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Real cyclotomic fields of prime conductor and their
class numbers II
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John C. MILLER*

Abstract

In the author’s previous paper, it was proven that the plus part of the class number is
1 for cyclotomic fields with prime conductors between 71 and 151. Furthermore, under the
assumption of the generalized Riemann hypothesis, the class number was determined for prime
conductors between 167 and 241. In this paper, we extend our work to higher conductors and
determine the class number for prime conductors 251, 257 and 263 under the assumption of
GRH.

§1. Introduction

Ever since mathematicians more than a century ago established connections be‐

tween Fermat’s Last Theorem and the unique factorization properties of cyclotomic in‐

tegers, the class numbers of cyclotomic fields have been investigated intensively. Among

the most mysterious aspects remains the “plus part” of the class number, i.e. the class

number of the maximal real subfield (also called the real cyclotomic field). The prob‐
lem of determining the class number of a cyclotomic field goes back to Kummer, who

recognized that calculation of the plus part presents substantial difficulties.

Until the author’s recent work [5], the class number of real cyclotomic fields of prime
conductor had only been determined unconditionally up to conductor 67 by Masley

[3], and up to conductor 163 by van der Linden [2] under the assumption of GRH.
For fields of larger conductor, Minkowski bounds are far too large to be useful, and

their discriminants are too large for their class numbers to be treated by Odlyzko’s

discriminant bounds. Following the method introduced in [4], the problem of large
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discriminants can be overcome by establishing nontrivial lower bounds for sums over

the prime ideals of the Hilbert class field, allowing us to obtain an upper bound for the
class number.

In this paper, we extend our work to higher conductors. Under GRH, the real

cyclotomic fields of conductors 251 and 263 are shown to have class number 1. The real

cyclotomic field of conductor 257, shown in [1] to have class number greater than 2, is
shown under GRH to have class number 3.

Theorem 1.1. Under the assumption of the generalized Riemann hypothesis,

the class numbers of the real cyclotomic elds of conductors 251, 257 and 263 are 1, 3

and 1 respectively.

Together with earlier results in [2, 3, 5], we have the following corollary.

Corollary 1.2. Let  p be a prime integer, and let  \mathbb{Q}(\zeta_{p})^{+} denote the maxima

real subfield of the p‐th cyclotomic field  \mathbb{Q}(\zeta_{p}) . Then the class number of  \mathbb{Q}(\zeta_{p})^{+} is 1

for   p\leq  151.

Furthermore, under the assumption of the generalized Riemann hypothesis, the class

number  h_{p}^{+} of  \mathbb{Q}(\zeta_{p})^{+} i8

 h_{p}^{+}=  \{\begin{array}{ll}
1   if p\leq 263 and p\neq 163, 191, 229 and 257,
4   if p=163,
11   if p=191,
3   if p=229 or 257:
\end{array}
§2. Upper bounds for class numbers of fields of large discriminant

We may obtain an upper bounds for class numbers of number fields of large dis‐

criminant by establishing lower bounds for sums over the prime ideals of the Hilbert

class field. The author’s earlier paper [4] treats this in detail.

Definition 2.1. Let  K denote a number field of degree  n over  \mathbb{Q} . Let  d(K)
denote its discriminant. The root discriminant  rd(K) of  K is defined to be:

rd  (K)=  |d(K)|^{1/n}

Theorem 2.2 (Miller [4, Lemma 5.2]). Let  K be a totally real field of degree  n,

and let

 F(x)=e^{-(x/c)^{2}}
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for some positive constant  c . Suppose that  S is a subset of the prime integers which

totally split into principal prime ideals of K. Let

 B=   \frac{\pi}{2}+\gamma+\log 8\pi-\log rd  (K)-  0^{\infty} \frac{1-F(x)}{2}  ( \frac{1}{\sinh\frac{x}{2}}+\frac{1}{\cosh\frac{x}{2}})  dx

 +2 \sum_{p\in S}\sum_{m=1}^{\infty}\frac{\log p}{p^{m/2}}F(m\log p) ,

where  \gamma is Euler’s constant. If  B  >  0 then we have, under the generalized Rieman

hypothesis, an upper bound for the class npmber  h of  K,

 h<  \frac{2c\pi e^{(c/4)^{2}}}{nB}.
Given an element  x of a Galois number field  K , we will define its norm to be

 N(x)=  | \prod_{\sigma\in Ga1(K/\mathbb{Q})}\sigma(x)|
If  x is in the ring of integers of  K , and if its norm is a prime  p which is unramified in
 K , then  p totally splits into principal ideals, and we can take  p to be in the set  S above.

If we find sufficiently many such primes which totally split into principal ideals, the

preceding theorem establishes an upper bound for the class number. After establishing

an upper bound, we can use the results of Schoof [7] to determine a precise class number
 h . In his “Main Table for each prime conductor less than 10000, Schoof gives a number
 \tilde{h} such that either  h=\tilde{h} or  h>80000\cdot\tilde{h} . In particular, if  h<80000 , then  h=\tilde{h}.

The real cyclotomic field  \mathbb{Q}(\zeta_{p})^{+} of prime conductor has degree  n  =  (p- 1)/2.
We will use the integral basis  \{b_{0}, b_{1}, :::, b_{n-1}\} , with  b_{0}  =  1 and  b_{j}  =2\cos(2\pi j/p) for

 =1 :::  n-1 . We also will use the alternative basis

 c_{k}= \sum_{j=0}^{k}b_{j},  k=0 , 1, :::,  n-1.

To find integral elements of small norm, our strategy will be to search over a

large number of “sparse” vectors, i.e. vectors where almost all the coefficients are zero,

with respect to the bases  (b\cdot) and (ck). For the following results, each took several days
running a  C program on a single laptop to find sufficiently many elements of small norm.

The author also uses the Maple computer program to perform algebraic manipulations.

§3. The class number of  \mathbb{Q}(\zeta_{251})^{+}

Proposition 3.1. Under the generalized Riemann hypothesis, the class numbe

of  \mathbb{Q}(\zeta_{251})^{+} is 1.
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Proof. Unlike the number fields encountered in [5], a brute force search of  \mathbb{Q}(\zeta_{251})^{+}
for integral elements of small prime norm, or a chain of almost primes, does not seem

to easily yield sufficiently many elements. We must apply a more subtle approach.

Searching over sparse vectors, using our two bases  (b_{j}) and (ck), we find the following
integral elements  \alpha,  \beta,  \gamma and their norms:

Element Norm

 \alpha=b_{1}-b_{7}+b_{65}-b_{71}-b_{78}+b_{100}  251\cdot 503 . 242467

 \beta=c_{0}+c_{3}-c_{13}-c_{25}-c_{61}+c_{81}+c_{84}  503 . 23593

 \gamma=b_{1}-b_{2}-b_{9}-b_{49}+b_{66}-b_{69}+b_{77} 23593. 242467

Since the prime over 251 is totally ramified, we can divide  \alpha by  2b_{0}  -b_{1} , which has

norm 251, to get an integral element

  \delta= \frac{\alpha}{2b_{0}-b_{1}}
with norm  503 . 242467.

Now we can twist  \beta and  \delta by the Galois action until their product is divisible by

 \gamma . In other words, for each  \sigma_{1},  \sigma_{2} in  Ga1(\mathbb{Q}(\zeta_{251})^{+}/\mathbb{Q}) , we check the quotient

  \eta= \frac{\beta^{\sigma_{1}}\delta^{\sigma_{2}}}{\gamma}
until we find a pair  \sigma_{1},  \sigma_{2} that yields an element  \eta in the ring of integers of  \mathbb{Q}(\zeta_{251})^{+},
which will necessarily have norm 5032. In fact,  \sigma_{1} is the Galois action that sends  \zeta_{p} to
 \zeta_{p}^{37} and  \sigma_{2} sends  \zeta_{p} to  \zeta_{p}^{40} . Explicitly, using the basis (bj), the element  \eta is

 \eta=[12361,  -299,  -4678 , 7860, 5135,  -654 , 290, 3096, 7695,  -679,  -4289 , 10334, 5167,  -7050 , 4990, 8471,  -1102,
6, 3245, 6161, 2843,  -4756 , 5924, 9728,  -5878,  -160 , 10844, 442,  -2286 , 3846, 4983, 3912,  -2833 , 1433, 11201,
 -1386,  -4897 , 10529, 4739,  -4464 , 3298, 5686, 3334,  -554,  -1084 , 9171, 3767,  -7179 , 6497, 9435,  -4639 , 431,
7459, 3093, 497,  -841 , 5928, 7433,  -5541 , 935, 12102,  -1634,  -3836 , 7978, 4357,  -409 , 164, 3439, 8007,  -1608,
 -3461 , 11276, 3857,  -6697 , 6032, 7604,  -1210 , 189, 2980, 6483, 2024,  -5046 , 7109, 8797,  -6540 , 1252, 10542,
 -85,  -1514 , 3836, 5244, 3927,  -3430 , 2397, 11137,  -2740,  -3992 , 10825, 3424,  -4115 , 3578, 5307, 3537,  -969,
 -650 , 9977, 2667,  -6850 , 7860, 8400,  -4874 , 1368, 6986, 2931, 326,  -1175 , 6659, 6690,  -6339 , 2335, 11750,
 -2656,  -2704 , 8155, 3965 .

Therefore the principal ideal generated by  \eta factors as

 (\eta)=PP

for some prime ideal  P of norm 503 and some  \tau in  Ga1(\mathbb{Q}(\zeta_{251})^{+}/\mathbb{Q}) . From here it is

not difficult to argue abstractly that  P must be a principal ideal. However, we prefer

here to proceed explicitly to find an actual generator for  P.

The idea is as follows. Suppose that  \tau generates the entire Galois group

 Ga1(\mathbb{Q}(\zeta_{251})^{+}/\mathbb{Q}) , which is cyclic of order 125. Since the ideal generated by 503 totally

splits, it would factor as:

 (503)=PP^{\tau}P^{\tau^{2}}\cdots P^{\tau^{124}}
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Therefore the element
503

 \eta^{\tau}\eta^{\tau^{3}}\eta^{\tau^{5}}\cdots\eta^{\tau^{123}}
would be an integral element that generates the prime ideal  P of norm 503. However,

when we check the quotient
503

 \eta^{\sigma}\eta^{\sigma^{3}}\eta^{\sigma^{5}}\cdots\eta^{\sigma^{123}}
for each  \sigma that generates  Ga1(\mathbb{Q}(\zeta_{251})^{+}/\mathbb{Q}) , we never get an integral element. Thus we

conclude that  \tau can not generate the entire Galois group.
Proceeding similarly, we now assume that  \tau generates the index 5 subgroup of the

Galois group. We can easily search in the quintic subfield for an element of norm 503 and
lift it to an element  \lambda in  \mathbb{Q}(\zeta_{251})^{+} of norm  503^{25} . In fact, using the basis  b_{0},  b_{1} , :::,  b_{124},
the element  \lambda is

 \lambda=[15,  0,  0 , 4,  0,  0 , 4, 2,  0 , 4,  0 , 4, 4, 4, 2, 4,  0 , 2, 4, 2,  0 , 2, 4, 2, 4,  0 , 4, 2, 2, 2, 4, 4,  0 , 4, 2, 2, 4, 4, 2, 2,
 0 , 2, 2, 4, 4, 4, 2,  0 , 4, 4,  0,  0 , 4, 2, 2, 4, 2, 2, 2, 4, 4, 2, 4,  0,  0 , 4, 4, 2, 2,  0 , 2, 4, 4, 2, 4, 4, 2, 2, 2, 4,  0 , 2, 2,
2, 2, 2, 4, 2, 4, 2, 4,  0 , 2, 4,  0 , 2, 4, 2, 4, 2,  0 , 4,  0 , 4, 4, 2, 2, 4, 2, 4, 4, 2, 2,  0 , 2, 2, 2, 2, 4, 4, 4, 4, 2,  0 , 4  ] .

Now assuming that  \tau generates the index 5 subgroup of the Galois group, then the ideal

generated by  \lambda factors as

 (\lambda)=PP^{\tau}P^{\tau^{2}}\cdots P^{\tau^{24}}
and the quotient

 \lambda

 \eta^{\tau}\eta^{\tau^{3}}\eta^{\tau^{5}}\cdots\eta^{\tau^{23}}
would be an integral element that generates the prime ideal  P of norm 503. Indeed, we
check the quotient

  \theta= \frac{\lambda}{\eta^{\sigma}\eta^{\sigma^{3}}\eta^{\sigma^{5}}
\cdots\eta^{\sigma^{23}}}
for every  \sigma that generates the index 5 subgroup of  Ga1(\mathbb{Q}(\zeta_{251})^{+}/\mathbb{Q}) , and we do find
such a  \sigma that produces a quotient  \theta which is integral. Explicitly, using the basis (bj),
we find  \theta to be

 \theta  = [29525608, 43553782, 54974405, 56758423, 22817830, 3665682, 27831104, 19279490, 21218318,  -2806749,  -22243683,
20248512, 24979411, 22270503, 13310103, 13980496, 42339501, 58097905, 52307380, 23800535, 45747322, 56983451, 50586512,
43520016,  -3222986 , 14213830, 30756307, 18770862, 10733689,  -15326037 , 2901922, 20991200, 24999724, 7943313, 12753694,
44440883, 52132909, 63675840, 28580934, 21643473, 58900838, 51500518, 50509614, 21983827, 4744116, 23512990, 21685403,
4880618,  -13493327 , 5214120, 20538934, 30286173, 19085108,  -7502983 , 29547177, 52528414, 58132760, 56167623, 23524185,
44674300, 54805868, 42003040, 25057614, 11894497, 25575933, 27903173, 19072870,  -19256464,  -14489922 , 20438942,
21708086, 36960123, 7038865, 9557849, 49923836, 49197318, 51528625, 35018615, 42970510, 55900254, 54300085, 27671065,
145857, 24507518, 25628130, 27145403, 4561988,  -27496147 , 10045624, 20712414, 26250716, 21404521, 9275422, 37163356,
54965798, 50501403, 30082338, 41988513, 56539005, 54200482, 47239715,  -714414 , 6502707, 33897859, 22338937, 19422824,
 -13376824,  -10601439 , 17875588, 22462536, 17899396, 14250075, 38431915, 50357625, 56335074, 32582673, 17402561,
59986501, 58443554, 57097257, 28134026,  -8283917 , 19123511, 21699008, 14563903  ].

Moreover, it can be explicitly verified that this element  \theta has norm 503. Setting  S=

 \{503\} and  c=10.5 , we apply Theorem 2.2 to show a class number upper bound of 6998.

Using Schoof’s table [7], this proves that the class number is 1.

§4. The class number of  \mathbb{Q}(\zeta_{257})^{+}

First, we introduce a useful lemma for cyclic number fields that have 2‐power degree.
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Lemma 4.1. Let  K be a cyclic number field of degree  2^{k} , and let  p be a prime

number that totally splits in K. Suppose that there exist elements  \alpha and  \beta in the rin

of integers  \mathcal{O}_{K} such that

 |N_{K/\mathbb{Q}}(\alpha)| = |N_{K/\mathbb{Q}}(\beta)| =p^{2}

and such that  \beta/\alpha^{\sigma} is not a unit of  \mathcal{O}_{K} , for all  \sigma\in Ga1(K/\mathbb{Q}) . Suppose further that  \beta

lies in the index 2 subfield of K. Then for any prime ideal  P of  K lying above  p , the

ideal  P^{2} is principal.

Proof. Since  \beta lies in the index 2 subfield, it generates a principal ideal

 (\beta)=PP^{\eta}

for some prime ideal  P over  p and where  \eta is the order 2 element of  Ga1(K/\mathbb{Q}) . For a

suitably chosen  \sigma\in Ga1(K/\mathbb{Q}) , we have a principal fractional ideal

 ( \frac{\beta}{\alpha^{\sigma}}) = \frac{P}{P}
for the same prime ideal  P and some  \tau\in Ga1(K/\mathbb{Q}) . Since  \beta/\alpha^{\sigma} is not a unit,  \tau is not

the identity automorphism.

Suppose that  \tau has order  m in the Galois group. Since  \tau is not the identity,  m

must be even, so

  \frac{P}{P\eta} = \frac{P}{P^{\tau^{m/2}}} = \frac{P}{P}\frac{P}{P^{\tau^{2}}}
\ldots\frac{P^{\tau^{m/2-1}}}{P^{\tau^{m/2}}}
is a principal fractional ideal. We conclude that

 P^{2}=( \beta)\frac{P}{P^{\eta}}
is a principal ideal.  \square 

Proposition 4.2. Under the generalized Riemann hypothesis, the class numbe

of  \mathbb{Q}(\zeta_{257})^{+} is 3.

Proof. Searching over sparse vectors, using our two bases  (b_{j}) and (ck), we find
the following integral elements of  \mathbb{Q}(\zeta_{257})^{+} and their norms:

Element Norm

 \alpha_{1}  =c_{0}+c_{8}-c_{48}-c_{78}-c_{81}+c_{119} 130043. 231299

 \alpha_{2}  =b_{0}+b_{1}-b_{114} 130043. 529933

 \alpha_{3}=b_{1}+b_{4}-b_{48}-b_{49} 257  \cdot 231299. 529933
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Since the prime over 257 is totally ramified, we can divide  \alpha_{3} by  2b_{0}-b_{1} , which has norm

257, to get an integral element  \alpha_{4} with norm  231299\cdot 529933 . Let  G=Ga1(\mathbb{Q}(\zeta_{257})^{+}/\mathbb{Q}) ,

which is cyclic of order 128. By choosing appropriate  \sigma_{1},  \sigma_{2} in  G , we can construct an

integral element

  \beta_{1} = \frac{\alpha_{1}^{\sigma_{1}}\alpha_{2}^{\sigma_{2}}}{\alpha_{4}}
of norm 1300432. In fact,  \sigma_{1} is the Galois action that sends  \zeta_{p} to  \zeta_{p}^{58} and  \sigma_{2} sends  \zeta_{p}
to  \zeta_{p}^{110} . Explicitly, using the basis  (b\cdot) , the element  \beta_{1} is

 \beta_{1}=[-395,  138,  -176,  181,  -361,  58,  -164,  177,  -266,  -40,  -140,  119,  -130,  -139,  -97 , 16,  24,  -223,  -45,  -115,
 160,  -273,  12,  -241,  248,  -282,  58,  -336,  266,  -246,  87,  -372,  210,  -179,  88,  -344,  98,  -97,  64,  -258,  -44,  -20 , 17,
 -132,  -182,  38,  -46,  7,  -292,  68,  -116,  135,  -350,  75,  -189,  224,  -353,  62,  -246,  257,  -297,  32,  -275,  221,  -199,
 -10,  -260,  123,  -73,  -62,  -202,  -21,  52,  -114,  -108,  -178,  149,  -158,  1,  -312,  197,  -185,  101,  -392,  185,  -193 , 166,
 -396,  122,  -180,  186,  -334,  25,  -155,  156,  -216,  -79,  -120,  81,  -73,  -172,  -81,  -26,  71,  -234,  -36,  -150,  184,  -263,
 12,  -264,  247,  -256,  55,  -344,  245,  -217,  85,  -369,  179,  -154,  87,  -330,  60,  -75,  59,  -228,  -88] .

Let  K be the index 2 subfield of  \mathbb{Q}(\zeta_{257})^{+} . Inspired by the result of Lemma 4.1, we

search for an integral element of  K that has norm (in  K ) 130043. It is useful to have
an integral basis for  K . Let  g be the automorphism that sends  \zeta_{257} to  \zeta_{257}^{3} , so that  g

generates  G . Let  d_{0}=1 and let

 d_{j} =(\zeta_{257}+\zeta_{257}^{-1})^{g^{j-1}}+(\zeta_{257}+\zeta_{257}^{-1})^
{g^{64+j-1}}

for  1  \leq j  \leq 63 . Then  d_{0},  d_{1} , :::, d63 is an integral basis for  K . To find elements in the

ring of integers  \mathcal{O}_{K} , we both search over sparse vectors in  K using the basis (di), as
well as searching sparse vectors in  \mathbb{Q}(\zeta_{257})^{+} using bases  (b\cdot) and (ck), and then taking
the relative norm  \alpha  \mapsto  \alpha\alpha^{g^{64}} to get an element of  K . We find the following integral

elements of  K and  \mathbb{Q}(\zeta_{257})^{+} and their respective absolute norms:

Field Element Norm

 \mathbb{Q}(\zeta_{257})^{+}  b_{1}+b_{2}-b_{18} 1100175367

 K  d_{1}-d_{2}-d_{5}+d_{13}+d_{14}-d_{20}-d_{53}-d_{61} 1100175367. 485731

 \mathbb{Q}(\zeta_{257})^{+}  c_{0}-c_{4}+c_{7}+c_{54}+c_{60}+c_{83} 485731. 227189

 K  d_{1}+d_{3}+d_{9}-d_{13}+d_{27}+d_{33}+d_{44}-d_{55} 227189. 777167

 K  d_{1}+d_{2}-d_{7}-d_{11}-d_{12}+d_{17}-d_{24} 777167. 1461301

 \mathbb{Q}(\zeta_{257})^{+}  c_{0}+c_{6}-c_{18}-c_{24}+c_{75} 1461301. 559015091

 \mathbb{Q}(\zeta_{257})^{+}  b_{1}+b_{28}-b_{68}-b_{69} 257  \cdot 559015091. 30841

 \mathbb{Q}(\zeta_{257})^{+}  c_{0}-c_{17}+c_{39}+c_{45}+c_{116} 30841. 446142233

 K  d_{0}+d_{1}+d_{4}-d_{18}+d_{46}+d_{52}-d_{58}+d_{60} 446142233. 140837

 \mathbb{Q}(\zeta_{257})^{+}  b_{1}+b_{2}-b_{43} 140837. 130043

As usual, we can divide by  2b_{0}-b_{1} , which has norm 257, to get an integral element
with norm 559015091 . 30841. For elements in  \mathbb{Q}(\zeta_{257})^{+} , we take relative norms to

produce elements of the same absolute norm in  K . Finally, by taking quotients by
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appropriate Galois conjugates, we can construct an integral element  \beta_{2} of  K , which has

norm 130043, and which has norm 1300432 when considered as an element of  \mathbb{Q}(\zeta_{257})^{+}.
We can explicitly calculate that  \beta_{2}/\beta_{1}^{\sigma} is not a unit for all  \sigma in  G . Thus we can

apply Lemma 4.1 to show that, for any prime  P lying above 130043, the ideal  P^{2} is

principal. We can use the Parity Check Theorem [3, Theorem 2.21] to see that the
class number of  \mathbb{Q}(\zeta_{257})^{+} is odd, therefore  P itself must be principal. From here it is

relatively straightforward to find integral elements  \alpha of the form

 (\alpha)=PQ

where  Q is a prime ideal of small prime norm, thereby establishing a class number upper

bound. However, we prefer to proceed more explicitly, finding actual generators for the

prime ideals of small prime norm.
First we find  \sigma in  G such that

  \gamma= \frac{\beta_{2}}{\beta_{1}^{\sigma}}
generates a principal fractional ideal of the form

 ( \gamma)= \frac{P}{P}
where  P is a prime ideal of norm 130043, and  \tau  \in  G . By taking certain products  0

Galois conjugates of  \gamma , we can determine that  \tau generates  G . This element  \gamma is useful in

the following situation: Suppose that there exist integral elements  x and  y with norms

pqr and pq respectively, where  p=130043 , and  q and  r are prime numbers that totally

split in the field. Then  x generates an ideal of the form

 (x)=PQR

where  P,  Q and  R are prime ideals of norms  p,  q and  r respectively. Similarly, a Galois

conjugate of  y generates the ideal

 (y^{\sigma_{1}})=P^{\sigma_{2}}Q

for some  \sigma_{1},  \sigma_{2}  \in  G . Suppose that  \sigma_{2}  =\tau^{k} . Then  \gamma\gamma^{\tau}\cdots\gamma^{\tau^{k-1}}y^{\sigma_{1}} generates the ideal

 PQ . Therefore, we can construct an integral element

 x

 \gamma\gamma^{\tau}\cdots\gamma^{\tau^{k-1}}y^{\sigma_{1}}

of norm  r . In other words, we have used the element  \gamma to “tWist” the prime ideal  P by

a Galois action, when  P is a factor of a composite ideal.

To make use of this idea, we use the following elements of  \mathbb{Q}(\zeta_{257})^{+} and their norms:
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Element

 \alpha_{2}=b_{0}+b_{1}-b_{114}

 \alpha_{5}=c_{0}+c_{54}+c_{59}+c_{112}

Norm

130043. 529933

529933. 16205393

 \alpha_{6}=c_{0}-c_{7}-c_{19}+c_{36}-c_{88}+c_{115}+c_{123} 16205393. 8737

 \alpha_{7}=c_{0}-c_{1}+c_{13}-c_{52}+c_{106}-c_{121}+c_{122} 1275749. 87372

By choosing the appropriate  \sigma_{1} and  \sigma_{2} in  G , we can construct an element

  \beta_{3}= \frac{\alpha_{2}^{\sigma_{1}}\alpha_{6}^{\sigma_{2}}}{\alpha_{5}}
that has norm 130043. 8737. Next we choose  \sigma_{3} and  \sigma_{4} in  G such that the element

  \beta_{4}= \frac{\alpha_{7}\beta_{1}}{\beta_{3}^{\sigma_{3}}\beta_{3}^{\sigma_
{4}}}
generates the ideal

 ( \beta_{4})= \frac{P^{\sigma_{5}}P^{\sigma_{6}}Q}{P^{\sigma_{7}}P^{\sigma_{8}}
}
where  P and  Q are prime ideals of norm 130043 and 1275749 respectively. Now by

multiplying  \beta_{4} by the appropriate Galois conjugates of  \gamma , we can construct an integral
element  \beta_{5} of norm 1275749.

Next we use the following integral elements and their norms.

Element Norm

 \alpha_{8}=c_{1}-c_{18}+c_{40}+c_{56}-c_{75}+c_{105} 1275749. 4111. 16447

 \alpha_{9}=b_{0}+b_{1}-b_{9}-b_{30}+b_{58}-b_{75}+b_{84} 130043. 16447

 \alpha_{10}=b_{1}+b_{3}+b_{39}+b_{56}-b_{120} 1615501. 41112

 \alpha_{11}  =c_{0}+c_{57}-c_{84}-c_{95}+c_{115} 1615501. 4454086019

 \alpha_{12}  =b_{1}+b_{12}+b_{20}+b_{27}-b_{88}+b_{106} 4454086019. 4111

By dividing  \alpha_{8} by the appropriate conjugate of  \beta_{5} , we can construct an integral element

 \beta_{6} of norm 4111. 16447. We can choose  \sigma_{1},  \sigma_{2},  \sigma_{3},  \sigma_{4}\in G such that

  \beta_{7}= \frac{\alpha_{10}\alpha_{9}^{\sigma_{1}}\alpha_{9}^{\sigma_{2}}}
{\beta_{6}^{\sigma_{3}}\beta_{6}^{\sigma_{4}}}
is an integral element of norm 1615501. 1300432. Now we can use the idea discussed
above to divide  \beta_{7} by  \beta_{1} (which has norm 1300432) after “Galois twisting”  \beta_{1} via
multiplying by the appropriate conjugates of  \gamma . This constructs an integral element  \beta_{8}

of norm 1615501. Now we can divide  \alpha_{11} by the appropriate conjugate of  \beta_{8} to produce

an element  \beta_{9} of norm 4454086019, and finally we can divide  \alpha_{12} by the appropriate

conjugate of  \beta_{9} to construct an integral element  \beta_{10} of norm 4111. Moreover, the

foregoing calculations, while rather elaborate, do construct  \beta_{10} explicitly. Using our

basis (bj), the following integral element has norm 4111:
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[10428599412,  -14580350932,  -3376865511,  -3282951359 , 16341675835, 1606498420, 8793062613,  -10418031177,
 -6534149268 , 3959823353, 2343001669, 10405410440,  -159350108 , 1294971873, 14581294173,  -21855534611,  -10953699563,
1523537643,  -1917408750 , 5120471172, 3796206827, 9634551567, 13161733282,  -2891642657 , 16236634832, 5812863383,
2291902524,  -927271498 , 12344458809,  -5339104130,  -10449175119 , 15360571789, 6867130480, 5172508006,  -7549973967,
211995255,  -3763953981,  -11433299663,  -13615962461 , 5355009796,  -11297606817,  -2556433074 , 6233677121, 3183108998,
9711268884, 1358917812,  -13181014917,  -460664187,  -9867390849,  -7057095944,  -1231901880 , 17841337326, 6865141087,
7050234913, 3378609799, 2597830021,  -1832197251 , 3819792880,  -6992348742,  -5130633052 , 14306839471, 12887464234,
 -18866257486 , 25559309930, 15012086950, 7342448392,  -1447037609 , 10925064191,  -2871628392 , 13674056414,
 -12763449177 , 6465755479,  -8530847721 , 357435101,  -5870464205,  -1053588258,  -6264126033 , 3519819872,  -10418872203,
1209803322, 18036790420,  -16494298977,  -895762797 , 6908038386,  -6385671655 , 2210043491, 14099425376,  -102885514,
6525479595,  -4275376660 , 20281603850, 21656361938,  -41020296 , 1764621668,  -1128485911 , 2185909622,  -3173565968,
 -8361116079,  -16226275883 , 6027752153,  -16755055836 , 714323813, 6857278901, 10406224009, 30155528, 9622569750,
 -14207419941 , 790856920,  -6259612995,  -4506190723,  -22604391522 , 7208517345, 13498834899, 12234015974, 6816024743,
 -8841527344,  -7546114709,  -5966609027 , 9218589829,  -52711198,  -939675580,  -3878241077,  -10089568359,  -3270719023,
3458120705,  -11928861316 , 5827650658, 8477718634  ].

We can examine the quadratic subfield  \mathbb{Q} ( 257) (which has class number 3) to
confirm that 4111 must be the smallest prime which totally splits into principal ideals

in  \mathbb{Q}(\zeta_{257})^{+} . We can also use  \beta_{10},  \beta_{6},  \alpha_{9} and  \beta_{3} to produce integral elements of norms

8737, 16447 and 130043. Setting  S= {4111, 8737, 16447, 130043} and  c=12 , we apply
Theorem 2.2 to show a class number upper bound of 58532. Using Schoof’s table [7],
this proves that the class number is 3.  \square 

§5. The class number of  \mathbb{Q}(\zeta_{263})^{+}

Proposition 5.1. Under the generalized Riemann hypothesis, the class numbe

of  \mathbb{Q}(\zeta_{263})^{+} is 1.

Proof. As the conductor of the real cyclotomic field gets larger, it becomes much

more difficult to directly find integral elements of small prime norm. The smallest

prime norm that we found directly is 19062767, which is too large to be useful, so more

elaborate methods must be used. Using our alternative basis of cyclotomic integers, we

find the following element and its norm, which will prove critical to our calculations:

 N(c_{0}-c_{1}+c_{30}+c_{50}+c_{57}+c_{125})=263 . 904732:

The prime 263 is totally ramified, and the element  2b_{0}-b_{1} has norm 263, so the quotient

 \beta_{1} =(c_{0}-c_{1}+c_{30}+c_{50}+c_{57}+c_{125})/(2b_{0}-b_{1})

is integral and has norm 904732. Finding an element of square of prime norm is quite
useful. It generates a principal ideal of the form  PP^{\sigma} , where  P is an prime ideal of norm

90473 and  \sigma is a Galois automorphism (possibly trivial). Suppose that  \sigma is nontrivial.
Since the field is cyclic and of odd prime degree,  P would have to be principal. Indeed,

if  \sigma is nontrivial, then  \sigma generates  Ga1(\mathbb{Q}(\zeta_{263})^{+}/\mathbb{Q}) , and we would have  P  =  (\beta_{2}) ,
where

  \beta_{2}= \frac{90473}{\beta_{1}^{\sigma}\beta_{1}^{\sigma^{3}}\beta_{1}
^{\sigma^{5}}\cdots\beta_{1}^{\sigma^{129}}}.
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To verify that  \sigma really is nontrivial and to calculate  \beta_{2} explicitly, we can, by trial
and error, calculate the above quotient for each  \sigma\in  Ga1(\mathbb{Q}(\zeta_{263})^{+}/\mathbb{Q}) until we find an
element that is integral. We successfully find an element  \beta_{2} with norm 90473. Explicitly,
using our basis (bj), we have
 \beta_{2}  = [91093658332149, 46685768271369, 68361335338819, 70449701906399, 31843826845597, 71908870045208,
27348493133994, 33754439477092, 44962750769433,  -1508515343175 , 38936510401862, 5192389684002, 3856782750979,
30811441093606,  -13800153606985 , 29501013048266, 12698371445207, 5972682159799, 47522592180973, 6984009026336,
47796072467378, 45431238836744, 28923021502479, 76508506511574, 36427352941694, 65288348301432, 70729148827096,
39222853791302, 83890582919007, 42561006315902, 54359680367799, 65856630526478, 21771108627025, 62485586062044,
26270613224325, 25094463692233, 47568054578494, 125103582406, 40199642477044, 17255996070330, 8020908354451,
43727515821674,  -1224030726933 , 36725858965513, 28721683898737, 11059835997195, 55772756914003, 13963391285317,
44428872659723, 48817768645436, 20806767869799, 68256402498630, 29533198999197, 47647209752074, 61820560465718,
23399606060785, 68941541644779, 35080264238375, 39477647868923, 62954375684249, 17926845492145, 60044369932817,
35355012024759, 27811028989986, 61007592764110, 14202408842359, 51237426002148, 38049808198331, 19048314247332,
59172601836849, 12845180380311, 41215485711317, 39372324585845, 9507804081257, 53457153938823, 11150392769067,
29804191547363, 40985902129113, 4145466953423, 51035020787945, 17645569166106, 27171632487894, 51999047781356,
11617148558946, 58380593320006, 35709375065281, 34271393487151, 69329058912370, 26009828407571, 66912441681898,
53689198914325, 38297029552571, 78021970342828, 31559126022913, 60846711527437, 55304155983289, 24952006088441,
65163951384176, 18339935726356, 34630357356142, 39133556811954,  -982220989357 , 41344881716202, 2613790588508,
10778478428163, 31190967040067,  -9846880977122 , 37002211890541, 13289474010174, 15539069958255, 51634030002302,
11894975122939, 57793409741762, 46922638944671, 37965909423900, 81212332710005, 38872529472440, 73929528055148,
70028966094730, 44443940224036, 86511154348392, 40219032166425, 58939087815398, 60743505389903, 20146235684074,
59689390807667, 15613793165531, 21298434543273, 34515562251936,  -11239938639024 , 30781542318124  ].

This element has prime norm that is relatively small, so we can take quotients with it to

find several other useful elements. Searching over sparse vectors, we find the following
elements and their norms:

Element Norm

 \alpha_{1}  =b_{1}-b_{2}-b_{6}+b_{39}-b_{45}-b_{130} 90473. 123083

 \alpha_{2}  =c_{0}+c_{11}-c_{59}-c_{62}+c_{67} 123083. 699581

 \alpha_{3}=b_{0}+b_{1}-b_{3}+b_{30}+b_{72}-b_{113}+b_{117} 123083. 4900741

 \alpha_{4}=b_{1}+b_{5}+b_{9}-b_{34}-b_{38}-b_{65}  263 . 4900741. 64930493

 \alpha_{5}  =b_{0}+b_{1}+b_{8}+b_{10}-b_{33}-b_{35}-b_{37} 64930493. 12308399

 \alpha_{6}=b_{0}+b_{1}+b_{51}-b_{100} 12308399. 1713181

 \alpha_{7}=b_{0}+b_{1}+b_{2}+b_{27}-b_{57}+b_{115}+b_{119} 1713181. 476213047

 \alpha_{8}=c_{0}+c_{1}-c_{11}-c_{68}-c_{73}+c_{75}+c_{91} 476213047. 5458303

As usual, we can divide  \alpha_{4} by  2b_{0}-b_{1} to get an integral element of norm 4900741 .

64930493. Then we can take quotients by the appropriate Galois conjugates to con‐

struct integral elements of  \beta_{3},  \beta_{4} and  \beta_{5} of prime norms 123083, 699581 and 5458303

respectively.

We recall an idea introduced in Section 3. If we have 3 elements of “almost prime”

norms  p_{1}p_{2},  p_{2}p_{3} and  p_{3}p_{1} (where  p_{1},p_{2} and  p_{3} are distinct primes), then we can take
products and quotients by the appropriate Galois conjugates to construct an element

of  p_{1}^{2} . This generalizes to a sequence of elements of norms

 p_{1}p_{2},  p_{2}p_{3},  p_{3}p_{4} , . . . ,  p_{2k}p_{2k+1},  p_{2k+1}p_{1}.

We can think of this in terms of graph theory: Let every prime number  p_{i} correspond

to a vertex  v_{i} , and draw edges between vertices  v_{i} and  v_{j} whenever we find an element

of norm   p_{i}p\cdot . Then our goal is to find a cycle in the graph of odd length. In such a
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case, we can construct elements of square of prime norm  p_{i}^{2} for each vertex  v_{i} in the

cycle. We can then exploit this square of prime norm as before. To carry out this idea,

we search over the sparse vectors and find:

Element Norm

 (b_{1}+b_{6}+b_{74}+b_{81}-b_{111})/\beta_{2}^{\sigma_{1}} 1051. 970469

 b_{0}+b_{1}-b_{3}+b_{50}-b_{78} 970469. 127817

 (c_{0}-c_{2}-c_{12}-c_{15}+c_{32}+c_{126})/\beta_{3}^{\sigma_{2}} 127817. 53653

 c_{0}-c_{13}+c_{63}+c_{77}+c_{96}+c_{102}+c_{111} 53653. 13166917739

 b_{1}+b_{8}-b_{35} 13166917739. 1458599

 (b_{0}+b_{1}-b_{13}-b_{59}+b_{85}-b_{120})/\beta_{4}^{\sigma_{3}} 1458599. 87317

 (b_{1}+b_{2}-b_{8}+b_{61}-b_{100}-b_{101})/(2b_{0}-b_{1}) 87317. 44711

 (b_{0}+b_{1}+b_{3}-b_{12}-b_{14}-b_{55}-b_{62})/\beta_{5}^{\sigma_{4}} 44711. 6311

 (c_{0}+c_{4}+c_{10}-c_{19}+c_{38}-c_{64}+c_{118})/\beta_{3}^{\sigma_{5}} 6311. 23143

 c_{0}-c_{5}-c_{37}+c_{63}-c_{93}+c_{114}+c_{123} 23143. 4733

 (b_{1}+b_{7}+b_{13}+b_{27}-b_{34}+b_{104})/\beta_{2}^{\sigma_{6}} 4733. 61453

 (b_{1}-b_{7}+b_{26}-b_{97}+b_{103}-b_{118})/(2b_{0}-b_{1}) 61453. 29983

 b_{0}+b_{1}-b_{32}-b_{34}-b_{51}-b_{80} 29983. 213557

 (b_{0}+b_{1}-b_{11}+b_{23}-b_{94}-b_{111}-b_{116})/\beta_{2}^{\sigma_{7}} 213557. 58802591

 (b_{1}-b_{3}-b_{29}+b_{30})/(2b_{0}-b_{1}) 58802591. 1051

Note that, where necessary, we divided by the appropriate Galois conjugates of  \beta_{2},  \beta_{3},  \beta_{4}

and  \beta_{5} , or by the generator  2b_{0}-b_{1} of the totally ramified prime over 263, in order to

obtain quotients with our desired norms. We now have a cycle of odd length:

 1051arrow 970469arrow 127817arrow 53653arrow 13166917739arrow 1458599arrow 
87317arrow 44711

 arrow 6311arrow 23143arrow 4733arrow 61453arrow 29983arrow 213557arrow 
58802591arrow 1051

From this cycle of elements almost prime norms, we can construct an integral element
 \beta_{6} of norm 10512. Then we can proceed as we did earlier, checking the quotient

 1051

 \beta_{6}^{\sigma}\beta_{6}^{\sigma^{3}}\beta_{6}^{\sigma^{5}} . . .  \beta_{6}^{\sigma^{129}}

for each  \sigma  \in  Ga1(\mathbb{Q}(\zeta_{263})^{+}/\mathbb{Q}) until (possibly) finding an integral element which has
norm 1051. Indeed, using our basis  (b\cdot) , we can explicitly find such an element of norm
1051:

[4937323371016121050282685, 7580985651254745650097999,  -15454228060200010194585361 , 11608250910891216977766181,
8296951211820526848129067,  -9495171525321871549373872 , 17645422254251463645324666, 5037486883361967412831486,
8226092826053271032519287,  -152383476435158076536001 , 7435157508565396487106611,  -16189201598582115346730956,
 -7375143169639161472468879 , 18268044283729666528882811, 4815485446067692852689706, 19177165581900105859528702,
11698772752195721891068003, 1041424353963302055215132,  -2382318783343172818953068 , 17044292631647803318016129,
3627486085528583685696700, 5661403194326210808810951,  -6859888720765748512851989,  -8044209564042405580987222,
40372271074116315444238221, 13514515623562583503868333, 1721876421192351601694493, 1854130892721851476750639,
 -106818807941735581739542,  -22188285281212830341990246 , 12107713304363838848319057, 27876388900050076046304382,
 -25065428653532648377872053,  -539149836758209163160874,  -2328448882933695126666404 , 19720451192722162362715614,
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5183402481594776272073056, 3070079613236588473348308, 557404178221304169517505,  -15671421346530645752036888,
24465543254965552742381172,  -3239194050065843348774007 , 27687729968673161874914941,  -6956905450300249689125728,
 -9310875728833380148688706 , 28950046397208797979470158, 2628209303620153073223782, 28878888265926542545187937,
6014131530894172652176016, 8786324643481982873069450,  -7659052601761765596529789 , 8651864403211799316467909,
15763559308497163469212481,  -15462747089211699209073811 , 7298456478753066853398345, 8131880066615816065040497,
22143388439637833489860792,  -8624993606325920654380161 , 8616543704285506374576379, 6439735433195270919019289,
 -27441354570116405815700467 , 8083412651361837040479448, 7140146458949969097444796, 2831087411345242355314988,
 -4742431533824637454335 , 8940076003727227903448952, 2163127651757719782350518, 3502293973161221804209283,
 -362096683439023622623737,  -6227887929413307287253518 , 2950426141122150913844458,  -6099713142344536185512967,
 -6783533897373198256636445 , 7308811535345218572623567, 15868491355070957666070338,  -18251971386967251083847596,
12149565106976202046775609,  -130615237535109853187008,  -23730259142802785060592922 , 28005213262079261333449884,
19766027253080412358252320,  -3481629093702592372579574,  -17208270895693481446856205 , 9135854177896155087808817,
 -6869463668800132145443618 , 13705613590230971718353462, 35965041621721574748713073, 1755805938936159921997772,
13082737564209133441010535,  -18898296341135944662999456 , 17298879232295934189879251, 20798019859809522571449313,
 -8727613794813937153770520,  -6391516993999047903694707 , 1005358431074813357784871, 20356866090384805785582136,
 -5966863028929595238680899 , 25708459248106153757803372, 3352626089863497362135314,  -17371358398865691283651655,
1067957234249668753244868, 6895739498621604552642609, 9465262644597347439142424,  -10130558278699310495908296,
13320906648123109938353254, 7171813282236382071494350, 18577304521007886613864306, 21519658902353620030959575,
5067751152625569650679454,  -7270926680139746243053038,  -1407546160726375513909224 , 27804845975661324384600067,
7289774367789067076488795, 9911758503655367402135287, 4806026277539367212716851,  -41014010804350294929013,
14796696251090875725776, 24646934442260944568444407, 17004395363060668135123584,  -3609362046631864841561597,
6937048879782102271568180,  -19617204369642735068052376 , 19898251979525630228175596,  -5546277103866192374748246,
 -14317858989119013215370653 , 14025821872815339163286543,  -1796871838428920985559021 , 5162993697982116313208980,
7059704827495415958136366, 21123139975575369993266070,  -26108407463418308251799058]

We can now conclude that all the primes in the cycle given above totally split into

principal ideals. Setting  S= {1051, 4733, 6311} and  c=  10 , we apply Theorem 2.2 to
show a class number upper bound of 2152. Using Schoof’s table [7], this proves that
the class number is 1.  \square 

This completes the proof of Theorem 1.1.

§6. Concluding remarks

Although the difficulty of finding generators for principal prime ideals seems to

grow exponentially with the degree of the field, the author hopes that further ideas can

be found that would allow the calculation of the class number of cyclotomic fields  0

larger conductor than is currently possible.
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