|u|^{2}}{2})].
\end{array}
In [3], the analysis of the above system is carried out by the Lagrangian method in
the Besov spaces introduced in [5, 6] with a new physical quantity called total energ
along the flow, which is defined in the Lagrangian coordinates and roughly equals to
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the total energy  E= \rho(\frac{|u|^{2}}{2}+\theta) multiplied by the Jacobian of the flow. The use of this

quantity in particular enlarges the admissible range of Lebesgue exponent, as far as the

“Lagrangian solution” is concerned. The result in [3] for system (1.5) in the Eulerian
coordinates reads as follows:

Proposition 1.2 ([3]). Let  n  \geq  3 and  1  <  p  <  n . Let  u_{0} be a vector field  i

  \frac{n}{pp}-11 and  E_{0} , a real valued function with  E_{0}-  1 in   \frac{n}{pp}-21 . Assume that  \rho_{0} satisfies

 \rho_{0}-1\in   \frac{n}{pp}1 and

(1.6)  inx \rho_{0}(x) >0.

Then there exists some  T>0 such that system (1.5) has a unique local solution  (\rho, u, E)
with  (u, E-1)  \in E_{p}(T) ,  \rho bounded away from  0 and  \rho-1   \in C([0, T]; \frac{n}{pp}1) .

It is furthermore possible to rephrase the above theorem in terms of temperature

through the relation in (1.4), under the same conditions on the initial data.
The purpose of this article is to present an alternative proof of Proposition 1.2

by the direct use of the absolute temperature  \theta in Lagrangian coordinates. The proo

given here can not cover the optimal admissibility of the Lebesgue exponent in the

Lagrangian coordinates, which is only possible with the use of the total energy along the

ow in [3]. It seems inevitable to restrict the range of the Lebesgue exponent not just
in the Eulerian coordinates but also in the Lagrangian coordinates, if one formulates

the equation with the absolute temperature. However, our argument shows that if one

aims only to prove the existence and uniqueness in the Eulerian coordinates, it suffices

to work with the temperature formulation.

§1.2. Change of coordinates and main result

One characteristic of the compressible viscous fluid is that it is governed by a

hyperbolic‐parabolic composite system at the linear level. The effect of the composite

system appears in the smoothing properties for different spectral regions, and the hy‐

perbolic component in the high frequencies hinders the use of the contraction mapping

principle due to the inevitable loss of derivative. To overcome this, it has been observed

by many authors [9, 10, 11] that the use of Lagrangian coordinates has an important
merit when constructing a solution for system (1.1). Namely, by the change of coordi‐
nates, system (1.1) can be treated as a quasi‐linear parabolic system, locally‐in‐time.
Following [3], we perform the Lagrangian change of variable to (1.1).

The flow  X of  u is (formally) defined by the solution of the integral equation
 t

(1.7)  X(t, y)=y+ u(\tau, X(\tau, y))d\tau.
 0
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We denote the functions after the change of variables by  \overline{\rho}(t, y)  :=\rho(t, X(t, y)) ,  \overline{u}(t, y)  :=

 u(t, X(t, y)) and so on. We also denote the Jacobian and the inverse matrix of  DX by

 J:=\det(DX) and  A:=(DX)^{-1} , respectively. We refer to [5, 3] for the details on how
one may perform the change of coordinates.

For  n\cross n matrices  A=  (A_{ij})_{1\leq i,j\leq n} and  B  =  (B_{ij})_{1\leq i,j\leq n} , we further define the

trace product  A:B by

 A:B= \sum_{ij}A_{ij}B_{ji}.
For a  C^{1} function  F:\mathbb{R}^{n}arrow \mathbb{R}^{n}  \cross \mathbb{R}^{m} , we define  divF:\mathbb{R}^{n}arrow \mathbb{R}^{m} by

 ( divF)^{j} :=\sum_{i}\partial_{i}F_{ij}, 1\leq j\leq m.
We denote by adj(A) the adjugate matrix of  A i.e. the transpose of the cofactor matrix
of  A . If  A is invertible then adj(A)  =(\det A)A^{-1} , where  A^{-1} is the inverse matrix and
 \det  A is the determinant of  A . We shall denote by  tA the transpose of the matrix  A.

We define the “twisted” deformation tensor and divergence operator (acting on vector
fields z) by the formulas

 D_{A}(z)  :=   \frac{1}{2}(DzA+ tA\nabla z) and  div_{A}z  :=  tA :  \nabla z=Dz :  A.

After changing the coordinates through (1.7), we have the following set of equations

(1.8)  \{\begin{array}{l}
\partial_{t}(J\rho)=0,
\rho_{0}\partial_{t}u-div (adj (DX)(\tau_{A}(u)-P(\rho, \overline{\theta}))) =0,
\rho_{0}\partial_{t}\overline{\theta}-div (adj (DX)(tA)\nabla\overline{\theta})
+P(\rho, \overline{\theta})div (adj (DX)u) -\tau_{A}(u) : div (adj (DX)u) =0,
\end{array}
where  \tau_{A}(u)  :=2\mu D_{A}u+\lambda div_{A}u.

The following is our main theorem.

Theorem 1.3. Let  n\geq 3 and  1  <p<n . Let  u_{0} be a vector field in   \frac{n}{pp}-11 and

 \theta_{0} , a real valued function with  \theta_{0}-1 in   \frac{n}{pp}-21 . Assume that  \rho_{0} satisfies  \rho_{0}-1  \in   \frac{n}{pp}1
and (1.6). Then there exists a small enough  T  >  0 such that system (1.8) admits
unique local solution  (\rho, u, \overline{\theta}) with  \rho bounded away from zero,  \rho-1 in  C([0, T]; p,\ln p) and

 (u, \overline{\theta}-1) in  E_{p}(T) .

Furthermore, the flow map  (\rho_{0}-1, u_{0}, \theta_{0}-1)  \mapsto(\rho-1, u, \overline{\theta}-1) is locally Lipschit

continuous from   \frac{n}{pp}1  \cross   \frac{n}{pp}-11  \cross   \frac{n}{pp}-21 to  C  ([0, T];  \frac{n}{pp}1)  \cross E_{p}(T) .

Once we obtain the Lagrangian solution  (\rho, u, \overline{\theta}) for system (1.8), we may resort to
Proposition 4.4 in Appendix to revert back to the Eulerian coordinates. The restriction
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 n\geq 3 and  1  <p<n ensure that the regularity of the “Eulerian solution” coincide with

that of the “Lagrangian solution”. Thus we may recover Proposition 1.2 through the

relation in (1.4) without having to use to the total energy along the flow.

§1.3. Banach’s Fixed point scheme

Our goal is to solve (1.8) by Banach’s fixed point theorem. Here, we formulate our
fixed point scheme. Note that having changed the coordinates we no longer have to

retain any reference to the initial Eulerian vector‐field  u by defining directly the “flow”
 X of  u by the formula

 t

(1.9)  X(t, y)=y+ u(\tau, y)d\tau.
 0

To simplify the notation, we drop the bars of the Lagrangian coordinates hereafter.

Setting  \psi  :=  \theta-  1 and recalling the pressure is given by  P(\rho, \theta)  =  \theta\pi(\rho) , let us

linearize system (1.8) around  (1, 0,1) :

 \{\begin{array}{l}
\rho=J^{-1}\rho_{0},
\partial_{t}u-\rho_{0}^{-1}div\tau+\rho_{0}^{-1}\nabla(\psi\pi(\rho_{0}))
=\rho_{0}^{-1}div[ (adj(DX)\tau A(u)- ) - (adj(DX)(\psi+1)\pi(\rho)-
\psi\pi(\rho_{0})Id)],
\partial_{t}\psi-\rho_{0}^{-1}\triangle\psi=\rho_{0}^{-1}(div((adj(DX)tA -- Id) 
\nabla\psi)
-(\psi+1)\pi(\rho)div (adj (DX)u) +\tau : div (adj (DX)u)).
\end{array}
We are no longer concerned with the mass conservation equation since it is explicitly

solvable thanks to the change of coordinates. Hence, it suffices to construct a contraction

map to the parabolic system for  (u, \psi) . With  a_{0}  :=  \rho_{0}
 -  1  \in   \frac{n}{pp}1,  u_{0}  \in   \frac{n}{pp}-11 and

 \psi_{0}  :=\theta_{0}-1\in   \frac{n}{pp}-21 we aim to solve system (1.8) in the critical Besov space defined in
(1.3). The system can now be written by

(1.10)  \{\begin{array}{l}
\partial_{t}u-\rho_{0}^{-1}div\tau+\rho_{0}^{-1}\nabla(\psi\pi(\rho_{0})) =\rho_
{0}^{-1}div(I_{1}(u, u)+I_{2}(u, \psi)) ,
\partial_{t}\psi-\rho_{0}^{-1}\triangle\psi=\rho_{0}^{-1} (div (I3(u, \psi))+
I_{4}(u, \psi)+I_{5}(u, u)) ,
\end{array}
where

 I_{1}(v, v)  := adj  (DX_{v})\tau_{A_{v}}(v)-\tau,

 I_{2}(v, \varphi)  := −adj(DXv)  (\varphi+1)\pi(J_{v}^{-1}\rho_{0})-\varphi\pi(\rho_{0})Id,

(1.11) I3  (v, \varphi)  := (adj(DXv)  tA_{v}-Id )  \nabla\varphi,

 I_{4}(v, \varphi)  :=-(\varphi+1)\pi(J_{v}^{-1}\rho_{0})div (adj  (DX_{v})v )

and I5  (v, v)  :=\tau :  div (adj  (DX_{v})v ).
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Therefore our fixed point scheme is given by the following:

(1.12)  \{\begin{array}{l}
\partial_{t}u-\rho_{0}^{-1}div\tau+\rho_{0}^{-1}\nabla(\psi\pi(\rho_{0})) =\rho_
{0}^{-1}div(I_{1}(v, v)+I_{2}(v, \varphi)) ,
\partial_{t}\psi-\rho_{0}^{-1}\triangle\psi=\rho_{0}^{-1} (div (I3(v, \varphi))+
I_{4}(v, \varphi)+I_{5}(v, v)) ,
\end{array}
for a given  (v, \varphi)  \in  E_{p}(T) . In order to solve (1.10) locally in time, it suffices to show
that the map

(1.13)  \Phi :  (v, \varphi)  \mapsto  (u, \psi)

with  (u, \psi) the solution to (1.12) has a fixed point in  E_{p}(T) when  n\geq 3 and  1<p<n,

for a small enough  T.

The rest of the article unfolds as follows: in the second section, we show some a

priori estimates for linear parabolic equations. In the third section, we prove Theorem

1.2. In Appendix we state some technical tools that are used in the second section

without proof. We will denote by  C harmless generic ‘constants’ that may change from
line to line.

§2. A priori estimates for parabolic equations

We first recall a result for the following heat equation with non‐smooth coefficients:

(2.1)  \partial_{t}u- adiv  (b\nabla u)  =f,

the study of which in the Besov spaces is summarized in the papers such as [3, 5] .

Proposition 2.1 ([5]). Let  a and  b be bounded functions and assume that there
exists a constant  \beta such that  ab\geq\beta>0 . Suppose that  a\nabla b and  b\nabla a are in  L^{\infty}(0, T;  \frac{n}{pp}-11)
for some  1  <p<  \infty . There exist two constants  \eta and  C such that if for some  m  \in  \mathbb{Z}

we have

 (t,x)\in[0,T]\cross \mathbb{R}^{n}in  m (  ab )  (t, x)  \geq   \frac{\beta}{2},
 \Vert(Id-\dot{S}_{m})(a\nabla b, b\nabla a)\Vert n-1 \leq\eta\beta,

 L_{T}^{\infty}( p,1p )

then the solutions to (2.1) satisfy for all   t\in  [0, T],

 \Vert u\Vert_{L_{t}^{\infty}(\dot{B}_{p,1}^{s})}+\beta\Vert u\Vert_{L_{t}^{1}
(\dot{B}_{p,1}^{s+2})}

  \leq C(\Vert u_{0}\Vert_{\dot{B}_{p,1}^{s}}+\Vert f\Vert_{L_{t}^{1}(\dot{B}
_{p,1}^{s})})\exp(\frac{C}{\beta} 0^{t}(\Vert\dot{S}_{m}(a\nabla a, b\nabla a)
\Vert^{2_{\frac{n}{pp}}}.,d1 )
whenever  - \min(\frac{n}{p},\frac{n}{p})  <s\leq   \frac{n}{p}-1 , where  p' is the Hölder conjugate exponent of  p.
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As a consequence of the above, we have the following a priori estimate obtained in

[5], on which the analysis of the momentum equation is relied. We consider

(2.2)  \partial_{t}u- adiv  (2\mu D(u)+\lambda divuId)=f,

where both  u and  f are valued in  \mathbb{R}^{n} and  a is some variable coefficient. We assume that

the following uniform ellipticity condition is satisfied:

(2.3)   \alpha :=\min(in(a\mu)(t, x), (t,x)\in[0,T]\cross \mathbb{R}^{n}in(2a\mu+
a\lambda)(t, x)) >0.
Proposition 2.2 ([5]). Let  a,  \lambda and  \mu be bounded functions satisfying (2.3).

Assume that  a\nabla\mu,  a\nabla\lambda,  \mu\nabla a and  \lambda\nabla a are in  L^{\infty}  (0, T;  \frac{n}{pp}-11) for some  1  <p  <  2n,

and that there exist some constants  \overline{a},  \overline{\lambda}  and- satisfyin

 2\overline{a}q+\overline{a}\overline{\lambda}>0 and  \overline{a}i>0,

and  a-\overline{a},  \lambda-\overline{\lambda} and  \mu-i are in  C  ([0, T];  \frac{n}{pp}1) . Finally, suppose that

  \lim \Vert(Id-\dot{S}_{m})(a\nabla\mu, a\nabla\lambda, \mu\nabla a, 
\lambda\nabla a)\Vert n-1 =0.
 marrow+\infty L_{T}^{\infty}( p,1p )

Then for any data u  0  \in   \frac{n}{pp}-11 and  f  \in  L^{1}  (0, T; \underline{n}^{\frac{n}{pp}-1}1) , system (2.2) admits a unique
solution  u\in C  ([0, T];  \frac{n}{pp}-11) with  \nabla u\in L^{1}(0, T; p,1p) .

Furthermore, there exist two constants  \eta and  C such that if  m is so large as to

satisfy

  \min (in m(a\mu)(t, x), (t,x)\in[0,T]\cross \mathbb{R}^{n}in m(2a\mu+a\lambda)
(t, x)) \geq \frac{\alpha}{2},
 \Vert(Id-\dot{S}_{m})(a\nabla\mu, a\nabla\lambda, \mu\nabla a, \lambda\nabla a)
\Vert n-1 \leq\eta\alpha,

 L_{T}^{\infty}( p,1p )

then we have for all   t\in  [0, T],

  \Vert u\Vert_{L_{t}^{\infty}(,)}\frac{n}{pp}-1+\alpha\Vert\nabla u\Vert_{L_{t}
^{1}()}1^{\cdot},1\frac{n}{pp}
 \leq C  ( \Vert u_{0}\Vert . \frac{n}{pp}-11+\Vert f\Vert_{L_{t}^{1}(,)}\frac{n}{pp}-1)
exp1(\frac{C}{\alpha} 0_{1}^{t}\Vert\dot{S}_{m}(a\nabla\mu, a\nabla\lambda, 
\mu\nabla a, \lambda\nabla a)\Vert^{2_{\frac{n}{pp}}}.,d ) .

Now we derive the a priori estimate for the linearized system

(2.4)  \{\begin{array}{l}
\partial_{t}u- adiv (2\mu D(u)+\lambda divuId+\psi\pi Id) =f,
\partial_{t}\psi- adiv (b\nabla\psi)=g.
\end{array}
In fact, the following statement is merely a corollary of Proposition 2.1 and 2.2.
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Corollary 2.3. Let  n\geq 3,  1<p<n,   u_{0}\in   \frac{n}{pp}-11,  \psi_{0}\in   \frac{n}{pp}-21,  f \in L^{1}(0, T; \frac{n}{pp}-11)
and  g  \in  L^{1}  (0, T;  \frac{n}{pp}-21) . Assume that  a,  b,  \lambda and  \mu satisfy the assumptions of Propo‐

sition 2.2. Let  a and  b further satisfy assumptions of Proposition 2.1 with  s  =   \frac{n}{p}  -2.

Assume that  \pi belongs to the multiplier space 1  \mathcal{M}  (  \frac{n}{pp}1) . Then system (2.4) admits
unique solution  (u, \psi) with

 u\in C  ([0, T];  \frac{n}{pp}-11)\cap L^{1}(0, T; \frac{n}{pp}+11) and   \psi\in C([0, T]; \frac{n}{pp}-21)\cap L^{1}(0, T; \frac{n}{pp}1) .

Besides, if  m is large enough (as in Propositions 2.2 and 2.1) then  (u, \psi) fulfills for al
  t\in  [0, T],

 \Vert\psi\Vert_{L_{t}^{\infty}(} .   \frac{n}{pp}-21)^{+\beta\Vert\psi\Vert_{L_{t}^{1}(}} .

  \frac{n}{pp}1)   \leq C(\Vert\psi_{0}\Vert . \frac{n}{pp}-21+\Vert g\Vert_{L_{t}^{1}(} . 
\frac{n}{pp}1-2))
  \cross\exp (\frac{C}{\beta} 0^{t}\Vert\dot{S}_{m}(a\nabla b, b\nabla a)
\Vert^{2_{\frac{n}{pp}}}.,d1 ) ,

 \Vert u\Vert_{L_{t}^{\infty}(} .   \frac{n}{pp}-11)^{+\alpha\Vert u\Vert_{L_{t}^{1}(}} .

  \frac{n}{pp}+11)   \leq C(\Vert u_{0}\Vert . \frac{n}{pp}-11+\Vert f\Vert_{L_{t}^{1}(} . \frac{n}
{pp}-11)
 +\Vert a\Vert_{\mathcal{M}(} .   \frac{n}{pp}-1111\Vert\pi\Vert.\frac{n}{pp}\Vert\psi\Vert.\frac{n}{pp})
\exp(\frac{C}{\alpha} 0^{t}\Vert\dot{S}_{m}(a\nabla\mu, a\nabla\lambda, 
\mu\nabla a, \lambda\nabla a)\Vert^{2_{\frac{n}{pp}}}.,d1 ) .

Proof. It suffices to solve the second equation of (2.4) according to Proposition
2.1. Note that in order to apply Proposition 2.1 with  s  =   \frac{n}{p}  -2 , we need  n  \geq  3 and

 1<p<n . Then we look at  u as the solution to

 \partial_{t}u- adiv  (2\mu D(u)+\lambda divuId)=f-a\nabla(\pi\psi) .

The assumptions on  a and  \pi , and the control of  \psi in  L^{1}  (0, T;  \frac{n}{pp}1) imply that  u may be

constructed according to Proposition 2.2 and satisfies the desired a priori bound.  \square 

We remark that unlike in [3] where the “total energy along the flow” is used, here
we do not need to derive a new estimate for the absolute temperature  \psi . For the “total

energy along the flow one needs to establish some new parabolic estimate for equations

that differ from (2.1) or (2.2).

§3. Proof of Theorem 1.2

In the rest of the paper, we shall show that the fixed point scheme (1.10) does
indeed work. We denote the linear part of the solution  (u, \psi) by  (u_{L}, \psi_{L}) , respectively,

1The multiplier space  \mathcal{M}(\dot{B}_{p,1}^{s}) is the set of all distributions  f  \in  \mathcal{S}' satisfying   hf\in  \dot{B}_{p,1}^{s} for all

 h\in\dot{B}_{p,1}^{s} , and  \Vert f\Vert_{\mathcal{M}}  \dot{B}_{p,1}^{s} )  :=   \sup  \Vert hf  \Vert  p,1s
 <\infty.

 \Vert h\Vert . p,  1s
 =1
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i.e.,

 \partial_{t}u_{L}-\rho_{0}^{-1}div(2\mu Du_{L}+\lambda divu_{L}Id)=0, u_{L}|_{t
=0}=u_{0},
 \partial_{t}\psi_{L}-\rho_{0}^{-1}\triangle\psi_{L}=0, \psi_{L}|_{t=0}=\psi_{0}
.

Let  \overline{u}:=u-u_{L} and  \overline{\psi}:=\psi-\psi_{L} then  (\overline{u},\overline{\theta}) has to satisfy the following equations

(3.1)  \{\begin{array}{l}
\partial_{t}u-\rho_{0}^{-1}div(2\mu DU+\lambda div\overline{u}Id)=\rho_{0}^{-1}
div(I_{1}(v, v)+I_{4}(v, \varphi)) ,
\partial_{t}\overline{\psi}-\rho_{0}^{-1}\triangle\overline{\psi}=\rho_{0}^{-1} 
(div (I3(v, \varphi)+I_{4}(v, \varphi))+I_{5}(v, v)) ,
\end{array}
with  (v, \varphi)  \in E_{p}(T) , where the terms on the right hand‐side are defined in (1.11). We
claim that the Banach fixed point theorem applies to the map  \Phi defined in (1.13) in a
closed ball  \overline{B}_{E_{p}(T)}((u_{L}, \theta_{L}), R) centered at the linear solutions  (u_{L}, \psi_{L}) with a radius

 R , provided  T and  R are suitably small.

If the right‐hand side of the first equation is in  L^{1}  (0, T;  \frac{n}{pp}-11) and if there exists

some  m\in \mathbb{Z} so that the conditions of Proposition 2.2 are satisfied then  u\in E_{p}(T) . The

existence of  m so that we have, for some  \alpha,

  x\in \mathbb{R}^{n}i\in  m  (  \frac{1}{\rho_{0}})\geq   \frac{\alpha}{2} and  \Vert (Id —  \dot{S}_{m} )  ( \frac{\nabla\rho_{0}}{\rho_{0}^{2}})\Vert_{L_{T}^{\infty}(} .   \frac{n}{pp}-11 )  \leq\eta\alpha

is ensured by the fact that  \rho_{0}-1 belong to the space   \frac{n}{pp}1 which is defined in terms of a

convergent series and embeds continuously in the set of bounded continuous functions

decaying at infinity. Note that the choice of  m only depends on  \rho_{0}

As the proof of Theorem is carried out by the Banach fixed point theorem: the
procedure is divided into 4 steps: We shall show

1. that the map  \Phi in (1.13) is a map from the ball  \overline{B}_{E_{p}(T)}((u_{L}, \theta_{L}), R) into itself for
suitably small  T and  R ;

2. that the map  \Phi is a contraction;

3. the time‐continuity of the solutions;

4. the Lipschitz stability of the solution with respect to the initial data.

We do not give the full proof of the above but the process is quite standard and easy

(see [3, 5]). Here we shall only show the stability of the ball.

First step: Stability of the ball  \overline{B}_{E_{p}(T)}((u_{L}, \psi_{L}), R) for suitably small  T and  R.

From now on, we assume that for a small enough  \overline{c}, we have

(3.2)   \Vert Dv\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}1 \leq\overline{c}.
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Proposition 2.3 and the definition of the multiplier space  \mathcal{M}  (  \frac{n}{pp}-11) ensure that

 \Vert(\overline{u},\overline{\psi})\Vert_{E_{p}(T)}  \leq Ce^{C_{\rho_{0},m}}  ( \Vert\rho_{0}^{-1}\Vert_{\mathcal{M}(} . \frac{n}{pp}-11)^{\Vert I_{1}(v,v)+
I_{2}(v,\varphi)\Vert_{L_{\tau}^{1}(}} .

  \frac{n}{pp}1)
(3.3)

 + \Vert\rho_{0}^{-1}\Vert_{\mathcal{M}(,)}\frac{n}{pp}-21\Vert div  I3  (v,  \varphi)+I_{4}(v, \varphi)+I_{5}(v, v)\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}-
2)1^{\cdot}
The coefficient  \rho_{0}^{-1} indeed belongs to  \mathcal{M}(\dot{B}_{p,1}^{s}) for  s  =   \frac{n}{p}

 -  1 and  s  =   \frac{n}{p}  -2 by the

product estimate:

 \Vert\rho_{0}^{-1}h\Vert_{\dot{B}_{p,1}^{s}}  \leq   \Vert(\frac{a_{0}}{1+a_{0}}-1)h\Vert .

 p,1s   \leq C(\Vert a_{0}\Vert . \frac{n}{pp}1+1)\Vert h\Vert .
 p,1s

under our assumptions on  n and  p (recall that  a_{0}  :=\rho_{0}-1 ).
Estimate of  I_{\rceil} : The first term  I_{1} of (3.1) have been estimated in [5, 3] as follows :

  \Vert I_{1}(v, v)\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}1 \leq C(\Vert a_{0}\Vert 
. \frac{n}{pp}1+1)\Vert Dv\Vert_{L_{\tau}^{1}(,)}^{2}\frac{n}{pp}1
Estimate of  I_{2} : Since

 I_{2}(v, \varphi)= −adj(DXv)  (\varphi+1)\pi(J_{v}^{-1}\rho_{0})-\varphi\pi(\rho_{0})Id
 =- (  adj (DXv)  \pi(J_{v}^{-1}\rho_{0})-\pi(\rho_{0}) Id)  \varphi- adj(DXv)  \pi(J_{v}^{-1}\rho_{0}) ,

we have thanks to Propositions 4.1 and 4.3 of Appendix

  \Vert I_{2}(v, \varphi)\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}1   \leq C(\Vert a_{0}\Vert . \frac{n}{pp}1+1)(\frac{n}{pp}\frac{n}{pp}\frac{n}
{pp}L_{\tau}^{1}(.,1)(.,)(.,).
Estimate of I3 : Owing to (3.2), the application of Propositions 4.1 and 4.3 gives us

  \Vert I_{3}(v, \varphi)\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}-11 \leq C\Vert 
adj(DX_{v})tA_{v}-Id\Vert_{L_{\tau 1}^{1}}\frac{n}{pp}
\Vert\nabla\varphi\Vert_{L_{\tau 1}^{1}}(.,)(.,)\frac{n}{pp}-1
  \leq C\Vert Dv\Vert\frac{n}{pp}\Vert\varphi\Vert_{L_{\tau 1}^{1}}L_{\tau}^{1}
(.,1)(.,)\frac{n}{pp}.

Estimate of  I_{4} : We decompose the term  I_{4} as follows:

 I_{4}(v, \varphi)=-(\varphi+1)\pi(J_{v}^{-1}\rho_{0})div (adj  (DX_{v})v )

 =-\pi(J_{v}^{-1}\rho_{0})\varphi div (adj(DXv)  v )  -\pi(J_{v}^{-1}\rho_{0})div (adj(DXv)  v ).

Then thanks to (3.2) and Proposition 4.1 we have

  \Vert I_{4}(v, \varphi)\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}-21
 \leq C  ( \Vert a_{0}\Vert . \frac{n}{pp}1+1) (  \Vert\varphi div (adj  (DX_{v})v )  \Vert_{L^{1}T(,1)}+\Vert adj(DX_{v})v\Vert_{L_{T}^{1}(,1)} )

  \leq C (\Vert a_{0}\Vert . \frac{n}{pp}1+1)(\Vert\varphi\Vert_{L^{1}T(,1)()}
\frac{n}{pp}+1)T\Vert v\Vert_{L_{T,1}^{\infty}}.\frac{n}{pp}-1.
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Estimate of  I_{5} :

I5  (v, v)=\tau :  div (adj  (DX_{v})v ).

Similarly to the previous computations, we may easily obtain by Proposition 4.1

  \Vert I_{5}(v, v)\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}-21
 =  \Vert\tau:div (adj  (DX_{v})v )   \Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}-21
  \leq CT\Vert v\Vert_{L_{\tau}^{\infty}(,)}^{2}\frac{n}{pp}-11^{\cdot}

In summary, we obtain the following estimates:

  \Vert\rho_{0}^{-1}\Vert_{\mathcal{M}}.\frac{n}{pp}-1\Vert I_{1}(v, v)+I_{2}(v,
\varphi)\Vert_{L_{\tau 1}^{1}}(,1)(.,)\frac{n}{pp}
 + \Vert\rho_{0}^{-1}\Vert_{\mathcal{M}(,)}\frac{n}{pp}-2\Vert div1  I3  (v,  \varphi)+I_{4}(v, \varphi)+I_{5}(v, v)\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}-
21
  \leq C (\Vert a_{0}\Vert . \frac{n}{pp}1+1)^{2}((\Vert\varphi\Vert_{L^{1}
\tau(,1)()()}\frac{n}{pp}+\Vert Dv\Vert_{L_{\tau,1}^{1}}.\frac{n}{pp}+T)\Vert Dv
\Vert_{L_{\tau,1}^{1}}.\frac{n}{pp}

 +( \Vert\varphi\Vert_{L^{1}\tau(,1)()()}\frac{n}{pp}+\Vert v\Vert_{L_{\tau,1}^{
\infty}}.\frac{n}{pp}-1+1)T\Vert v\Vert_{L_{\tau,1}^{\infty}}.\frac{n}{pp}-1) .

Plugging all the inequalities above to (3.3), we obtain

 \Vert(\overline{u},\overline{\psi})\Vert_{E_{p}(T)}

  \leq Ce^{C_{\rho_{0}},{}_{m}T} (\Vert a_{0}\Vert . \frac{n}{pp}1+1)^{2}( 
(\Vert\varphi\Vert_{L^{1}()}\frac{n}{pp}+\Vert Dv\Vert_{L_{T}^{1}(}\tau.,1 
^{\cdot} \frac{n}{pp}+T)\Vert Dv\Vert\frac{n}{pp}1)L_{\tau}^{1}(.,1)
 +(\Vert\varphi\Vert_{L_{T}^{1}(\dot{B}_{1}^{\frac{n}{pp}})}+\Vert v\Vert_{L_{T}
^{\infty}(\dot{B}_{1}^{\frac{n}{pp}-1})}+1)T\Vert v\Vert_{L_{T}^{\infty}(\dot{B}
_{1}^{\frac{n}{pp}-1})}) .

Since  (v, \varphi) belongs to the ball  \overline{B}_{E_{p}(T)}((u_{L}, \psi_{L}), R) , decomposing  v into  V+u_{L} and

 \varphi into  \overline{\varphi}+\psi_{L} gives us

 \Vert(u,\overline{\psi})\Vert_{E_{p}(T)}
 \leq C_{\rho_{0}}e^{C_{\rho_{0},m}}  (( \Vert\psi_{L}\Vert_{L^{1}\tau(,1)()()}\frac{n}{pp}+\Vert Du_{L}
\Vert_{L_{\tau,1}^{1}}.\frac{n}{pp}+R+T)(\Vert Du_{L}\Vert_{L_{\tau,1}^{1}}.
\frac{n}{pp}+R)

 +( \Vert\psi_{L}\Vert_{L^{1}\tau(,1)()()}\frac{n}{pp}+\Vert u_{L}
\Vert_{L_{\tau,1}^{\infty}}.\frac{n}{pp}-1+R+1)T(\Vert u_{L}\Vert_{L_{\tau,1}
^{\infty}}.\frac{n}{pp}-1+R))
where  C_{\rho_{0}} is some constant depending only on  \rho_{0} and the dimension. Note that we
have

  \Vert u_{L}\Vert_{L_{\tau}^{\infty}(,)}\frac{n}{pp}-11  \leq C\Vert u_{0}\Vert .

  \frac{n}{pp}-11
by Proposition 2.2.

Choosing  R and  T sufficiently small we may see that  \Phi is indeed a self‐map on
the ball  \overline{B}_{E_{p}(T)}((u_{L}, K_{L}), R) . The contraction estimate is also carried out in a similar

fashion to the proofs given in [5, 6, 3]. We omit the details.
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§4. Appendix

The purpose of this section is to present some technical results that have been used

in the paper. In the first paragraph, we recall common product estimates regarding

homogeneous Besov norms. Next, we state estimates for the flow and finally some

necessary tools for the Lagrangian transformation.

§4.1. Estimate for product, composition and flows

For the proofs of the following propositions, see Chapter 2 of [1] and Appendix  0

 [5 , 6  ].

Proposition 4.1 ([5, 6]). Let  \nu  \geq  0 and  - \min(\frac{n}{p},\frac{n}{p})  <  \sigma  \leq   \frac{n}{p}  -  \nu . The

following product law holds:

 \Vert uv\Vert .   p,1\sigma  \leq C\Vert u\Vert .   \frac{N}{pp}-\nu 1\Vert v\Vert .  p,1\sigma+\nu.

Proposition 4.2. Let  F:Iarrow \mathbb{R} be a smooth function (with I an open interva
of  \mathbb{R} containing  0) vanishing at  0 . Then for any  s  >  0,  1  \leq  p  \leq  \infty and interval  I'

compactly supported in I there exists a constant  C such that

 \Vert F(a)\Vert .

 p,1s  \leq C\Vert a\Vert .

 p,1s

for any  a\in\dot{B}_{p,1}^{s} with values in  I'

The following flow estimates are found in Appendix of [5, 6].

Proposition 4.3 ([5, 6]). Let  1  \leq  p  <  \infty and  v  \in  E_{p}(T) . Assume that fo
small enough  \overline{c},

 \Vert Dv\Vert .   \frac{n}{pp}dt\leq\overline{c}1^{\cdot} 0

We define  X as the flow of  v as in (1.9). Then for all   t\in  [0, T] , we have

 \Vert Id- adj  (DX_{v}(t))\Vert .   \frac{n}{pp}1   \leq C\Vert DV\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}1 ’

 \Vert Id-A_{v}(t)\Vert .   \frac{n}{pp}1   \leq C\Vert DV\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}1 ’

 \Vert J_{v}^{\pm 1}(t)-1\Vert .

  \frac{n}{pp}1   \leq C\Vert DV\Vert_{L_{\tau}^{1}(,)}\frac{n}{pp}1^{\cdot}
§4.2. Lagrangian coordinate

The necessary tools for the Lagrangian transformations are given below. For more

details, we refer to [3, 5, 6].
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Let  X be a  C^{1} ‐diffeomorphism over  \mathbb{R}^{n} . For a vector‐valued function  H :  \mathbb{R}^{n}arrow \mathbb{R}^{m},
denote  \overline{H}(y)  :=H(x) with  x=X(y) . The chain rule states that

 D_{y}\overline{H}(y)=D_{x}H(X(y))\cdot D_{y}X(y)

with  (D_{y}X)_{ij}  =\partial_{y_{j}}X^{i} , and

 \nabla_{y}\overline{H}(y)=\nabla_{y}X(y)\cdot\nabla_{x}H(X(y)) .

Hence, we have

 D_{x}H(X(y))=D_{y}\overline{H}(y)\cdot A(y)
with  A(y)=(D_{y}X(y))^{-1}  =D_{x}X^{-1}.

See Appendix of [5, 6] for the proofs of the following propositions.

Proposition 4.4 ([5, 6]). Let  X be a globally bi‐Lipschitz diffeomorphism of  \mathbb{R}^{n}

and  (s, p, q) with  1  \leq p<  \infty  and- \frac{n}{p}  <  s  <   \frac{n}{p} (or just  - \frac{n}{p}  <  s  \leq   \frac{n}{p} if  q=  1 and just

 - \frac{n}{p}  \leq  s  <   \frac{n}{p} if  q  =  \infty) . Then  a\mapsto a  \circ X is a self‐map over  \dot{B}_{p,q}^{s} if one of followin
cases holds:

1.   s\in  (0,1) ,

2.   s\in  (-1,0] and  J_{X-1} is in the multiplier space  \mathcal{M}(\dot{B}_{p,q}^{s}) ,

3.   s\geq  1 and  (DX-Id)  \in\dot{B}_{p,q}^{s}.

Proposition 4.5 ([5, 6]). Let  K be a  C^{1} ‐scalar function over  \mathbb{R}^{n} and  H be
 C^{1} ‐vector field. If  X is a  C^{1} ‐diffeomorphism such that  J.:=\det(D_{y}X)  >0 , the

 \overline{\nabla_{x}K}=J^{-1}div_{y} (adj  (D_{y}X)\overline{K}),

 \overline{div{}_{x}H}=J^{-1}div_{y} (adj  (D_{y}X)\overline{H}),

where adj  (D_{y}X) is the adjugate of  D_{y}X.

From the above proposition, we have the following set of change of coordinates:

 \overline{\triangle_{x}u}=J^{-1}div_{y} (adj  (D_{y}X)\overline{\nabla_{x}u})

 =J^{-1}div_{y} (adj  (D_{y}X)(tA)\nabla_{y}u),

 \nabla_{x}div_{x}u=J^{-1}div_{y} (adj  (D_{y}X)\overline{div_{x}u})

 =J^{-1}div_{y} (adj  (D_{y}X)(tA) .:  \nabla_{y}u),

 \overline{\nabla_{x}P}=J^{-1}div_{y} (adj  (D_{y}X)\overline{P}),

where  A=(D_{y}X(y))^{-1} and  J=\det(D_{y}X) . The following is stated as a lemma in [3].
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Lemma 4.6 ([3]). Let  z .:  [0, T]  \cross  \mathbb{R}^{n}  arrow  \mathbb{R}^{m} and  X .:  [0, T]  \cross  \mathbb{R}^{n}  arrow  \mathbb{R}^{n} be
differentiable functions with, in addition,  X(t) .:  \mathbb{R}^{n}  arrow  \mathbb{R}^{n} being a  C^{1} diffeomorphis

given by (1.9) for all  t\in \mathbb{R} . Then the following relation holds:

 \partial_{t}  (Jz)=J (  \partial_{t}z+  div_{x} (zu)),

where  J.:=\det(DX) .
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