On the Iwasawa λ-invariants of cyclotomic \mathbb{Z}_{2}-extensions of real abelian fields

By

Takae Tsujı*

Abstract

Let p be a prime number and k a real abelian field. We denote by $\lambda_{p}(k)$ the Iwasawa λ-invariant associated to the ideal class group of the cyclotomic \mathbb{Z}_{p}-extension of k. It is conjectured that $\lambda_{p}(k)=0$. In [9], [10] and [11], Ichimura and Sumida discovered a good method for verifying that $\lambda_{p}(k)=0$ for an odd prime number p. In this paper, we give a criterion for $\lambda_{2}(k)=0$, as a generalization of the preceding result [6]. Our criterion is considered as an even prime version of the theorem of Ichimura and Sumida.

§ 1. Introduction

Let p be a prime number. For a number field k, let k_{∞} denote the cyclotomic \mathbb{Z}_{p}-extension. We denote respectively by $\lambda_{p}(k)$ and $\mu_{p}(k)$ the Iwasawa λ-invariant and the μ-invariant associated to the ideal class group of k_{∞}. If k is a totally real number field, it is conjectured that $\lambda_{p}(k)=\mu_{p}(k)=0([8],[13$, page 316$])$, which is often called Greenberg's conjecture. For an abelian field k, we know $\mu_{p}(k)=0$ by the FerreroWashington theorem [3].

When p is odd and k is a real abelian field whose degree is not divisible by p, Ichimura and Sumida ([9], [10], [11]) discovered a good method for verifying the conjecture. It is suitable for a practical computer calculation, and for example, using it they showed that $\lambda_{3}(\mathbb{Q}(\sqrt{m}))=0$ with all positive integers m less than 10^{4}. In [17], the author removed the assumption that $p \nmid[k: \mathbb{Q}]$ in the theorem of Ichimura and Sumida and generalized their theorem to an arbitrary real abelian field k.

In this paper, we study the case where $p=2$. When $p=2$ and $k=\mathbb{Q}(\sqrt{m})$ is a real quadratic field with prime number m, a study of Greenberg's conjecture began

[^0]from Ozaki and Taya [14] and further development has been made by Fukuda and Komatsu [4], [5]. They gave some criteria for $\lambda_{2}(\mathbb{Q}(\sqrt{m}))=0$ with prime number m and showed that $\lambda_{2}(\mathbb{Q}(\sqrt{m}))=0$ for all prime numbers m less than 10^{5} except $m=13841,67073$. Furthermore, Fukuda, Komatsu, Ozaki and the author [6] gave a sufficient condition for $\lambda_{2}(\mathbb{Q}(\sqrt{m}))=0$ with prime number m, which is considered a slight modification of the method of Ichimura and Sumida. By using this criterion, we showed that $\lambda_{2}(\mathbb{Q}(\sqrt{m}))=0$ for $m=13841,67073$. In this paper, we study the case where k not only is a real quadratic field $\mathbb{Q}(\sqrt{m})$ but is an arbitrary real abelian field. We will give a sufficient and necessary condition for $\lambda_{2}(k)=0$ (Theorem 2.1), which is the same form as the criterion of Ichimura and Sumida. For the case where p is odd, a key of the proof of the criterion is a structure theorem of semi-local units modulo cyclotomic units in the cyclotomic \mathbb{Z}_{p}-extension of k proved by Iwasawa [12], Gillard [7] and the author [15]. This structure theorem is invented by Iwasawa when p is odd and k is the p-cyclotomic field, and is generalized by Gillard to the case where p is an arbitrary prime number and k is an abelian field with $p \nmid[k: \mathbb{Q}]$. Furthermore, when p is odd, the author removed the assumption that $p \nmid[k: \mathbb{Q}]$ in the theorem of Iwasawa and Gillard. Recently, the author [18] determined the structure of semi-local units modulo cyclotomic units when $p=2$ and k is an arbitrary abelian field. By using this result, we can prove our theorem in the same way as the proof of Ichimura and Sumida.

In [17, Theorem 2.2], for an odd prime number p, we not only generalized the criterion of Ichimura and Sumida but obtained a simple sufficient condition for $\lambda_{p}(k)=0$ in the special case where the degree of k is divisible by p (for an application see [16]). When $p=2$, a similar result does not hold since the structure of the semi-local units for $p=2$ is different from that for an odd prime number p.

I would like to thank Professor Keiichi Komatsu and Professor Takashi Fukuda who recommended her writing this paper.

§ 2. Main result

Let χ be a non-trivial $\overline{\mathbb{Q}_{2}}$-valued even Dirichlet character of the first kind with respect to the cyclotomic \mathbb{Z}_{2}-extension, i.e. the conductor of χ is not divisible by 8 , and $k=k_{\chi}$ the fixed field of the kernel of χ. We denote by k_{∞} the cyclotomic \mathbb{Z}_{2}-extension of k with its n-th layer $k_{n}(n \geq 0)$. We write $A_{n}=A_{k_{n}}$ for the 2-Sylow subgroup of the ideal class group of k_{n} and put $X:=\underset{\varlimsup}{\lim } A_{n}$, the projective limit being taken with respect to the relative norms. We put $\Delta:=\operatorname{Gal}(k / \mathbb{Q})$ and $\Gamma:=\operatorname{Gal}\left(k_{\infty} / k\right)$, so $\operatorname{Gal}\left(k_{\infty} / \mathbb{Q}\right)=\Delta \times \Gamma$ since χ is of the first kind. Then we regard X as a module over the completed group ring $\mathbb{Z}_{2}[\Delta] \llbracket \Gamma \rrbracket$. It is well-known that X is finitely generated and torsion over $\mathbb{Z}_{2}[\Delta] \llbracket \Gamma \rrbracket([13$, Theorem 5$])$. Let \mathcal{O} denote the ring generated by the values of χ over \mathbb{Z}_{2}. For any $\mathbb{Z}_{2}[\Delta]$-module M, we define an \mathcal{O}-module M^{χ}, the χ-part of M,
by

$$
M^{\chi}:=\left\{m \in M \otimes_{\mathbb{Z}_{2}} \mathcal{O} \mid \delta m=\chi(\delta) m \forall \delta \in \Delta\right\} .
$$

If χ^{\prime} is an \mathbb{Q}_{2}-conjugate of χ, then $M^{\chi^{\prime}} \cong M^{\chi}$. Then \mathcal{O}-modules A_{n}^{χ} and X^{χ} are defined, and $X^{\chi}=\lim _{幺} A_{n}^{\chi}$ becomes an $\mathcal{O} \llbracket \Gamma \rrbracket$-module. Denote by $\boldsymbol{\mu}_{2^{n}}$ the group of 2^{n}-th roots of unity for $n \geq 0$ and $\boldsymbol{\mu}_{2 \infty}:=\bigcup_{n} \boldsymbol{\mu}_{2^{n}}$. We fix a topological generator γ of Γ and define $q \in 4 \mathbb{Z}_{2}$ by $\left(\zeta+\zeta^{-1}\right)^{\gamma}=\zeta^{1+q}+\zeta^{-1-q}$ for all $\zeta \in \boldsymbol{\mu}_{2^{\infty}}$. We identify, as usual, the completed group ring $\mathcal{O} \llbracket \Gamma \rrbracket$ with the power series ring $\Lambda:=\mathcal{O} \llbracket T \rrbracket$ by $\gamma=1+T$. Thus, X^{χ} is regarded as a module over Λ, and is finitely generated and torsion over Λ. For a finitely generated torsion Λ-module M, denote by $\operatorname{char}_{\Lambda} M$ the characteristic polynomial of M, which is a uniquely determined distinguished polynomial times a power of a fixed prime element of \mathcal{O}. We denote by $\lambda_{2}(\chi)$ (resp. $\left.\mu_{2}(\chi)\right)$ the λ-invariant (resp. μ-invariant) of X^{χ}. We know $\mu_{2}(\chi)=0$ by the Ferrero-Washington theorem [3]. Greenberg's conjecture for χ is as follows:

Conjecture. Let χ be an even Dirichlet character of the first kind. It is conjectured X^{χ} to be finite, that is, $\operatorname{char}_{\Lambda} X^{\chi}=1$ or equivalently $\lambda_{2}(\chi)=0$.

For the trivial character χ_{0}, we know $\lambda_{2}\left(\chi_{0}\right)=0$. One can see that Greenberg's conjecture for a real abelian field K, i.e. $\lambda_{2}(K)=0$ is equivalent to saying that $\lambda_{2}(\chi)=0$ for all characters χ of $\operatorname{Gal}(K / \mathbb{Q})$ of the first kind by using the Ferrero-Washington theorem [3] (see [17, Lemma 2.1]).

We will give a criterion for $\lambda_{2}(\chi)=0$. To state this, we need to recall the relation between $\operatorname{char}_{\Lambda} X^{\chi}$ and the Kubota-Leopoldt 2-adic L-function $L_{2}(s, \chi)$ associated to χ. By Iwasawa, there exists a unique power series $g_{\chi}(T)$ in $\mathcal{O} \llbracket T \rrbracket$ such that

$$
g_{\chi}\left((1+q)^{s}-1\right)=\frac{1}{2} L_{2}(1-s, \chi)
$$

(cf. [19, Theorem 7.10]). Using the 2-adic Weierstrass preparation theorem and the Ferrero-Washington theorem [3], one can uniquely write

$$
\begin{equation*}
g_{\chi}(T)=u_{\chi}(T) P_{\chi}(T) \tag{2.1}
\end{equation*}
$$

where $P_{\chi}(T)$ is a distinguished polynomial in $\mathcal{O}[T]$ and $u_{\chi}(T)$ is a unit of Λ. Put $\lambda_{2}(\chi)^{*}=\operatorname{deg} P_{\chi}(T)$. It follows from the Iwasawa main conjecture proved in [20] that

$$
\begin{equation*}
\operatorname{char}_{\Lambda} X^{\chi} \mid P_{\chi}(T) \tag{2.2}
\end{equation*}
$$

and hence $\lambda_{2}(\chi) \leq \lambda_{2}(\chi)^{*}$ (see (3.2) and (3.3)). Therefore we have $\operatorname{char}_{\Lambda} X^{\chi}=1$ if and only if $P(T) \nmid \operatorname{char}_{\Lambda} X^{\chi}$ for all distinguished irreducible factors $P(T)$ of $P_{\chi}(T)$.

We state our main theorem of this paper, which is an even prime version of the theorems of Ichimura and Sumida [11] and the author [17]. We have to prepare some
notation. We fix a distinguished polynomial $P(T)$ in $\mathcal{O}[T]$ such that $P(T) \mid P_{\chi}(T)$. Put $\omega_{n}=\omega_{n}(T)=(1+T)^{2^{n}}-1$ and $\nu_{n}=\nu_{n}(T)=\omega_{n} / T$ for $n \geq 0$. By the Leopoldt conjecture for $p=2$ and k_{n} proved in [1], $\Lambda /\left(P, \omega_{n}\right)$ and $\Lambda /\left(P, \nu_{n}\right)$ are finite abelian groups for any $n \geq 0$. We denote by $m_{P, n}$ the exponent of $\Lambda /\left(P, \omega_{n}\right)$ (resp. $\Lambda /\left(P, \nu_{n}\right)$) if $\chi(2) \neq 1$ (resp. $\chi(2)=1$). Then we take a polynomial $X_{P, n}(T)$ in $\mathcal{O}[T]$ satisfying

$$
X_{P, n}(T) P(T) \equiv m_{P, n} \quad \bmod \begin{cases}\omega_{n} & \text { if } \chi(2) \neq 1 \tag{2.3}\\ \nu_{n} & \text { if } \chi(2)=1\end{cases}
$$

This polynomial $X_{P, n}$ is uniquely determined modulo ω_{n} (resp. ν_{n}) since ω_{n} and $P(T)$ are relatively prime. Choose an element $\widetilde{Y}_{P, n}$ in $\mathbb{Z}[\Delta][T]$ such that

$$
\widetilde{Y}_{P, n} \equiv \widetilde{X}_{P, n} \bmod m_{P, n},
$$

where $\widetilde{X}_{P, n}$ is an element of $\mathbb{Z}_{2}[\Delta][T]$ satisfying $\chi\left(\widetilde{X}_{P, n}\right)=X_{P, n}$. Here we regard χ as a $\mathbb{Z}_{2}[T]$-linear homomorphism $\mathbb{Z}_{2}[\Delta][T] \rightarrow \mathcal{O}[T]$ induced by χ. For any $m \geq 1$, we fix a primitive m-th root ζ_{m} of unity with the property that $\zeta_{m m^{\prime}}^{m^{\prime}}=\zeta_{m}$ for all $m^{\prime} \geq 1$. Let f be the odd part of the conductor of χ, so the conductor of χ is f or $4 f$. Since χ is a nontrivial even character of the first kind, we have $f \neq 1$. Put $k^{\prime}=\mathbb{Q}\left(\zeta_{f}\right) \cap k\left(\zeta_{4}\right)$, then we have $k^{\prime}\left(\zeta_{4}\right)=k\left(\zeta_{4}\right)$. We put $G=\operatorname{Gal}\left(k^{\prime} / \mathbb{Q}\right)$ and identify G with $\operatorname{Gal}\left(k\left(\zeta_{4}\right) / \mathbb{Q}\left(\zeta_{4}\right)\right)$. We have $\operatorname{Gal}\left(k\left(\zeta_{4}\right) / \mathbb{Q}\right) \cong G \times \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{4}\right) / \mathbb{Q}\right)$. We regard χ as a character of $\operatorname{Gal}\left(k\left(\zeta_{4}\right) / \mathbb{Q}\right)$ and $\psi=\left.\chi\right|_{G}$. Let ω be the Teichmüller character $\bmod 4$, i.e. the non-trivial character of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{4}\right) / \mathbb{Q}\right)$. Then χ is ψ or $\psi \omega$ according to the conductor of χ is f or $4 f$. Let G_{2} (resp. G^{\prime}) denote the 2-Sylow subgroup (resp. the odd part) of G :

$$
G=G_{2} \times G^{\prime}
$$

We put $\psi^{\prime}=\left.\psi\right|_{G^{\prime}}$. Let

$$
e_{\psi^{\prime}}:=\frac{1}{\# G^{\prime}} \sum_{g \in G^{\prime}} \operatorname{Tr}\left(\psi^{\prime}(g)\right) g^{-1}
$$

be the idempotent of $\mathbb{Z}_{2}\left[G^{\prime}\right]$ corresponding to ψ^{\prime}, where Tr is the trace map from the field generated by the values of ψ^{\prime} over \mathbb{Q}_{2} to \mathbb{Q}_{2}. Let $\alpha \in \mathbb{Z}[G]$ denote an element of G_{2} of order 2 (resp. $\alpha=0$) if G_{2} is non-trivial (resp. trivial), and $\mathbf{e}_{\psi}=\mathbf{e}_{\psi, P, n}$ an element of $\mathbb{Z}[G]$ such that

$$
\mathbf{e}_{\psi} \equiv e_{\psi^{\prime}}(1-\alpha) \bmod m_{P, n}
$$

We use cyclotomic units defined as follows

$$
c_{n}=N_{\mathbb{Q}\left(\zeta_{f 2^{n+2}}\right) / k\left(\zeta_{2^{n+2}}\right)}\left(1-\zeta_{f 2^{n+2}}\right) .
$$

Since $f \neq 1$, it is well-known that c_{n} is a unit. Furthermore, we can see that $c_{n}^{\mathbf{e}_{\psi}}$ is an element of k_{n} ([18]). We remark that our cyclotomic unit c_{n} is slightly different
from the cyclotomic unit c_{n} which appeared in the criteria in [9], [11] and [17]. By the identification $\gamma=1+T$, the element $\widetilde{Y}_{P, n}$ of $\mathbb{Z}[\Delta][T]$ can act on the group k_{n}^{\times}. For each $n \geq 0$ consider the following condition:

$$
\left(H_{P, n}\right) \quad c_{n}^{\mathbf{e}_{\psi} \widetilde{Y}_{P, n}} \notin\left(k_{n}^{\times}\right)^{m_{P, n}}
$$

We can see that the condition $\left(H_{P, n}\right)$ does not depend on the choices of $X_{P, n}, \widetilde{X}_{P, n}$ and $\widetilde{Y}_{P, n}$. We remark that, in the case where $\chi(2)=1$, the condition $\left(H_{P, 0}\right)$ does not hold since $c_{0}=1$ and $m_{P, 0}=1$ for any $P(T)$. We can show that the condition $\left(H_{P, n}\right)$ implies $\left(H_{P, n+1}\right)$ in a way similar to [11, Lemma 1] by using Lemma 4.1.

Our main theorem is stated as follows:
Theorem 2.1. Let $P(T)$ be a distinguished polynomial in $\mathcal{O}[T]$ such that $P(T) \mid$ $P_{\chi}(T)$. Then we have $P(T) \nmid \operatorname{char}_{\Lambda} X^{\chi}$ if and only if the condition $\left(H_{P, n}\right)$ holds for some $n \geq 0$.

In the case where $\chi \omega^{-1}(2)=1$, we know that $T-q \mid P_{\chi}(T)$ and $T-q \nmid \operatorname{char}_{\Lambda} X^{\chi}$ ([2, Proposition 2]). This theorem is an even prime version of [11, Theorem] and [17, Theorem 2.6]. We note that we can verify the condition in the theorem by a congruence relation. That is, the condition $\left(H_{P, n}\right)$ is equivalent to saying that there exists a prime ideal \mathfrak{l} of k_{n} of degree one for which the condition

$$
c_{n}^{\mathbf{e}_{\psi} \widetilde{Y}_{P, n}} \bmod \mathfrak{l} \notin\left((\mathbb{Z} / l \mathbb{Z})^{\times}\right)^{m_{P, n}}
$$

holds where $l \mathbb{Z}=\mathfrak{l} \cap \mathbb{Q}$ by the Chebotarev density theorem.
By using (2.2), we obtain the following:
Corollary 2.2. We have $\lambda_{2}(\chi)=0$ if and only if for any distinguished irreducible factor $P(T)$ of $P_{\chi}(T)$, the condition $\left(H_{P, n}\right)$ holds for some $n \geq 0$.

§ 3. Preliminaries

We first recall the Iwasawa main conjecture and see its consequence (2.2). Let M / k_{∞} be the maximal abelian 2-extension unramified outside 2 and L / k_{∞} the maximal unramified abelian 2-extension. As usual, we consider $\operatorname{Gal}\left(M / k_{\infty}\right), \operatorname{Gal}\left(L / k_{\infty}\right)$ and $\operatorname{Gal}(M / L)$ as $\mathbb{Z}_{2}[\Delta] \llbracket \Gamma \rrbracket$-modules. Let \wp be a prime ideal of k over 2 . There exists a unique prime ideal \wp_{n} of k_{n} over \wp since k is of the first kind. We denote by $U_{n, \wp}$ the group of principal units in the completion $k_{n, \wp}$ of k_{n} at \wp_{n}. Put

$$
\mathcal{U}_{n}:=\prod_{\S \mid 2} U_{n, \wp}
$$

where \wp runs over all prime ideals of k over 2 . Let E_{n}^{\prime} be the group of units ϵ of k_{n} such that $\epsilon \equiv 1 \bmod \wp_{n}$ for all $\wp_{n} \mid 2$. Let \mathcal{E}_{n} be the closure of the image of E_{n}^{\prime} under the diagonal map $E_{n}^{\prime} \rightarrow \mathcal{U}_{n}$. Put

$$
\mathcal{U}:=\lim _{\leftrightarrows} \mathcal{U}_{n}, \quad \mathcal{E}:=\lim _{\check{ }} \mathcal{E}_{n},
$$

where the projective limits are taken with respect to the relative norms. We regard \mathcal{U} and \mathcal{E} as modules over $\left.\mathbb{Z}_{2}[\Delta] \llbracket \Gamma\right]$. By class field theory, we have the following isomorphisms of $\mathbb{Z}_{2}[\Delta] \llbracket \Gamma \rrbracket$-modules:

$$
\begin{equation*}
X \cong \operatorname{Gal}\left(L / k_{\infty}\right), \quad \mathcal{U} / \mathcal{E} \cong \operatorname{Gal}(M / L) \tag{3.1}
\end{equation*}
$$

Put

$$
\mathfrak{X}:=\operatorname{Gal}\left(M / k_{\infty}\right) .
$$

It is known that \mathfrak{X} is finitely generated and torsion over $\mathbb{Z}_{2}[\Delta] \llbracket \Gamma \rrbracket([13$, Theorem 17$])$, and we further see that this is finitely generated as a \mathbb{Z}_{2}-module by [3], so X and $\mathcal{U} / \mathcal{E}$ are also finitely generated over \mathbb{Z}_{2}. Hence we have

$$
\begin{equation*}
\operatorname{char}_{\Lambda} X^{\chi} \cdot \operatorname{char}_{\Lambda}\left(\mathcal{U}^{\chi} / \mathcal{E}^{\chi}\right)=\operatorname{char}_{\Lambda} \mathfrak{X}^{\chi} . \tag{3.2}
\end{equation*}
$$

The Iwasawa main conjecture proved in [20] asserts that the torsion Λ-module \mathfrak{X}^{χ} has the characteristic polynomial $P_{\chi}(T)$:

$$
\begin{equation*}
\operatorname{char}_{\Lambda} \mathfrak{X}^{\chi}=P_{\chi}(T) . \tag{3.3}
\end{equation*}
$$

Hence the relation (2.2), $\operatorname{char}_{\Lambda} X^{\chi} \mid P_{\chi}(T)$, holds. Furthermore, $\lambda_{2}(\chi)=0$ is equivalent to the following:

$$
\operatorname{char}_{\Lambda}\left(\mathcal{U}^{\chi} / \mathcal{E}^{\chi}\right)=P_{\chi}(T) .
$$

Next we recall results on the structures of the Λ-modules \mathcal{U}^{χ} and $\mathcal{U}^{\chi} / \mathcal{C}^{\chi}$ in [18] (Theorem 3.1), which are essentially used in the proof of our main theorem. (\mathcal{C}^{χ} is a group of cyclotomic units defined below.) Since $f \neq 1, c_{n}=N_{\mathbb{Q}\left(\zeta_{f 2^{n+2}}\right) / k\left(\zeta_{2^{n+2}}\right)}(1-$ $\left.\zeta_{f 2^{n+2}}\right)$ is a unit of $k_{n}\left(\zeta_{4}\right)=k\left(\zeta_{2^{n+2}}\right)$, and $c_{n} \equiv 1 \bmod \wp_{n}^{\prime}$ where \wp_{n}^{\prime} is the unique prime ideal of $k\left(\zeta_{4}\right)$ above \wp_{n}. We regard c_{n} as an element of $\widehat{k_{n}\left(\zeta_{4}\right)^{\times}} \otimes \mathcal{O}$, where $\widehat{k_{n}\left(\zeta_{4}\right)^{x}}$ is the 2-adic completion of $k_{n}\left(\zeta_{4}\right)^{\times}$. We define $\xi_{\psi} \in \mathcal{O}[G]$ by

$$
\xi_{\psi}:=\sum_{\delta \in G} \psi(\delta)^{-1} \delta .
$$

Then we see that $c_{n}^{\xi_{\psi}}=\sum_{\delta \in G} c_{n}^{\delta} \otimes \psi(\delta)^{-1}$ is an element of \mathcal{E}_{n}^{χ} in [18]. We can see that $N_{m, n}\left(c_{m}\right)=c_{n}$ for all $m \geq n \geq 0$. Then we put

$$
c_{\infty}^{\xi_{\psi}}:=\left(c_{n}^{\xi_{\psi}}\right)_{n \geq 0} \in \mathcal{U}^{\chi}=\lim _{\rightleftarrows} \mathcal{U}_{n}^{\chi}
$$

and denote by \mathcal{C}^{χ} the submodule of \mathcal{U}^{χ} generated by $c_{\infty}^{\xi_{\psi}}$ over Λ.
Let \mathbb{T}_{n} denote the \mathbb{Z}_{2}-torsion of \mathcal{U}_{n} and put $\mathbb{T}:=\lim _{\leftrightarrows} \mathbb{T}_{n}$, where the projective limit is taken with respect to the relative norms. Then \mathbb{T}_{n} is $\boldsymbol{\mu}_{2^{n+2}} \otimes_{\mathbb{Z}_{2}} \mathbb{Z}_{2}[\Delta / D]$ or $\{ \pm 1\} \otimes_{\mathbb{Z}_{2}} \mathbb{Z}_{2}[\Delta / D]$ according to $\zeta_{4} \in U_{n, \wp}$ or not, where D denotes the decomposition group of 2 in Δ. The χ-part \mathbb{T}_{n}^{χ} of \mathbb{T}_{n} is the \mathbb{Z}_{2}-torsion of \mathcal{U}_{n}^{χ} and $\mathbb{T}^{\chi}:=\lim _{\rightleftarrows} \mathbb{T}_{n}^{\chi}$. Then we have

$$
\mathbb{T}^{\chi} \cong \begin{cases}\{1\} & \text { if } \chi \omega^{-1}(2) \neq 1 \tag{3.4}\\ \Lambda /(T-q) & \text { if } \chi \omega^{-1}(2)=1\end{cases}
$$

The following fact plays an important role to prove Theorem 2.1. When the order of χ is odd (and $p=2$), this is the theorem of Gillard ([7]).

Theorem 3.1 ([18]). \quad There is a natural Λ-homomorphism

$$
\Psi: \mathcal{U}^{\chi} \longrightarrow \Lambda
$$

for which the kernel is \mathbb{T}^{χ} and the image is $\Lambda($ resp. $(T-q) \Lambda)$ if $\chi \omega^{-1}(2) \neq 1$ (resp. if $\left.\chi \omega^{-1}(2)=1\right)$. Furthermore, we have

$$
\Psi\left(c_{\infty}^{\xi_{\psi}}\right)=g_{\chi}(T)
$$

Put $\mathcal{V}_{n}^{\chi}:=\bigcap_{m \geq n} N_{m, n}\left(\mathcal{U}_{m}^{\chi}\right)$, with the norm maps $N_{m, n}$ from k_{m} to k_{n}. In the following lemma, we can determine the structure of the Λ-modules \mathcal{V}_{n}^{χ} in the same way as the proof of [17, Lemma 3.1] (see also [7, Proposition 2]).

Lemma 3.2.

(i) The projection $\mathcal{U}^{\chi} \rightarrow \mathcal{V}_{n}^{\chi}$ induces the following isomorphisms:

$$
\mathcal{V}_{n}^{\chi} \cong \begin{cases}\mathcal{U}^{\chi} /\left(\mathcal{U}^{\chi}\right)^{\omega_{n}} & \text { if } \chi(2) \neq 1 \\ \mathcal{U}^{\chi} /\left(\left(\mathcal{U}^{\chi}\right)^{2 \nu_{n}} \cdot\left(\mathcal{U}^{\chi}\right)^{\omega_{n}}\right) & \text { if } \chi(2)=1\end{cases}
$$

(ii) If $\chi(2)=1$ (resp. $\chi(2) \neq 1)$ then $\mathcal{U}_{n}^{\chi} / \mathcal{V}_{n}^{\chi}$ is isomorphic to $\Lambda /(T)$ (resp. is killed by 2).

Corollary 3.3. Let v_{n} be an element of \mathcal{V}_{n}^{χ} and $X(T)$ a polynomial in $\mathcal{O}[T]$ relatively prime to $\omega_{n}(T)\left(\right.$ resp. $\left.\nu_{n}(T)\right)$ if $\chi(2) \neq 1($ resp. $\chi(2)=1)$. If $v_{n}^{X(T)}=1$ holds, then we have $v_{n} \in \mathbb{T}_{n}^{\chi}$.

Proof. By Lemma 3.2 (i), the map Ψ in Theorem 3.1 induces a Λ-homomorphism

$$
\Psi_{n}: \mathcal{V}_{n}^{\chi} \longrightarrow \Lambda /\left(\vartheta_{n}^{\chi}\right)
$$

where $\vartheta_{n}^{\chi}=\omega_{n}\left(\right.$ resp. $\left.\nu_{n}\right)$ if $\chi(2) \neq 1$ (resp. $\left.\chi(2)=1\right)$. We further see that the kernel of Ψ_{n} is contained in \mathbb{T}_{n}^{χ}. This proves the corollary.

Finally, we shall show the freeness of \mathcal{E}^{χ} (Lemma 3.6). We need the following lemma.

Lemma 3.4.

(i) The inclusion $E_{n}^{\prime} \rightarrow \mathcal{E}_{n}$ induces an isomorphism

$$
E_{n}^{\prime} / E_{n}^{\prime 2^{a}} \cong \mathcal{E}_{n} / \mathcal{E}_{n}^{2^{a}}
$$

for any $a \geq 0$.
(ii) $\mathcal{E} \cap \mathbb{T}=\{1\}$.

Proof. (i) This follows from the Leopoldt conjecture for $p=2$ and k_{n} proved in [1](cf. [19, §5-5]).
(ii) The \mathbb{Z}_{2}-torsion of \mathcal{E}_{n} is $\mathcal{E}_{n} \cap \mathbb{T}_{n}=\{ \pm 1\}$. Therefore $\mathcal{E} \cap \mathbb{T}=\lim _{\leftrightarrows} \mathcal{E}_{n} \cap \mathbb{T}_{n}=\{1\}$.

By this lemma, we can regard \mathbb{T} as a submodule of $\mathcal{U} / \mathcal{E}$ and also of \mathfrak{X}. We can show the following lemma similarly to the proof of [17, Lemma 3.4] by using the fact that \mathfrak{X} has no non-trivial finite $\mathbb{Z}_{2}[\Delta] \llbracket \Gamma \rrbracket$-submodule ([13, Theorem 18]).

Lemma 3.5. $\quad \mathfrak{X} / \mathbb{T}$ has no non-trivial finite $\mathbb{Z}_{2}[\Delta] \llbracket \Gamma \rrbracket$-submodule.
This lemma produces the following lemma in the same way as in the odd prime case ([17, Lemma 3.5]):

Lemma 3.6. $\Psi\left(\mathcal{E}^{\chi}\right)$ is a principal ideal generated by $\operatorname{char}_{\Lambda}\left(\mathcal{U}^{\chi} / \mathcal{E} \chi\right)$. In particular \mathcal{E}^{χ} is a free Λ-module of rank one.

Remark. As in the odd prime case, $\lambda_{2}(\chi)=0$ is equivalent to the assertion that $\mathcal{E}^{\chi}=\mathcal{C}^{\chi}$.

§ 4. Proof of the main result

We can rewrite, in the same way as the proof of [17, Lemma 4.1], the condition $\left(H_{P, n}\right)$ as follows:

Lemma 4.1. For each $n \geq 0$, the condition $\left(H_{P, n}\right)$ is equivalent to the following condition:
$\left(\mathcal{H}_{P, n}\right)$

$$
c_{n}^{\xi_{\psi} X_{P, n}} \notin\left(\mathcal{E}_{n}^{\chi}\right)^{m_{P, n}} .
$$

Proof of Theorem 2.1. Our proof is the same as in [11] by using Theorem 3.1 and Corollary 3.3. We shall show that $P(T) \mid \operatorname{char}_{\Lambda} X^{\chi}$ holds if and only if the opposite
$\left(\neg \mathcal{H}_{P, n}\right)$

$$
c_{n}^{\xi_{\psi} X_{P, n}} \in\left(\mathcal{E}_{n}^{\chi}\right)^{m_{P, n}}
$$

of ($\mathcal{H}_{P, n}$) holds for all $n \geq 0$. We put $Q(T)=P_{\chi}(T) / P(T)$. By the Iwasawa main conjecture (3.3) and (3.2), we have

$$
\operatorname{char}_{\Lambda}\left(\mathcal{U}^{\chi} / \mathcal{E}^{\chi}\right) \cdot \operatorname{char}_{\Lambda} X^{\chi}=P_{\chi}(T)
$$

Then $P(T)\left|\operatorname{char}_{\Lambda} X^{\chi} \Longleftrightarrow \operatorname{char}_{\Lambda}\left(\mathcal{U}^{\chi} / \mathcal{E}^{\chi}\right)\right| Q(T)$. By Lemma 3.6, the latter condition is equivalent to saying that $Q(T) \in \Psi\left(\mathcal{E}^{\chi}\right)$. Since $\Psi\left(\mathcal{E}^{\chi}\right) \subset \Lambda$, we have $Q(T) \in \Psi\left(\mathcal{E}^{\chi}\right) \Longleftrightarrow P(T) Q(T) \in \Psi\left(\left(\mathcal{E}^{\chi}\right)^{P(T)}\right)$. Furthermore, we have $P(T) Q(T) \in$ $\Psi\left(\left(\mathcal{E}^{\chi}\right)^{P(T)}\right) \Longleftrightarrow \Psi\left(c_{\infty}^{\xi_{\psi}}\right) \in \Psi\left(\left(\mathcal{E}^{\chi}\right)^{P(T)}\right) \Longleftrightarrow c_{\infty}^{\xi_{\psi}} \in \mathbb{T}^{\chi}\left(\mathcal{E}^{\chi}\right)^{P(T)}$ by using Theorem 3.1 and $g_{\chi}(T)=u_{\chi}(T) P(T) Q(T)$. By Lemma 3.4 (ii), we have $c_{\infty}^{\xi_{\psi}} \in \mathbb{T}^{\chi}\left(\mathcal{E}^{\chi}\right)^{P(T)} \Longleftrightarrow$ $c_{\infty}^{\xi_{\psi}} \in\left(\mathcal{E}^{\chi}\right)^{P(T)}$. If we assume that

$$
\begin{equation*}
c_{\infty}^{\xi_{\psi}} \in\left(\mathcal{E}^{\chi}\right)^{P(T)} \tag{4.1}
\end{equation*}
$$

holds then $c_{n}^{\xi_{\psi}} \in\left(\mathcal{E}_{n}^{\chi} \cap \mathcal{V}_{n}^{\chi}\right)^{P(T)}$ holds for all $n \geq 0$. This implies that

$$
\begin{equation*}
c_{n}^{\xi_{\psi} X_{P, n}} \in\left(\mathcal{E}_{n}^{\chi} \cap \mathcal{V}_{n}^{\chi}\right)^{X_{P, n} P(T)} . \tag{4.2}
\end{equation*}
$$

By the definition (2.3) and Lemma 3.2 (i), we have $\left(\mathcal{E}_{n}^{\chi} \cap \mathcal{V}_{n}^{\chi}\right)^{X_{P, n} P(T)}=\left(\mathcal{E}_{n}^{\chi} \cap \mathcal{V}_{n}^{\chi}\right)^{m_{P, n}}$. Therefore the condition (4.2) implies the condition $\left(\neg \mathcal{H}_{P, n}\right)$. Conversely, we assume that the condition $\left(\neg \mathcal{H}_{P, n}\right)$ holds for all $n \geq 0$. By Lemma 3.2 (ii), $\mathcal{E}_{n}^{\chi} /\left(\mathcal{E}_{n}^{\chi} \cap \mathcal{V}_{n}^{\chi}\right)$ is killed by $2 T$. Hence $c_{n}^{\xi_{\psi} 2 T X_{P, n}} \in\left(\mathcal{E}_{n}^{\chi} \cap \mathcal{V}_{n}^{\chi}\right)^{X_{P, n} P(T)}$, so there exists $\epsilon_{n} \in \mathcal{E}_{n}^{\chi} \cap \mathcal{V}_{n}^{\chi}$ such that $c_{n}^{\xi_{\psi} 2 T X_{P, n}}=\epsilon_{n}^{X_{P, n} P(T)}$ for all $n \geq 0$. Since $X_{P, n}(T)$ is relatively prime to $\omega_{n}(T)$ (resp. $\nu_{n}(T)$) if $\chi(2) \neq 1$ (resp. $\chi(2)=1$), by Corollary 3.3, we have $c_{n}^{\xi_{\psi} 2 T} / \epsilon_{n}^{P(T)} \in \mathbb{T}_{n} \cap \mathcal{E}_{n}=\{ \pm 1\}$, that is $c_{n}^{\xi_{\psi} 2 T}= \pm \epsilon_{n}^{P(T)}$. Then we have $c_{n+1}^{\xi_{\psi} 2 T}=$ $N_{n+2, n+1}\left(c_{n+2}^{\xi_{\psi} 2 T}\right)=N_{n+2, n+1}\left(\pm \epsilon_{n+2}^{P(T)}\right)=N_{n+2, n+1}\left(\epsilon_{n+2}\right)^{P(T)}$ for all $n \geq 0$. Therefore we have $N_{m+2, n+1}\left(\epsilon_{m+2}\right)^{P(T)}=N_{m+1, n+1}\left(N_{m+2, m+1}\left(\epsilon_{m+2}\right)^{P(T)}\right)=N_{m+1, n+1}\left(c_{m+1}^{\xi_{\psi} 2 T}\right)=$ $c_{n+1}^{\xi_{\psi} 2 T}=N_{n+2, n+1}\left(\epsilon_{n+2}\right)^{P(T)}$ for all $m \geq n \geq 0$. By using Corollary 3.3 and $\mathbb{T}_{n} \cap$ $\mathcal{E}_{n}=\{ \pm 1\}$, we have $N_{m+2, n+1}\left(\epsilon_{m+2}\right)= \pm N_{n+2, n+1}\left(\epsilon_{n+2}\right)$. Taking $N_{n+1, n}$ of this equation, we obtain $N_{m, n}\left(N_{m+2, m}\left(\epsilon_{m+2}\right)\right)=N_{n+2, n}\left(\epsilon_{n+2}\right)$. Therefore we have $\epsilon=$ $\left(N_{n+2, n}\left(\epsilon_{n+2}\right)\right)_{n \geq 0} \in \lim \mathcal{E}_{n}^{\chi}=\mathcal{E}^{\chi}$ and $N_{n+2, n}\left(\epsilon_{n+2}\right)^{P(T)}=c_{n}^{\xi_{\psi} 2 T}$, that is $c_{\infty}^{\xi_{\psi}{ }^{2 T}} \in$ $\left(\mathcal{E}^{\chi}\right)^{P(T)}$. By the same argument as in the above, this is equivalent to saying that $\operatorname{char}_{\Lambda}\left(\mathcal{U}^{\chi} / \mathcal{E}^{\chi}\right) \mid 2 T Q(T)$. Since $\operatorname{char}_{\Lambda}\left(\mathcal{U}^{\chi} / \mathcal{E}^{\chi}\right)$ is prime to $2 T$, we have $\operatorname{char}_{\Lambda}\left(\mathcal{U}^{\chi} / \mathcal{E}^{\chi}\right) \mid$ $Q(T)$ which is equivalent to the condition (4.1). This completes the proof.

References

[1] A. Brumer, On the units of algebraic number fields, Mathematika, 14 (1967), 121-124.
[2] B. Ferrero and R. Greenberg, On the behavior of p-adic L-functions at $s=0$, Invent. math., 50 (1978), 91-102.
[3] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math. (2), 109 (1979), 377-395.
[4] T. Fukuda and K. Komatsu, On the Iwasawa λ-invariant of the cyclotomic \mathbb{Z}_{2}-extension of $\mathbb{Q}(\sqrt{p})$, Math. Comp., 78 (2009), 1797-1808.
[5] T. Fukuda and K. Komatsu, On the Iwasawa λ-invariant of the cyclotomic \mathbb{Z}_{2}-extension of $\mathbb{Q}(\sqrt{p})$ II, Funct. Approx. Comment. Math. 51 (2014), 167-179.
[6] T. Fukuda, K. Komatsu, M. Ozaki and T. Tsuji, On the Iwasawa λ-invariant of the cyclotomic \mathbb{Z}_{2}-extension of $\mathbb{Q}(\sqrt{p})$ III, Funct. Approx. Comment. Math. 54 (2016), no.1, 7-17.
[7] R. Gillard, Unités cyclotomiques, unités semi-locales et \mathbb{Z}_{ℓ}-extensions II, Ann. Inst. Fourier (Grenoble), 29 (1979), 1-15.
[8] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976), 263-284.
[9] H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields, Tôhoku Math. J., 49 (1997), 203-215.
[10] H. Ichimura and H. Sumida, On the Iwasawa λ-invariant of the p-cyclotomic field, J. Math. Sci. Univ. Tokyo., 3 (1996), 457-470.
[11] H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields II, Internat. J. Math., 7 (1996), 721-744.
[12] K. Iwasawa, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16 (1964), 42-82.
[13] K. Iwasawa, On \mathbb{Z}_{ℓ}-extension of algebraic number fields, Ann. of Math. (2), 98 (1973), 246-326.
[14] M. Ozaki and H. Taya, On the Iwasawa λ_{2}-invariants of certain families of real quadratic fields, Manuscripta Math., 94 (1997), no.4, 437-444.
[15] T. Tsuji, Semi-local units modulo cyclotomic units, J. Number Theory, 78 (1999), 1-26.
[16] T. Tsuji, Greenberg's conjecture for Dirichlet characters of order divisible by p, Proc. Japan Acad. Ser. A, 77 (2001), 52-54.
[17] T. Tsuji, On the Iwasawa λ-invariants of real abelian fields, Trans. of AMS, 355-9 (2003), 3699-3714.
[18] T. Tsuji, Semi-local units modulo cyclotomic units in the cyclotomic \mathbb{Z}_{2}-extensions, in preparation.
[19] L. C. Washington, "Introduction to Cyclotomic Fields", Grad. Texts in Math. 83, SpringerVerlag, 1982.
[20] A. Wiles, Iwasawa conjecture of totally real fields, Ann. of Math (2), 131 (1990), 493-540.

[^0]: Received March 31, 2015. Revised October 14, 2015 and November 30, 2015.
 2010 Mathematics Subject Classification(s): 11R23.
 Key Words: Iwasawa invariants, cyclotomic units.
 *Department of Mathematics, Tokai University, 259-1292, Japan.
 e-mail: tsuji@tokai-u.jp

