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On the Iwasawa  \lambda‐invariants of cyclotomic
 \mathbb{Z}_{2} ‐extensions of real abelian fields

By

Takae TSUJI*

Abstract

Let  p be a prime number and  k a real abelian field. We denote by  \lambda_{p}(k) the Iwasawa
 \lambda‐invariant associated to the ideal class group of the cyclotomic  \mathbb{Z}_{p} ‐extension of  k . It is con‐
ectured that  \lambda_{p}(k)  =0 . In [9], [10] and [11], Ichimura and Sumida discovered a good method

for verifying that  \lambda_{p}(k)  =0 for an odd prime number  p . In this paper, we give a criterion for
 \lambda_{2}(k)  =0 , as a generalization of the preceding result [6]. Our criterion is considered as an even
prime version of the theorem of Ichimura and Sumida.

§1. Introduction

Let  p be a prime number. For a number field  k , let  k_{\infty} denote the cyclotomic

 \mathbb{Z}_{p} ‐extension. We denote respectively by  \lambda_{p}(k) and  \mu_{p}(k) the Iwasawa  \lambda‐invariant and
the  \mu‐invariant associated to the ideal class group of  k_{\infty} . If  k is a totally real number

field, it is conjectured that  \lambda_{p}(k)=\mu_{p}(k)=0 ([8], [13, page 316]), which is often called
Greenberg’s conjecture. For an abelian field  k , we know  \mu_{p}(k)  =  0 by the Ferrero‐
Washington theorem [3].

When  p is odd and  k is a real abelian field whose degree is not divisible by  p,

Ichimura and Sumida ([9], [10], [11]) discovered a good method for verifying the con‐
jecture. It is suitable for a practical computer calculation, and for example, using it

they showed that  \lambda_{3}  (\mathbb{Q} ( m))  =0 with all positive integers  m less than  10^{4} . In [17], the
author removed the assumption that  p  [k: \mathbb{Q}] in the theorem of Ichimura and Sumida
and generalized their theorem to an arbitrary real abelian field  k.

In this paper, we study the case where  p  =  2 . When  p  =  2 and  k  =  \mathbb{Q} ( m) is
a real quadratic field with prime number  m , a study of Greenberg’s conjecture began

Received March 31, 2015. Revised October 14, 2015 and November 30, 2015.
2010 Mathematics Subject Classification(s):  11R23.

Key Words: Iwasawa invariants, cyclotomic units.
 *

Department of Mathematics, Tokai University, 259‐1292, Japan.
 e‐mail: tsuji@tokai  -u . jp

© 2017 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



68 Takae Tsuji

from Ozaki and Taya [14] and further development has been made by Fukuda and
Komatsu [4], [5]. They gape some criteria for  \lambda_{2}  (\mathbb{Q} ( m))  =  0 with prime number
 m and showed that  \lambda_{2}  (\mathbb{Q} ( m))  =  0 for all prime numbers  m less than  10^{5} except
 m  =  13841 , 67073. Furthermore, Fukuda, Komatsu, Ozaki and the author [6] gave a
sufficient condition for  \lambda_{2}  (\mathbb{Q} ( m))  =  0 with prime number  m , which is considered a

slight modification of the method of Ichimura and Sumida. By using this criterion, we

showed that  \lambda_{2}  (\mathbb{Q} ( m))  =  0 for  m  =  13841 , 67073. In this paper, we study the case

where  k not only is a real quadratic field  \mathbb{Q} ( m) but is an arbitrary real abelian field.
We will give a sufficient and necessary condition for  \lambda_{2}(k)  =0 (Theorem 2.1), which is
the same form as the criterion of Ichimura and Sumida. For the case where  p is odd,

a key of the proof of the criterion is a structure theorem of semi‐local units modulo

cyclotomic units in the cyclotomic  \mathbb{Z}_{p} ‐extension of  k proved by Iwasawa [12], Gillard
[7] and the author [15]. This structure theorem is invented by Iwasawa when  p is odd
and  k is the  p‐cyclotomic field, and is generalized by Gillard to the case where  p is an

arbitrary prime number and  k is an abelian field with  p  [k : \mathbb{Q}] . Furthermore, when  p is

odd, the author removed the assumption that  p  [k:\mathbb{Q}] in the theorem of Iwasawa and

Gillard. Recently, the author [18] determined the structure of semi‐local units modulo
cyclotomic units when  p=  2 and  k is an arbitrary abelian field. By using this result,

we can prove our theorem in the same way as the proof of Ichimura and Sumida.

In [17, Theorem 2.2], for an odd prime number  p , we not only generalized the
criterion of Ichimura and Sumida but obtained a simple sufficient condition for  \lambda_{p}(k)=0
in the special case where the degree of  k is divisible by  p (for an application see [16]).
When  p=  2 , a similar result does not hold since the structure of the semi‐local units

for  p=2 is different from that for an odd prime number  p.

I would like to thank Professor Keiichi Komatsu and Professor Takashi Fukuda

who recommended her writing this paper.

§2. Main result

Let  \chi be a non‐trivial  \overline{\mathbb{Q}_{2}}‐valued even Dirichlet character of the first kind with

respect to the cyclotomic  \mathbb{Z}_{2} ‐extension, i.e. the conductor of  \chi is not divisible by 8, and

 k=k_{\chi} the fixed field of the kernel of  \chi . We denote by  k_{\infty} the cyclotomic  \mathbb{Z}_{2} ‐extension

of  k with its n‐th layer  k_{n}  (n \geq 0) . We write  A_{n}  =  A_{k_{n}} for the 2‐Sylow subgroup

of the ideal class group of  k_{n} and put  X  :=   \lim A_{n} , the projective limit being taken

with respect to the relative norms. We put  \triangle  :=  Ga1(k/\mathbb{Q}) and  \Gamma  :=  Ga1(k_{\infty}/k) , so

 Ga1(k_{\infty}/\mathbb{Q})  =  \triangle  \cross\Gamma since  \chi is of the first kind. Then we regard  X as a module over

the completed group ring  \mathbb{Z}_{2}[\triangle][\Gamma] . It is well‐known that  X is finitely generated and

torsion over  \mathbb{Z}_{2}[\triangle][\Gamma] ([13, Theorem 5]). Let  \mathcal{O} denote the ring generated by the values
of  \chi over  \mathbb{Z}_{2} . For any  \mathbb{Z}_{2}[\triangle] ‐module  M , we define an  \mathcal{O}‐module  M^{\chi} , the  \chi‐part of  M,
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by

 M^{\chi} :=\{m\in M\otimes_{\mathbb{Z}_{2}}\mathcal{O} | \delta m=\chi(\delta)m
\forall\delta\in\triangle\}.

If  \chi' is an  \mathbb{Q}_{2} ‐conjugate of  \chi , then  M^{\chi'}  \cong M^{\chi} . Then  \mathcal{O}‐modules  A_{n}^{\chi} and  X^{\chi} are defined,

and  X^{\chi}  = \lim_{arrow}A_{n}^{\chi} becomes an  \mathcal{O}[\Gamma\square ‐module. Denote by  \mu_{2^{n}} the group of  2^{n}‐th roots

of unity for  n  \geq  0 and  \mu_{2^{\infty}}  :=   \bigcup_{n}\mu_{2^{n}} . We fix a topological generator  \gamma of  \Gamma and

define  q  \in  4\mathbb{Z}_{2} by  (\zeta+\zeta^{-1})^{\gamma}  =  \zeta^{1+q}+\zeta^{-1-q} for all  \zeta  \in  \mu_{2^{\infty}} . We identify, as usual,

the completed group ring  \mathcal{O}[\Gamma with the power series ring  \Lambda  :=  \mathcal{O}[T by  \gamma  =  1+T.

Thus,  X^{\chi} is regarded as a module over  \Lambda , and is finitely generated and torsion over
 \Lambda . For a finitely generated torsion  \Lambda‐module  M , denote by char  \Lambda M the characteristic

polynomial of  M , which is a uniquely determined distinguished polynomial times a

power of a fixed prime element of  \mathcal{O} . We denote by  \lambda_{2}(\chi) (resp.  \mu_{2}(\chi) ) the  \lambda‐invariant
(resp.  \mu‐invariant) of  X^{\chi} . We know  \mu_{2}(\chi)  =0 by the Ferrero‐Washington theorem [3].
Greenberg’s conjecture for  \chi is as follows:

Conjecture. Let  \chi be an even Dirichlet character of the first kind. It is conjec‐

tured  X^{\chi} to be finite, that is, char  \Lambda X^{\chi}=1 or equivalently  \lambda_{2}(\chi)=0.

For the trivial character  \chi_{0} , we know  \lambda_{2}(\chi_{0})  =  0 . One can see that Greenberg’s

conjecture for a real abelian field  K , i.e.  \lambda_{2}(K)=0 is equivalent to saying that  \lambda_{2}(\chi)=0
for all characters  \chi of  Ga1(K/\mathbb{Q}) of the first kind by using the Ferrero‐Washington

theorem [3] (see [17, Lemma 2.1]).
We will give a criterion for  \lambda_{2}(\chi)=0 . To state this, we need to recall the relation

between  char_{\Lambda}X^{\chi} and the Kubota‐Leopoldt 2‐adic  L‐function  L_{2}(s, \chi) associated to  \chi.

By Iwasawa, there exists a unique power series  g (T) in  \mathcal{O}[T] such that

 g_{\chi}((1+q)^{s}-1)=  \frac{1}{2}L_{2}(1-s, \chi)
(cf. [19, Theorem 7.10]). Using the 2‐adic Weierstrass preparation theorem and the
Ferrero‐Washington theorem [3], one can uniquely write

(2.1)  g  (T)=u  (T)P (T)

where  P (T) is a distinguished polynomial in  \mathcal{O}[T] and  u (T) is a unit of  \Lambda . Put
 \lambda_{2}(\chi)^{*}  =\deg P (T) . It follows from the Iwasawa main conjecture proved in [20] that

(2.2) char  \Lambda X^{\chi}  |  P_{\chi}(T) ,

and hence  \lambda_{2}(\chi)  \leq\lambda_{2}(\chi)^{*} (see (3.2) and (3.3)). Therefore we have  char_{\Lambda}X^{\chi}=1 if and
only if   P(T)\nmid char  \Lambda X^{\chi} for all distinguished irreducible factors  P(T) of  P_{\chi}(T) .

We state our main theorem of this paper, which is an even prime version of the

theorems of Ichimura and Sumida [11] and the author [17]. We have to prepare some
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notation. We fix a distinguished polynomial  P(T) in  \mathcal{O}[T] such that  P(T)  |P_{\chi}(T) . Put
 \omega_{n}  =  \omega_{n}(T)  =  (1+T)^{2^{n}}  -  1 and  v_{n}  =  v_{n}(T)  =  \omega_{n}/T for  n  \geq  0 . By the Leopoldt

conjecture for  p  =  2 and  k_{n} proved in [1],  \Lambda/(P, \omega_{n}) and  \Lambda/(P, v_{n}) are finite abelian
groups for any  n\geq 0 . We denote by  m_{P,n} the exponent of  \Lambda/(P, \omega_{n}) (resp.  \Lambda/(P, v_{n}) )
if  \chi(2)\neq 1 (resp.  \chi(2)=1 ). Then we take a p8lynomial  X_{P,n}(T) in  \mathcal{O}[T] satisfying

(2.3)  X_{P,n}(T)P(T)\equiv m_{P,n}  mod  \{  \omega_{n} if  \chi(2)\neq 1,

 v_{n} if  \chi(2)=1.

This polynomial  X_{P,n} is uniquely determened modulo  \omega_{n} (resp.  v_{n} ) since  \omega_{n} and  P(T)
are relatively prime. Choose an element  \overline{Y}_{P,n} in  \mathbb{Z}[\triangle][T] such that

 \overline{Y}_{P,n}\equiv\overline{X}_{P,n}mod m_{P,n},

where  \overline{X}_{P,n} is an element of  \mathbb{Z}_{2}[\triangle][T] satisfying  \chi(\overline{X}_{P,n})  =X_{P,n} . Here we regard  \chi as

 a\mathbb{Z}_{2}[T] ‐linear homomorphism  \mathbb{Z}_{2}[\triangle][T]  arrow \mathcal{O}[T] induced by  \chi . For any   m\geq  1 , we fix a

primitive m‐th root  \zeta_{m} of unity with the property that  \zeta_{mm}^{m'},  =\zeta_{m} for all   m'\geq  1 . Let  f

be the odd part of the conductor of  \chi , so the conductor of  \chi is  f or  4f . Since  \chi is a non‐

trivial even character of the first kind, we have  f\neq 1 . Put  k'=\mathbb{Q}(\zeta_{f})\cap k(\zeta_{4}) , then we

have  k'(\zeta_{4})=k(\zeta_{4}) . We put  G=Ga1(k'/\mathbb{Q}) and identify  G with  Ga1(k(\zeta_{4})/\mathbb{Q}(\zeta_{4})) . We

have  Ga1(k(\zeta_{4})/\mathbb{Q})  \cong G\cross  Ga1(\mathbb{Q}(\zeta_{4})/\mathbb{Q}) . We regard  \chi as a character of  Ga1(k(\zeta_{4})/\mathbb{Q})
and  \psi=\chi|_{G} . Let  \omega be the TeichmUller character  mod 4 , i.e. the non‐trivial character

of  Ga1(\mathbb{Q}(\zeta_{4})/\mathbb{Q}) . Then  \chi is  \psi or  \psi\omega according to the conductor of  \chi is  f or  4f . Let
 G_{2} (resp.  G' ) denote the 2‐Sylow subgroup (resp. the odd part) of  G :

 G=G_{2} \cross G'

We put  \psi'=\psi|_{G'} . Let

 e_{\psi'} :=  \frac{1}{\# G'} \sum_{\in G'}Tr (\psi' ( )) -1
be the idempotent of  \mathbb{Z}_{2}[G'] corresponding to  \psi' , where Tr is the trace map from the

field generated by the values of  \psi' over  \mathbb{Q}_{2} to  \mathbb{Q}_{2} . Let  \alpha\in \mathbb{Z}[G] denote an element of  G_{2}

of order 2 (resp.  \alpha=0 ) if  G_{2} is non‐trivial (resp. trivial), and  e_{\psi}  =e_{\psi,P,n} an element
of  \mathbb{Z}[G] such that

 e_{\psi}\equiv e_{\psi'}(1-\alpha)mod m_{P,n}.

We use cyclotomic units defined as follows

 c_{n}=N_{\mathbb{Q}(\zeta_{f2^{n+2}})/k(\zeta_{2^{n+2}})}(1-\zeta_{f^{2^{n+2}}}
) .

Since  f  \neq  1 , it is well‐known that  c_{n} is a unit. Furthermore, we can see that  c_{n^{\psi}}^{e} is

an element of  k_{n} ([18]). We remark that our cyclotomic unit  c_{n} is slightly different
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from the cyclotomic unit  c_{n} which appeared in the criteria in [9], [11] and [17]. By the
identification  \gamma=1+T , the element  Y_{P,n} of  \mathbb{Z}[\triangle][T] can act on the group  k_{n}^{\cross} . For each
 n\geq 0 consider the following condition:

 (H_{P,n})  c_{n}^{e_{\psi}\overline{Y}_{P,n}}  \not\in(k_{n}^{\cross})^{m_{P,n}}.

We cen see that the condition  (H_{P,n}) does not depend on the choices of  X_{P,n},  \overline{X}_{P,n}
and  \overline{Y}_{P,n} . We remark that, in the case where  \chi(2)  =  1 , the condition  (H_{P,0}) does not

hold since  c_{0}  =  1 and  m_{P,0}  =  1 for any  P(T) . We can show that the condition  (H_{P,n})
implies  (H_{P,n+1}) in a way similar to [11, Lemma 1] by using Lemma 4.1.

Our main theorem is stated as follows:

Theorem 2.1. Let  P(T) be a distinguished polynomial in  \mathcal{O}[T] such that  P(T)  |
 P_{\chi}(T) . Then we have   P(T)\nmid char  \Lambda X^{\chi} if and only if the condition  (H_{P,n}) holds for some
 n\geq 0.

In the case where  \chi\omega^{-1}(2)  =  1 , we know that  T-q  |  P_{\chi}(T) and   T-q\nmid char  \Lambda X^{\chi}

([2, Proposition 2]). This theorem is an even prime version of [11, Theorem] and [17,
Theorem 2.6]. We note that we can verify the condition in the theorem by a congruence
relation. That is, the condition  (H_{P,n}) is equivalent to saying that there exists a prime

ideal (of  k_{n} of degree one for which the condition

 c_{n}^{e_{\psi}\overline{Y}_{P,n}} mod (\not\in((\mathbb{Z}/l\mathbb{Z})
^{\cross})^{m_{P,n}}

holds where  lZ=(\cap \mathbb{Q} by the Chebotarev density theorem.

By using (2.2), we obtain the following:

Corollary 2.2. We have  \lambda_{2}(\chi)  =  0 if and only if for any distinguished irre‐

ducible factor  P(T) of  P_{\chi}(T) , the condition  (H_{P,n}) holds for some  n\geq 0.

§3. Preliminaries

We first recall the Iwasawa main conjecture and see its consequence (2.2). Let
 M/k_{\infty} be the maximal abelian 2‐extension unramified outside 2 and  L/k_{\infty} the maximal

unramified abelian 2‐extension. As usual, we consider  Ga1(M/k_{\infty}) ,  Ga1(L/k_{\infty}) and

 Ga1(M/L) as  \mathbb{Z}_{2}[\triangle][\Gamma\square ‐modules. Let  \wp be a prime ideal of  k over 2. There exists a

unique prime ideal  \wp_{n} of  k_{n} over  \wp since  k is of the first kind. We denote by  U_{n,\wp} the

group of principal units in the completion  k_{n,\wp} of  k_{n} at  \wp_{n} . Put

  \mathcal{U}_{n} :=\prod_{\wp|2}U_{n,\wp},
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where  \wp runs over all prime ideals of  k over 2. Let  E_{n}' be the group of units  \epsilon of  k_{n}

such that  \epsilon\equiv  1 mod  \wp_{n} for all  \wp_{n}  |  2 . Let  \mathcal{E}_{n} be the closure of the image of  E_{n}' under

the diagonal map  E_{n}'arrow \mathcal{U}_{n} . Put

  \mathcal{U}:=\lim \mathcal{U}_{n}, \mathcal{E}:=1^{\cdot}m\mathcal{E}_{n},

where the projective limits are taken with respect to the relative norms. We regard  \mathcal{U}

and  \mathcal{E} as modules over  \mathbb{Z}_{2}[\triangle][\Gamma] . By class field theory, we have the following isomor‐

phisms of  \mathbb{Z}_{2}[\triangle][\Gamma\square ‐modules:

(3.1)  X\cong Ga1(L/k_{\infty}) , \mathcal{U}/\mathcal{E}\cong Ga1(M/L) .

Put

X  :=Ga1(M/k_{\infty}) .

It is known that X is finitely generated and torsion over  \mathbb{Z}_{2}[\triangle][\Gamma] ([13, Theorem 17]),
and we further see that this is finitely generated as a  \mathbb{Z}_{2} ‐module by [3], so  X and  \mathcal{U}/\mathcal{E}
are also finitely generated over  \mathbb{Z}_{2} . Hence we have

(3.2) char  \Lambda X^{\chi} . char \Lambda(\mathcal{U}^{\chi}/\mathcal{E}^{\chi})  =char_{\Lambda}X^{\chi}.

The Iwasawa main conjecture proved in [20] asserts that the torsion  \Lambda‐module  X^{\chi} has
the characteristic polynomial  P (T) :

(3.3) char  \Lambda X^{\chi}=P (T) .

Hence the relation (2.2), char  \Lambda X^{\chi}  |P (T) , holds. Furthermore,  \lambda_{2}(\chi)=0 is equivalent
to the following:

char  \Lambda(\mathcal{U}^{\chi}/\mathcal{E}^{\chi})=P_{\chi}(T) .

Next we recall results on the structures of the  \Lambda‐modules  \mathcal{U}^{\chi} and  \mathcal{U}^{\chi}/C^{\chi} in [18]
(Theorem 3.1), which are essentially used in the proof of our main theorem.  (C^{\chi} is
a group of cyclotomic units defined below.) Since  f  \neq  1,  c_{n}  =N_{\mathbb{Q}(\zeta_{f2^{n+2}})/k(\zeta_{2^{n+2}})}(1-
 \zeta_{f^{2^{n+2}}}) is a unit of  k_{n}(\zeta_{4})  =k(\zeta_{2^{n+2}}) , and  c_{n}\equiv 1 mod  \wp_{n}' where  \wp_{n}' is the unique prime

ideal of  k(\zeta_{4}) above  \wp_{n} . We regard  c_{n} as an element of  k_{n}\overline{(\zeta_{4})}^{\cross}  \otimes \mathcal{O} , where  k_{n}\overline{(\zeta_{4})}^{\cross} is

the 2‐adic completion of  k_{n}(\zeta_{4})^{\cross} . We define  \xi_{\psi}  \in \mathcal{O}[G] by

  \xi\psi :=\sum_{\delta\in G}\psi(\delta)^{-1}\delta.
Then we see that  c_{n^{\psi}}^{\xi}  = \sum_{\delta\in G}c_{n}^{\delta}\otimes\psi(\delta)^{-1} is an element of  \mathcal{E}_{n}^{\chi} in [18]. We can see that
 N_{m,n}(c_{m})=c_{n} for all  m\geq n\geq 0 . Then we put

 c_{\infty}^{\xi_{\psi}} :=(c_{n^{\psi}}^{\xi})_{n\geq 0} \in \mathcal{U}^{\chi}
=1^{\cdot}m\mathcal{U}_{n}^{\chi}
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and denote by  C^{\chi} the submodule of  \mathcal{U}^{\chi} generated by  c_{\infty}^{\xi\psi} over  \Lambda.

Let  \mathbb{T}_{n} denote the  \mathbb{Z}_{2} ‐torsion of  \mathcal{U}_{n} and put  \mathbb{T}  :=   \lim_{arrow}\mathbb{T}_{n} , where the projective

limit is taken with respect to the relative norms. Then  \mathbb{T}_{n} is  \mu_{2^{n+2}}  \otimes_{\mathbb{Z}_{2}}  \mathbb{Z}_{2}[\triangle/D] or

 \{\pm 1\}\otimes_{\mathbb{Z}_{2}}\mathbb{Z}_{2}[\triangle/D] according to  \zeta_{4}  \in  U_{n,\wp} or not, where  D denotes the decomposition

group of 2 in  \triangle . The  \chi‐part  \mathbb{T}_{n}^{\chi} of  \mathbb{T}_{n} is the  \mathbb{Z}_{2} ‐torsion of  \mathcal{U}_{n}^{\chi} and  \mathbb{T}^{\chi}  :=1^{\cdot}m\mathbb{T}_{n}^{\chi} . Then
we have

(3.4)  \mathbb{T}^{\chi}\cong  \{\begin{array}{ll}
\{1\}   if \chi\omega^{-1}(2)\neq 1,
\Lambda/(T-q)   if \chi\omega^{-1}(2)=1.
\end{array}
The following fact plays an important role to prove Theorem 2.1. When the order

of  \chi is odd (and  p=2 ), this is the theorem of Gillard ([7]).

Theorem 3.1 ([18]). There is a natural  \Lambda ‐homomorphis

 \Psi:\mathcal{U}^{\chi}arrow\Lambda

for which the kernel is  \mathbb{T}^{\chi} and the image is  \Lambda  ( resp.  (T-q)\Lambda) if  \chi\omega^{-1}(2)  \neq 1 (resp. if
 \chi\omega^{-1}(2)  =1) . Furthermore, we have

 \Psi(c_{\infty}^{\xi\psi})=g_{\chi}(T) .

Put  \mathcal{V}_{n}^{\chi}  :=   \bigcap_{m\geq n}N_{m,n}(\mathcal{U}_{m}^{\chi}) , with the norm maps  N_{m,n} from  k_{m} to  k_{n} . In the

following lemma, we can determine the structure of the  \Lambda‐modules  \mathcal{V}_{n}^{\chi} in the same way

as the proof of [17, Lemma 3.1] (see also [7, Proposition 2]).

Lemma 3.2.

(i) The projection  \mathcal{U}^{\chi}arrow \mathcal{V}_{<}^{\chi} induces the following isomorphisms:

 \mathcal{V}_{n}^{\chi}\cong  \{\begin{array}{ll}
\mathcal{U}^{\chi}/(\mathcal{U}^{\chi})^{\omega_{n}}   if \chi(2)\neq 1,
\mathcal{U}^{\chi}/ ((\mathcal{U}^{\chi})^{2v_{n}} . (\mathcal{U}^{\chi})
^{\omega_{n}})   if \chi(2)=1.
\end{array}
(ii) If  \chi(2)  =1  ( resp.  \chi(2)  \neq 1) then  \mathcal{U}_{n}^{\chi}/\mathcal{V}_{n}^{\chi} is isomorphic to  \Lambda/(T) (resp. is killed by

2 .

Corollary 3.3. Let  v_{n} be an element of  \mathcal{V}_{n}^{\chi} and  X(T) a polynomial in  \mathcal{O}[T]
relatively prime to  \omega_{n}(T) (resp.  v_{n}(T) ) if  \chi(2)  \neq  1  ( resp.  \chi(2)  =  1) . If  v_{n}^{X(T)}  =  1

holds, then we have  v_{n}  \in \mathbb{T}_{n}^{\chi}.

Proof. By Lemma 3.2 (i), the map  \Psi in Theorem 3.1 induces a  \Lambda‐homomorphism

 \Psi_{n} :\mathcal{V}_{n}^{\chi}arrow\Lambda/(\theta_{n}^{\chi})
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where  \theta_{n}^{\chi}  =\omega_{n} (resp.  v_{n} ) if  \chi(2)  \neq  1 (resp.  \chi(2)  =  1 ). We further see that the kernel
of  \Psi_{n} is contained in  \mathbb{T}_{n}^{\chi} . This proves the corollary.  \square 

Finally, we shall show the freeness of  \mathcal{E}^{\chi} (Lemma 3.6). We need the following
lemma.

Lemma 3.4.

(i) The inclusion  E_{n}'arrow \mathcal{E}_{n} induces an isomorphis

 E_{n}'/E_{n}^{\prime 2^{a}} \cong \mathcal{E}_{n}/\mathcal{E}_{n}^{2^{a}}

for any  a\geq 0.

(ii)  \mathcal{E}\cap \mathbb{T}=\{1\}.

Proof. (i) This follows from the Leopoldt conjecture for  p=  2 and  k_{n} proved in
[1] (cf. [19, §5‐5]).

(ii) The  \mathbb{Z}_{2} ‐torsion of  \mathcal{E}_{n} is  \mathcal{E}_{n}\cap \mathbb{T}_{n}=\{\pm 1\} . Therefore   \mathcal{E}\cap \mathbb{T}=\lim \mathcal{E}_{n}\cap \mathbb{T}_{n}=\{1\}.  \square 

By this lemma, we can regard  \mathbb{T} as a submodule of  \mathcal{U}/\mathcal{E} and also of X. We can

show the following lemma similarly to the proof of [17, Lemma 3.4] by using the fact
that X has no non‐trivial finite  \mathbb{Z}_{2}[\triangle][\Gamma\square ‐submodule ([13, Theorem 18]).

Lemma 3.5.  X/\mathbb{T} has no non‐trivial finite  \mathbb{Z}_{2}[\triangle][\Gamma] ‐submodule.

This lemma produces the following lemma in the same way as in the odd prime

case ([17, Lemma 3.5]):

Lemma 3.6.  \Psi(\mathcal{E}^{\chi}) is a principal ideal generated by char  \Lambda(\mathcal{U}^{\chi}/\mathcal{E}^{\chi}) . In partic‐

ular  \mathcal{E}^{\chi} is a free  \Lambda ‐module of rank one.

Remark. As in the odd prime case,  \lambda_{2}(\chi)=0 is equivalent to the assertion that
 \mathcal{E}^{\chi}=C^{\chi}.

§4. Proof of the main result

We can rewrite, in the same way as the proof of [17, Lemma 4.1], the condition
 (H_{P,n}) as follows:

Lemma 4.1. For each  n\geq 0 , the condition  (H_{P,n}) is equivalent to the followin
condition:

 (\mathcal{H}_{P,n})  c_{n}^{\xi_{\psi}X_{P,n}}  \not\in(\mathcal{E}_{n}^{\chi})^{m_{P,n}}.



On the Iwasawa  \lambda‐invariants 75

Proof of Theorem 2.1. Our proof is the same as in [11] by using Theorem 3.1 and
Corollary 3.3. We shall show that  P(T)  | char  \Lambda X^{\chi} holds if and only if the opposite

 (:\mathcal{H}_{P,n})  c_{n}^{\xi_{\psi}X_{P,n}}  \in  (\mathcal{E}_{n}^{\chi})^{m_{P,n}}

of  (\mathcal{H}_{P,n}) holds for all  n  \geq  0 . We put  Q(T)  =  P_{\chi}(T)/P(T) . By the Iwasawa main

conjecture (3.3) and (3.2), we have

char \Lambda(\mathcal{U}^{\chi}/\mathcal{E}^{\chi}) . char  \Lambda X^{\chi}=P (T) .

Then  P(T)  | char  \Lambda X^{\chi}  \Leftrightarrow char  \Lambda(\mathcal{U}^{\chi}/\mathcal{E}^{\chi})  Q(T) . By Lemma 3.6, the latter

condition is equivalent to saying that  Q(T)  \in  \Psi(\mathcal{E}^{\chi}) . Since  \Psi(\mathcal{E}^{\chi})  \subset  \Lambda , we have

 Q(T)  \in  \Psi(\mathcal{E}^{\chi})  \Leftrightarrow  P(T)Q(T)  \in  \Psi((\mathcal{E}^{\chi})^{P(T)}) . Furthermore, we have  P(T)Q(T)  \in

 \Psi((\mathcal{E}^{\chi})^{P(T)})  \Leftrightarrow  \Psi(c_{\infty}^{\xi_{\psi}})  \in\Psi((\mathcal{E}^{\chi})^{P(T)})  \Leftrightarrow  c_{\infty}^{\xi_{\psi}}  \in \mathbb{T}^{\chi}(\mathcal{E}^{\chi})^{P(T)} by using Theorem 3.1

and  g_{\chi}(T)  =  u_{\chi}(T)P(T)Q(T) . By Lemma 3.4 (ii), we have  c_{\infty}^{\xi_{\psi}}  \in  \mathbb{T}^{\chi}(\mathcal{E}^{\chi})^{P(T)}  \Leftrightarrow

 c_{\infty}^{\xi_{\psi}}  \in  (\mathcal{E}^{\chi})^{P(T)} . If we assume that

(4.1)  c_{\infty}^{\xi_{\psi}} \in (\mathcal{E}^{\chi})^{P(T)}

holds then  c_{n^{\psi}}^{\xi}  \in  (\mathcal{E}_{n}^{\chi}\cap \mathcal{V}_{n}^{\chi})^{P(T)} holds for all  n\geq 0 . This implies that

(4.2)  c_{n}^{\xi_{\psi}X_{P,n}} \in (\mathcal{E}_{n}^{\chi}\cap \mathcal{V}_{n}
^{\chi})^{X_{P}{}_{n}P(T)}.

By the definition (2.3) and Lemma 3.2 (i), we have  (\mathcal{E}_{n}^{\chi}\cap \mathcal{V}_{n}^{\chi})^{X_{P},{}_{n}P(T)}  =(\mathcal{E}_{n}^{\chi}\cap \mathcal{V}_{n}^{\chi})^{m_{P,n}}.
Therefore the condition (4.2) implies the condition  (:\mathcal{H}_{P,n}) . Conversely, we assume
that the condition  (:\mathcal{H}_{P,n}) holds for all  n  \geq  0 . By Lemma 3.2 (ii),  \mathcal{E}_{n}^{\chi}/(\mathcal{E}_{n}^{\chi} \cap \mathcal{V}_{n}^{\chi})
is killed by  2T . Hence  c_{n}^{\xi_{\psi}2TX_{P,n}}  \in  (\mathcal{E}_{n}^{\chi}\cap \mathcal{V}_{n}^{\chi})^{X_{P},{}_{n}P(T)} , so there exists  \epsilon_{n}  \in  \mathcal{E}_{n}^{\chi}\cap \mathcal{V}_{n}^{\chi}
such that  c_{n}^{\xi_{\psi}2TX_{P,n}}  =  \epsilon_{n}^{X_{P},{}_{n}P(T)} for all  n  \geq  0 . Since  X_{P,n}(T) is relatively prime

to  \omega_{n}(T) (resp.  v_{n}(T) ) if  \chi(2)  \neq  1 (resp.  \chi(2)  = 1), by Corollary 3.3, we have
 c_{n^{\psi}}^{\xi 2}  /\epsilon_{n}^{P(T)}  \in  \mathbb{T}_{n}  \cap \mathcal{E}_{n}  =  \{\pm 1\} , that is  c_{n^{\psi}}^{\xi 2}  =  \pm\epsilon_{n}^{P(T)} . Then we have  c_{n+1}^{\xi_{\psi}2}  =

 N_{n+2,n+1}(c_{n+2}^{\xi_{\psi}2T})  =  N_{n+2,n+1}(\pm\epsilon_{n+2}^{P(T)})  =  N_{n+2,n+1}(\epsilon_{n+2})^{P(T)} for all  n  \geq  0 . Therefore

we have  N_{m+2,n+1}(\epsilon_{m+2})^{P(T)}  =N_{m+1,n+1}(N_{m+2,m+1}(\epsilon_{m+2})^{P(T)})=N_{m+1,n+1}(c_{m+1}
^{\xi_{\psi}2})=
 c_{n+1}^{\xi_{\psi}2T}  =  N_{n+2,n+1}(\epsilon_{n+2})^{P(T)} for all  m  \geq  n  \geq  0 . By using Corollary 3.3 and  \mathbb{T}_{n}  \cap

 \mathcal{E}_{n}  =  \{\pm 1\} , we have  N_{m+2,n+1}(\epsilon_{m+2})  =  \pm N_{n+2,n+1}(\epsilon_{n+2}) . Taking  N_{n+1,n} of this

equation, we obtain  N_{m,n}(N_{m+2,m}(\epsilon_{m+2}))  =  N_{n+2,n}(\epsilon_{n+2}) . Therefore we have  \epsilon  =

 (N_{n+2,n}(\epsilon_{n+2}))_{n\geq 0}  \in   \lim_{arrow}\mathcal{E}_{n}^{\chi}  =  \mathcal{E}^{\chi} and  N_{n+2,n}(\epsilon_{n+2})^{P(T)}  =  c_{n^{\psi}}^{\xi 2} , that is  c_{\infty}^{\xi_{\psi}2}
 (\mathcal{E}^{\chi})^{P(T)} . By the same argument as in the above, this is equivalent to saying that

char  \Lambda(\mathcal{U}^{\chi}/\mathcal{E}^{\chi})  |  2TQ(T) . Since  char_{\Lambda}(\mathcal{U}^{\chi}/\mathcal{E}^{\chi}) is prime to  2T , we have  char_{\Lambda}(\mathcal{U}^{\chi}/\mathcal{E}^{\chi})  |
 Q(T) which is equivalent to the condition (4.1). This completes the proof.  \square 
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