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A criterion for the linear independence of
polylogarithms over a number field

By

Noriko HIRATA-KOHNO} Masaru ITO* and Yusuke WASHIO™**

Abstract

Let Lis(z) be the s-th polylogarithmic function. Let o € Q, 0 < |a| < 1. In this article,
we give a criterion for the linear independence of the s+ 1 numbers Lii («), Liz(«), - - -, Lis(«)
and 1 over the number field Q(«). The new part is that we prove the linear independence of
such polylogarithms over a number field of arbitrary degree. We also show examples and a
linear independence measure.

§1. Introduction

Let 1 < s € Z. Denote by Q the algebraic closure of Q in C. Consider the s-th
polylogarithmic function defined by

© _k
Lis(z)zz:%, z€C, |z2| < 1.
k=1

We obtain here a criterion for the linear independence of values Li,(a) at a € Q with
0 < || < 1, over the algebraic number field Q(«) of arbitrary degree. Our result refines
and generalizes the criterion due to E. M. Nikisin [9] which is limited to the rational
case.

A lower bound for the dimension of a vector space spanned by polylogarithms
over Q was given by T. Rivoal [10] in the rational case, and by R. Marcovecchio [6]
in an algebraic case. However, these statements imply neither the irrationality nor
the linear independence of chosen polylogarithms. M. Hata [2] showed a general linear
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independence criterion but still over Q, by adapting Legendre polynomials. An analogy
of Nikisin’s work to the Lerch function was obtained by M. Kawashima [4].

§2. New results

Let a be an algebraic number of finite degree over QQ, with 0 < |o| < 1. Write
d=[Q(a): Q). Let a = oM, a® ... ald be the d conjugates of o over Q. We denote
by 1 < b € Z the denominator of a~!. Put § = slogs + (25 + 1) log 2.

Theorem 2.1.  Suppose

d
1 1 ds(s + 1)
(21) |Oé| X izl_IZmaX{l, ’(){(—Z)ls} < [fﬁ exp{s — (dS - 1)(5 — T}
Then the s + 1 numbers: Liy(«), Lis(«), -+, Lis(a) and 1 are linearly independent

over Q(a).

This result gives the first linear independence criterion at algebraic « for the func-
tion Lis(z). Write v = vy for the usual absolute value |- | = |- |,,, corresponding to the
identity isomorphism, with the local degree denoted by n; := n,, which is 1 or 2. The
condition (2.1) is sufficient in the both cases where n; = 1 and n; = 2, although we
may relax it when n; = 2. Our condition improves Nikisin’s one [9] even in the rational
case where a € Q. Indeed, we have to compare (2.1) with (2.2) below, the corrected
version in [4] of Nikisin’s condition (not with the original one in [9] where an important
factor is missing) in the rational case:

(2.2) Jaf < o exp{~(s — 1)(s + )}

For given positive integers d,s we show here how to construct such a of degree
exact d satisfying (2.1).

Theorem 2.2.  Let d,m € Z with m > 1,d > 1. Define fn,.a(X) € Q[X] by
froa(X)=02+H)x -2

m’

fmp(X)=(2+1)X?-2X+ 2,
fma(X) =2+ L)x? - 2xd1 92X+ 2 (d>3).

For each s = 1,2,--- and d = 1,2,---, there exists a sufficiently large integer mg =
mo(d, s) such that an algebraic number o of degree exact d over Q, being given by the
root of the smallest absolute value of the equation fn, 4(X) = 0 with m > my, satisfies
the inequality (2.1).

The polynomial m f,, 4(X) is irreducible over Z by the Eisenstein criterion. An my
is calculated as follows.
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Example 2.3. Let d = 7. For each s, we choose the index mg in Theorem 2.2
as in the table below, such that the following property holds. Let « be an algebraic
number of degree 7 given by the root of the smallest absolute value of the equation
fmo,7(X) = 0. Then the s + 1 numbers: Li;(«), Lis(), --- , Lis(«) and 1 are linearly
independent over Q(«).

S 1 2 3 4 5) 6 7 8 9 .-
mo 1011 1043 10104 10194 10316 10472 10662 10887 101149 .

Indeed, for an s, the above mg gives the polynomial f,,, 7(X) whose roots are
ai,...,a7. Being a = a3 the root of the smallest absolute value among them (we
have b < 2), the construction satisfies the inequality (2.1). For example, when s = 5
and mg = 10316, by solving the equation, we have |a| < (1 4+ 107317) x 107316 and

1
m <1+4+107317 (i =2,...,7), hence (2.1) holds.
o 1

Now we give a linear independence measure. For x € Px(Q) having coordinates
x = (zg,...,xn) € Py(K) with an algebraic number field K, let us recall the logarithmic
height of x defined by

h(x) = m ;nv log(max{|zglv, ..., |[ZN]v})

where the sum runs over all the normalized places of K and n, = [K, : Q,] denote
the local degree at v. We also define by H(x) = exp(h(x)) the exponential height of
x. As is well-known, these definitions are independent of the choice of the projective
coordinates. For « satisfying the condition (2.1) and 0 < |a| < 1, put

p=s+0—(s+1)loglal,
d
7= —log (bds]a] Hmax{l, \a(i)|_s}> +s—(ds—1)6 —ds(s+1)/2.
i=2
We have p > s+ 6 and 7 > 0 by (2.1).

The following theorem gives a new linear independence measure.

Theorem 2.4. Fiz o € Q with 0 < |a| < 1 satisfying (2.1). For any ¢ > 0,
there exists a constant By > 1 depending on € and the given data such that the following
property holds. For any x = (zg, 1, -+ ,s) € Q(a)*Tt — {(0,0,---,0)} of exponential
height H(x) = B > By, we have

|$0 +.T1Li1(06) -+ ... +stZS(Oé)| > B_%_E.

§3. Proof of Theorem 2.1

We construct sequences of polynomials in an algebraic setting of Padé approxima-
tion, however, to do this construction, we do not use the linear independence criterion
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of Nesterenko [8] which was an essential tool in previous works. Here, we introduce a
modified matrix method (see §3.3) basically considered by Hermite and Nikisin to prove
the linear independence of values of power series at algebraic numbers.

Fix s € Z. Let q € Z with 0 < g < 5. Let 1 < n € Z that we fix for the
present and we will let grow sufficiently large later. Put o = ns+q. Write ¢, ¢y, 2, -+,
positive constants independent of n. Our construction of the sequences is carried out
with respect to each index n, but we omit so often n in our notations.

Definition 3.1. For n and ¢, define the remainder function in ¢ by

t—-—1D({t—-2)---(t—0c+1)
@t +1)* - (t+n—1)(t+n)
Definition 3.2. Let z € C with |z| > 1. For n and ¢, define a series in z by

N(z) = Ng(z) =Y R(t)z""

Let us construct sequences of polynomials. We show a proposition being valid for
z € C, not only for z € R.

R(t) = Ry(t) =

Proposition 3.3.  For each n, there exist polynomials Ar.(z) € Q2] (k =
1,2,---,s) and Py(z) € Q[z] such that Aq(2) are not all identically zero, satisfying

(3.1) Ny(2) = Y Ang(2) Lin(1/2) — Pylz) = 22 + Zilfl o

ZO'

with cog # 0 (¢ = 0,---,s), degApe(z) < m, (k. =1,---,q), degAgq(z) < n—1
(k=q+1,---,s).

>1 >1
( 1>k—1
1 | log =
1 / T da
- T(k) Jo z— '

From the definition of R(t), there exists fy(Q) € Q such that

— s (a)
-5 () + X
(t+j)k 1t+n

=0 \k=1
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(3.3)

n—eg < k<
Put A (e Zv(q)wj 1<k<s 0<q<s) with sk:{(l) izlli (111f<_g,<8

We then have

Apg(2) Lin(1/2) = F(lk) /O " Ary(2) (1ogl>k_1 da

Z—X

- F(lkz) /01 Akq(zz)« - fkq(x) (log i)kl der + F(lk) /01 éki? (log i)kl e

Hence
1 s k—1
A 1 dx
(k:0) (5 ’“1 -
ZA,W )Liy(1/2) = ZI /O <logx) —
k=1
1
where 1(59)(z) = ! / Akq(2) = Akg () log l dx
L'k) J, z2—x x
Putting
(3.4) Py(z) =) 1"9(2),

we have P,(z) € Q[z] and
Apq( 1\t da

Apq(2)Lig (1 q )

qu in(1/7) - /Oz Do) S

1
, it is seen that (3.1) is nothing but
—x

Expanding
z

(3.5) /lg’é}’“ﬁ—g) (log i)klx’/—lda}: (=1, 0—1)

because we have

7
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Consequently, the condition (3.5) is equivalent to R(1) = R(2) = --- = R(c — 1) = 0,
but this follows from the definition of R(t). The property coq # 0 (0 < g < s) follows
from R(o) # 0 by counting the number of zeros of R(t). Thus the polynomials Az, (2),
P,(z) are constructed as required. O

Lemma 3.4. [For0<gq<sandz € C, |z| > 1, there exists a constant ¢ > 0
such that, for sufficiently large n, we have

1 ns+q 1 —ns(s+1)
e (2 o)

9= [ () S

k=1

Proof. Recall

For z € R, 0 < x <1, we are going to show

1 1 t—1 dt
(3.6) = <_£) @
T—2 2z Jpp=1 \ %z sinm(t —1)

1
sinm(t—1)

R ( m)t—l 1 ! t—n—1 ( a:)t 1
€St=n - 0 = lm =
=ty sinw(t—1) tontisinm(t—1) \ 2

_ h x\"th 1 rx\n
et (=)
h—osinm(n+h) \ z T \z

Let N € Z (we may reduce to the case N € Z). For sufficiently small € > 0, consider

For, the function f(t) = has poles at t € Z of order 1, thus

X 1 T
_t=Ne? + = (2 <ph<—
C e +2 ( 5 S0< £),

),

: 1
C’s:t:New—l—é (—e <0 <e¢),

IN

. 1
C+:t:N619—|—§ (e<6<

SOy

1
L :R(t) = 2 (IS(t)| < N, N €Z).
N-1
t—1 dt 1 n
The residue formula gives / <—£> _— =27 — 5 (f) .
L+C_tCotrcy N 2/ sinm(t—1) T =\ 2

On C_ + (4, we have

sin 7 (New - 5) ‘ = | cos(mNe?)| = | cos(mN cos 6 + imN sin §)|

‘GZ’R‘N cos Ge—wN sin 0 + e—z7‘rN cos 0€7rN sm€|

N = DN =

‘eﬂN sinf e—Tl‘N sin 6 )
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x x
Choose conveniently arg <——>. Note )——‘ < 1 by assumption. We obtain
z z

/ ( x)t—l dt
C_+C.4Cy N F sin(t — 1)

Ne'—3 1 - t-1 dt
(i [ ()
o, \ Z sinm(Ne? — 3) c.\ % sinm(t—1)
2 do x
Cl.N/E‘ eszinG_e—szin0+C2‘N‘;

thus we get (3.6).

¥-4
— 0 (N — o0),

Since 0 < z <1 and |z| > 1, we obtain by the uniform convergence of the integral,
/ Z Akq 1 k=1 1 / < ,CU)t—l dt d
fa— — — —_—— — x
0 :B 2iz Jp()=1 z sinm(t —1)
1 A 1\ " t—1 dt
= / k() <log —) <—£> dz » —
2iz Jpwy=1 |Jo \i= (k) x z sin 7t

1 R (- o
20z R(t)=1 2 sinmt’

1 1
There is no pole of the integrand between R(¢) = - and R(t) = 0 — 3 When the

imaginary part of ¢ is large in the absolute value, there is no contribution of the integral.

Then we have
NNt 1
[ (D)
R(t)=c— 1 z sin 7t

Fort =0 — 3 + iw with w real, by using formulae for I'-function and that of Stirling
we have

t—1
R() (—1> !
z sin 7wt

|27
- |Za|ew-a7"g(71/z)

1

[Ny (2)| = w

I'(t) 1
I(t—o+ D)sinat|[t5(t+ 1) (t+n—1)5(t + n)?

- nes ns—+ s ns(s+1) _ nes . 1 —ns(s+1)
~ |zoecaw \ ms+n = |20 |ecaw + s '

c —ns(s+1)
1
This implies [Ny (2)] < n (1 + —) .
S

El

9
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§3.1. Estimates for polynomials

Lemma 3.5. Let d, be the least common multiple of the n integers 1,2,--- ,n.
Then for1 <k <s, 0 <j <mn, the number s!dfz_k’y,g?.) is a rational integer € 7. (here
we understand 7,531) =0 fork>q).

1 ds—k
(s — k) dts—F
The required property follows (confer Lemma 2 in [9]). O

Proof. Fix j with 0 < j <mn — 1. Then 7,(;;.) = R(t)(t+7)°

Remark. We have noted that the coefficient ¢, for each ¢ (0 < ¢ <'s) in (3.1)

does not vanish, from the definition of R(t). Similarly the coefficient 7(5%) of the term of

degree n in the polynomial A4 (%) is non-zero, because t = —n is not the zero of R(t),
hence we have deg A,q(z) =n for g =1,--- ,s. It is an very important fact that we will
use later.

Lemma 3.6.  There exists a constant ¢ > 0 such that, for sufficiently large n, the
polynomials Arq(z) (1 <k <s, 0<q <s) and Py(z) (0 < g < s) satisfy the following
estimates:

| Akq(2)] < n®max{1,|z|"} exp(nd),
|Py(2)] < n®max{1, |2["} exp(nd).

Proof. Since 71(;;') is the coefficient of (¢ + j)~* by the residue formula at t = —j:

we have

N 1 N
1Y = Resi——; R+ )" = s R(t)(t + j)dt.
JI=3

For t, j with |t + j| = %, we have j — 1 < [t| < j + 1 giving the three estimates:

) [t—o+1t—o+2---t-1<(G+0) - (T+2)
ii)\t||t+1]---|t+n—1]2(j—l)!-—-—-l-(n—l—j—l)!:é(j—l)!-(n—j—Q)!
i) t+n|>n—|t| >n—j—1.
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Therefore,
1
Py [ ROl
7T t+]|_*
1 i 4+2)-- (4 1
S—/ : '(Z+)-(jtj) | L

itrj=% 5= (G —DD*((n—j—=2))s(n—3j—-1)7 2

23 (j+2)---(j+o)

28 (=D ((n—j—2))(n—j— 1)
SQSS_k'j—i—aCj . (ncj)s i o! . js(n _.j — 1)3_(](” _j)s

(n!)® j+1
<pos . 92nstn . gns — e exp(nd).

Consequently, from the definition (3.3) of Ag,(2),

n—eg

kg2 < D7 i llal < 7 max{1, |2} exp(nd).
From the definition (3.4) of P,(z), we have
S MNM—E€g Zj_2 1
(3.7 D=3 % A (G et )

k=1 j5=0

which implies |P,(2)| < n® - max{l,|z|}" - exp(nd).

§3.2. An estimate for a determinant

We give an estimate for a determinant in our algebraic setting.

Lemma 3.7.  Consider M(z) the following square matrix of size s + 1:

Alo(z) Ago(z) tee Aso(Z) Po(Z)
All z A21 z)--- A
M(z) = ‘( ) .( )

Als.(z) AQS(Z) s ASS(Z) PS‘(Z)

Denote by A(z) the determinant of M(z). Then A(z) = constant # 0.

11
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Proof. For q=0,1,--- s, we have

Alo(Z) AQ()(Z) cee AS()(Z)
A11(Z) A21(Z) s Asl(Z)

(3.8) Ag(2) = (~1)7* | Ay go1(2) gy (2) -+ Awgr(2)
At gy1(2) Az gr1(2) -+ Asgr1(2)

Als<z> AQS(Z) T Ass (Z)
where A,(z) is the co-factor corresponding to the (g, s + 1)-th element.

Recall deg Apq(2) <n(1 <k <gq), deg Apq(z) <n—1(¢g+1 <k <s) by construction
in Proposition 3.3, and deg A,y (2) = n (¢ = 1,---,s) by Remark after Lemma 3.5.
Let v be the product of the leading coefficient of the term of degree exact n in A,,(2)
over all ¢ = 1,---,s. Then v # 0. When ¢ = 1,---,s, we then have degA,(z) <
(n—1)4n+---+n=ns—1, and deg Ap(z) = ns.

With suitable numbers hq, hs, - - -, we are now going to show:
3.9 AG) =S Py (2)A () = L
(3.9) ()= 2 Rl = = (et ot g - )
q:
For this, we sum up the s + 1 identities below coming from (3.1) over ¢ =0,1,--- ,s:

(3.10) (Z Apg(2)Lig(1/2) — (z)> = A,(2) (ngiq +>

The sum of the right hand side of the identity (3.10) over all ¢ = 0,1,---,s has the
constant term, with respect to z, arising only from the leading coefficient of Ag(z) (the
coefficient of 2*, namely the product of the coefficients of 2™ in Ayy(2) for ¢ =1,---s),

1
multiplied by coo (the coefficient of —) We obtain from the definition of ~:

hi  h
(3.11) D-— ZP = yeoo + — + —2 +-

with D = iLik(l/z) <i Akq(z)Aq(2)> .

k=1
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S
However, for each 1 < k£ < s, the sum ZAkq(z)Aq(z) in D is an expansion of the
q=0

Alo(z) Agg(z) L A
All(z) Agl(z) e Asl(Z) Akl(Z)

determinant

Ara(2) Asa(2) -+ Aua(2) Ara(2)

which has two same columns. Consequently D = 0, then by (3.11) we have (3.9).
Since A(z) is a polynomial with respect to z, by combining with (3.9) and the fact
coo # 0 in Proposition 3.3, the lemma is achieved. Ol

§3.3. Conclusion

Let us take a € Q (0 < |a| < 1) satisfying (2.1). Denote by o the ring of algebraic
integers of K.

Now suppose that Lij(«), Lig(a), -+, Lis(c) and 1 are linearly dependent over K. Then
there exist x1,x2, -+, 25, —20 € 0k, not all zero, such that

C:=x1Liy(a) + -+ + zsLis(a) — xg = 0.

Lemma 3.7 guarantees that the s+1 lines of the matrix M (a~!) are linearly independent
over K. Then along the hyperplane of K1, defined by x1 X, +- - 2, X, — 20X = 0, we
may choose s linearly independent vectors form the s + 1 lines of the matrix M (a™1),
such that together with the new vector (z1,xs, - ,zs, —xg), the s+1 vectors are linearly
independent over K. We assume that these chosen s lines consist of the j-th lines with
j #qof M(a™").

Define

A = det

Als(.Ozil) AQS(.Oéil) ASS(.Oéil) P3<O.éil)

Then we have A # 0 by the argument above. On the other hand, Lemma 3.5 shows
that when we multiply the determinant A by

0= (slb™)asst/2,
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the number A* := A belongs to ok.
By linear algebra, we have

A(a™)  Ax(a™!) -+ Asp(a™!)  No(a™)
AH(O{_l) A21(a_1) A

Apga(a ) Agg (™) Aggoa(a™) Ngoa ()
T To T 14
Al,q+1(04_1) A27q+1(a_1) T As,q-H(O‘_l) Nq+1(O‘_l)

A = —det

An(e™)  Am(@™)) - Anla=l) N

Since 0 # A* € o0k, by the product formula we have H |A*|7» > 1 with n, the local

v|oo
degree corresponding to each Archimedean place v of K.
We distinguish the usual absolute value | - | from the others as is done in [6], namely
pick up the usual absolute value |- | =|-|,,, with the local degree denoted by ny = n,,.
We obtain
(3.12)

t< 1A =1aspe [T 1At

v|oo v|oo,vF#v1

(3.13)

1
S

s—1
< 0 Il (maxlAy(a ) max o]+ 016] (x4 (a7
J#4q
(3.14)
s—1 s o
<IT {03 1Pl (max Aol ) ma ol + Olzal,(max s 0L

: i\j
vloo,vtvi|  i#4q

Note that in the expression |A*|,,, we do not need the algebraicity of the element.
We start the final step of the proof of our theorem. For the term (3.11), we have

ni
S

s—1
—1 -1 -1
952 (a1 (a0 ) s ol ¢ 01 (ma s (o™ )
J74

< nco {bnsdi(s—l—l)/Z <’a’ne—nsen(s—1)6 + w”ay—nsens(s)} 1 o (I)
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Consider the term (3.12). We have

Ny
s—1

IT {0 1Pyl fuex Ao )l ) o ol Olzal,(max] Ayt )L, )
vloo,vtvr | 74
d

<o TT a2 mas(n o132 (s max o0+ 1o’ ) - an,
<p<s

1=n1+1

Let e(n) = (logn)'/?exp{—+/(logn)/R} with R = ﬁ. We see ¢(n) — 0
when n — oo. The Rosser-Schoenfeld theorem [11], an explicit version of the prime
number theorem, implies an estimate of the least common multiple d,, of the form
n{l —e(n)} < logd, < n{l + e(n)}, then combining (I) and (II) together with this
estimate and the assumption ¢ = 0, we have (here ¢1; depends on |fo) ):

1< npe {bns|a|n€—nsen(1+s(n))(s(s—|—1)/2)en(s—l)(g}}nl

d
% H {bns max{l’m(i)rns} en(1+€(n))(s(s+1)/2)ens5}'
i:n1+1

By taking the 1/n-th power, we get when n; = 1:

d
1< (nclg)%bds6—sed(1+a(n))(s(s+1)/2)e(ds—1)6 . ’a’ H max{l, ‘Oé(i) ’—s}.

1=2
When n; = 2:
d
1< (nclg)%bds€—2s€d(1+s(n))(s(s+1)/2)e(ds—2)6 . ‘Q‘Z H max{l, ‘a(i)’—s}.
1=3

By our condition (2.1), we obtain a contradiction, because the right-hand side < 1
for sufficiently large n, in the both cases ny = 1 and n; = 2 (by 0 < || < 1 and
s+ > 0). Thus ¢ # 0, which again gives us a contradiction. The proof of Theorem 2.1
is achieved. O

§4. Proof of Theorem 2.2

fm,l(X>: (2+L)X_%7

Recall ¢ fr2(X)= (2+21)X%2-2X+ 2,
fma(X)= (2+L1)Xd—2Xx41_2X+ 2 (d>3).

The polynomial m X f,, 4(X) is irreducible in Z[X] thanks to the Eisenstein criterion,
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then the roots of the polynomial are of degree exact d over (). We also see that the
inverse of the roots of m x fy,, 4(X) have the denominator 1 or 2.

Let a be the root, of the smallest absolute value, of f,, 4(X) = 0. The roots of 2X9 —
2X = 2X (X971 —1) are 0 and the d — 1 roots of the unity. We recall the classical
result of A. M. Ostrowski stating the continuity of the complex roots of a polynomial
with respect to its coefficients (this fact is described as Theorem 1.4 of [7], and in a
more general situation due to A. Hurwitz, as Theorem 1.5 in [7], see also Theorem 6.2
of [1]). Then among the roots of m x fy, 4(X), there is one root a whose absolute value
is sufficiently small, and the other d — 1 roots are of absolute value very close to 1.
Although 1/]a®] is not always less than 1, it is possible to choose sufficiently large mq
such that the algebraic number « satisfies the assumption of Theorem 2.1. U

85. Proof of Theorem 2.4

We show a linear independence measure by a variant of the method due to M. Hata
in [3]. Write again the usual absolute value |- | = |- |,,, with the local degree denoted
by n1 = ny, .

Since []; ;<4 max{1, \xéi)l, 287} < H(x)?, we have when ny = 1:
L< [T1a =18, - T 1A
v|oco v|oo,v#£vy
d
§n014H(X)d <Hmax{1, ’a(i)‘—1}sbdse(l—l—s(n))(ds(s+1)/2)es&(d—l))n
=2

L (e*ale==D9)" 4 1] - (ja|=5e*)" V- (11D).
{(

When n; = 2, we have:

L [T =1ag - I 1t

v]oo v|oo,v#£v1

d
S?’Lcl5H(X)d <Hmax{1, |a(i)|—1}sbds€(1+€(n))(ds(s+1)/2)esé(d—2))n
1=3
2

x {(e_5|a|e(5_1)5)n 100 (jal~e)"H - av).

Taking the 1/2-th power of the inequality (IV), we get by 0 < |a| < 1 and H(x) > 1:

d
1 §nchH(x)d {Hmax{l, ‘Oé(i)|—1}sbdse(l—l—s(n))(ds(s+1)/2)es5(d—1) }n

1=2

X {<678|a|e(‘9*1)5>n + 1| - (|a|75685)n} as (III), even if ny = 2.
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d
Recall e = |a|e™5p¥seds(s+1)/2¢(ds=1)d Hmax{l, la@|71} and e? =

es+5

’als—&—l '
=2

By our assumption (2.1), we have 7 > 0 and p > s+0. Let ¢ > 0. Take a suitable small

0 < &’ < 7 satisfying PLcs
T

D
27 r—¢

Write 7/ = 7 — &’. There exists a positive integer

n* such that for any n > n* we have:

d
et <675|a|€(d371)5 . pds €(1+€(n))(ds(s+1)/2)>n HmaX{l, |a(i)|—1}ns <e ™ and

1=2
d

nc1s <|a|—seds5 . bds e(1+5(n))(ds(s—|—1)/2)>n H maX{l, |a(z) |—1}ns < e_T’nepn _ e(p_T/)n.

=2

Consequently,

1—e ™. H(x)4
elp=7")n . H(x)d '

€] >

Now for this fixed n*, we consider By > 1 such that for all B := H(x) > By we have
e~T . Bd > %, namely 1 — e~T . Bd <1- e~ -Bg < %

Let n be the least positive integer such that we have e~Th.Bd < %, thatis1—e~ " " B9 >
%. Since n > n*, we get

=

-2
|£| > elp—m)n . Bd’

From the definition of 7, we have e~ (*=D7". Bd > 1 'then " < (2B%)+" - . Finally we

obtain

1 1

P dp dﬁ+ﬁ :
2

277 .elp—7") . B7r B+

€] >

This completes the proof of Theorem 2.4. U

1]
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