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A construction of real quadratic fields of minimal
type and primary symmetric parts of ELE type

By

Fuminori KAWAMOTO,* Yasuhiro KISHI,** Hiroshi SUZUKI***
and Koshi TOMITA†

Abstract

This article is an announcement of our recent papers [6] and [5]. For a non‐square positive
integer  d with 4  d , put  \omega(d)  :=  (1+ d)/2 if  d is congruent to 1 modulo 4 and otherwise
 \omega(d)  :=  d . Let  a_{1},  a_{2} , :::,  a_{l-1} be the symmetric part of the simple continued fraction
expansion of  \omega(d) . We say that the string  a_{1},  a_{2} , :::,  a_{[l}  2 ] is the primary symmetric part of
the simple continued fraction expansion of  \omega(d) . The main purposes of this article are to
introduce notions of “ELE type” and “pre‐ELE type” for a finite string of positive integers,
and to study properties for a non‐square positive ipteger  d such that the primary symmetric
part of the simple continued fraction expansion of  d with even period is of ELE type.

§1. Introduction

Let  d be a non‐square positive inteper with 4  d . Put  \omega(d)  :=  (1 + d)/2  i

 d  \equiv  1  (mod 4) and otherwise  \omega(d)  :=  d . Then it is well‐known that the simple
continued fraction expansion is of the form

 \omega(d) = [a_{0}, \overline{a_{1},a_{2},\ldots,a_{\ell}}],
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where  \ell  =  \ell(d) is the minimal period. Moreover, the string of partial quotients

 a_{1},  a_{2} , :::,  a_{\ell-1} is symmetric, namely, partial quotients  a_{1} , :::,  a_{\ell-1} are of the form

 a_{1} , :::,  a_{L-1},  a_{L},  a_{L-1} , :::,  a_{1} , if  \ell=2L is even,

 a_{1} , :::,  a_{L-1},  a_{L},  a_{L},  a_{L-1} , :::,  a_{1} , if  \ell=2L+1 is odd.

We call the string  a_{1} , :::,  a_{L-1},  a_{L} the primary symmetric part of the simple continued

fraction expansions of  \omega(d) .

In [9], the first and fourth authors gave the following table: We arrange some values
of  d in ascending order of size in each period  \ell.

 \ell

1

2

3

4

5

6

7

8

9

10
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12

13

14

15
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.

2

3

17

7

41
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31

73
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46

421
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94
.

5

6

37

14

74

22

89

71

97

67

298

103

746

179

281

191
.

 d

10

11

61

23

149

54

109

91

106

86

541

127

757

190

481

217
.

13

15

65

33

157

57

113

135

233

115

554

177

778

201

1066

249
.

26

18

101

34

181

59

137

153

277

118

593

209

1021

251

1417

302
.
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For a positive integer  \ell , we denote  d_{\ell} the smallest non‐square positive integer  d

with 4  d and  \ell=\ell(d) :

 d_{1}  =2,  d_{2}=3,  d_{3}=17,  d_{4}=7,  d_{5}=41 , ::::

Then, for  1  \leq\ell\leq  69868,  d_{\ell} is square‐free and the class number of  \mathbb{Q}  ( d_{\ell}) is equal to

1 except for the six cases:  \ell=  7 , 11, 49, 225, 299, 1032. To find many real quadratic

fields of class number 1, we are interested in how to construct  d_{\ell} and in properties  0

 d_{\ell}.

In order to analyze in detail, we proceed with further experiments. Let  d_{\ell}' be

the smallest integer  d such that the minimal periods of the simple continued fraction

expansions of  \omega(d) are equal to a fixed positive integer  \ell where  d runs through non‐square

positive integers with  d\equiv 2 , 3  (mod 4) . Then the following hold for each even positive

integer  \ell with  8  \leq  \ell  \leq  73478 ; i)  d_{\ell}' is square‐free, ii) the class number of  \mathbb{Q}( d_{\ell}') is
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equal to 1, iii)  \mathbb{Q}( d_{\ell}') is of minimal type, iv) the primary symmetric part of the simple
continued fraction expansion of  \omega(d_{\ell}') is of ELE type. We will define “minimal type”

for a positive integer and for a real quadratic field in Section 4.

This paper is organized as follows. In Section 2, we introduce a notion of ELE type

for a finite string of positive integers. In Section 3, in order to construct strings of ELE

type, we define pre‐ELE type for a finite string. In the final section, Section 4, we give

an infinite family of real quadratic fields with period  \ell of minimal type for each even
 \ell\geq 6 , as an application of our results.

§2. A string of ELE type

First we will see the following numerical results. For a positive integer  \ell , we define

 CF_{\ell}  := {  d\in \mathbb{N}  |d is not square,  4\nmid d,  \ell(d)=\ell }.

For the 100 smallest integers

 d_{\ell}=d_{\ell}^{(0)}  <d_{\ell}^{(1)}  <. . .  <d_{\ell}^{(99)}
in  CF_{\ell} , we denote the simple continued fraction expansion of  \omega(d_{\ell}^{(i)}) by

 \omega(d_{\ell}^{(i)})= [a_{0}^{(i)}, a_{1}^{(i)}, . . . , a_{\ell}^{(i)}].
Let us plot

 (x, y, z)=(i, j, a_{j}^{(i)}) , 0\leq i\leq 99, 1\leq j\leq L:= [\ell/2]
in three dimensional space and connect them for each  i . Here,  [x] denotes the largest

integer  \leq  x for a real number  x . The figures  (a)-(d) in the next page are the cases

when  \ell=  100 , 101, 102 and 103, respectively. We can observe that the graphs of even

cases are characteristic. Our motivation is to investigate why the ends of graphs are

extremely large. To see this, we will define a string of ELE type as follows.

For a finite string  a_{1} , :::,  a_{L}  (L\geq 2) , we define nonnegative integers  q_{i},  r_{i} by using

the following recurrence equations:

(2.1)  \{\begin{array}{ll}
q_{0}=0,   q_{1} =1, q_{i}=a_{i-1}q_{i-1}+q_{i-2} (2\leq i\leq L+1) ,
r_{0}=1,   r_{1} =0, r_{i}=a_{i-1}r_{i-1}+r_{i-2} (2\leq i\leq L+1) .
\end{array}
Moreover, define integers  u_{1},  u_{2},  w,  v_{1},  v_{2},  z,  \delta by

(2.2)  (r_{L}^{2}-(-1)^{L})(r_{L+1}+r_{L-1})=q_{L}v_{1}+u_{1} (0\leq u_{1} <q_{L}) ,

(2.3)  (-1)^{L}(r_{L}-q_{L-1})r_{L}=q_{L}z+w (0\leq w<q_{L}) ,

(2.4)  (-1)^{L}(q_{L}-r_{L+1})+z=q_{L}v_{2}+u_{2} (0\leq u_{2} <q_{L}) ,

 \delta=  \{\begin{array}{ll}
0   if u_{1} \leq u_{2},
1   if u_{1} >u_{2}.
\end{array}
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(a)  \ell=  100,  n=  100

(c)  \ell=  102,  n=  100

We put

(b)  \ell=  101,  n=  100

(d)  \ell=  103,  n=  100

(2.5)  \gamma:=q_{L}(\delta q_{L}+u_{2}-u_{1})+w,

(2.6)   \mu:= \frac{1}{q_{L}}\{\gamma(q_{L+1}+q_{L-1})+2(q_{L-1}-r_{L})\}.
Definition 2.1. Let  L\geq 2 and let  a_{1},  a_{2} , :::,  a_{L} be a string of positive integers.

I

 \backslash \backslash a_{L}  \geq 2 and  \mu=a_{L} ” or  \backslash \backslash a_{L}  \geq 4 and  \mu=a_{L}+2”

holds, we say that  a_{1},  a_{2} , :::,  a_{L} is a string with extremely large end (for convenience,
 a_{1},  a_{2} , :::,  a_{L} is of ELE type). Specially  a_{1},  a_{2} , :::,  a_{L} is said to be of  ELE_{1} type (resp.
 ELE_{2} type) if the former conditions (resp. the latter conditions) hold.

Remark 2.1. There is no string of ELE type with length 2.

Here let us look at some graphs again. Dividing the graph in (c) into the case  0

ELE type and the case of not ELE type (see Figs. (e) and (f)), we expect that “ELE
type” has caught the graphs whose ends are extremely large.
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(e)  \ell=  102,  n=  100 , ELE type (f)  \ell=  102,  n=  100 , not ELE type

We now state one of the main results of this article. Let  d be a npn‐square positive

integer and assume that the simple continued fraction expansion  0  d is

 d= [a_{0}, \overline{a_{1},\ldots,a_{L-1},a_{L},a_{L-1},\ldots,a_{1},2a_{0}}]

with minimal even period  2L(\geq 4) . We determine quadratic irrationals  \omega_{n}(0\leq n\leq 2L)
such that

  \omega_{0} := d, \omega_{n}=a_{n}+\frac{1}{\omega_{n+1}}, a_{n}= [\omega_{n}],
where  a_{n}  =  a_{n-L}  (L+1 \leq n \leq 2L-1) and  a_{2L}  =  2a_{0} . Then we can write uniquely

 \omega_{n}=  (P_{n}+ d)/Q_{n} with some positive integers  P_{n},  Q_{n} for each   n\geq  1 (cf. [7, Section
2]  ) .

Theorem 1. Under the above setting, assume that  L\geq 3 and  d\neq 19 . Then the

following four conditions are equivalent:

(i)  d is a positive integer with period  2L of minimal type fo  d and the primary
symmetric part  a_{1},  a_{2} , :::,  a_{L} of the simple continued fraction expansion of  d is of

ELE type;

(ii)  d is a positive integer with period  2L of minimal type fo  d , and eithe

 r_{L}=2q_{L-1},  a_{L}\equiv(-1)^{L-1}q_{L-1}r_{L-1}  (mod q_{L}) and  a_{L}  \geq 2

 o

 r_{L}=2q_{L-1}-q_{L},  a_{L}\equiv(-1)^{L-1}q_{L-1}(q_{L-1}+r_{L-1})  (mod q_{L}) and  a_{L}  \geq 4

holds;

(iii)  Q_{L}=2 ;



112 Fuminori Kawamoto, Yasuhiro Kishi, Hiroshi Suzuki and Koshi Tomita

(iv)  a_{L}=a_{0} , or  a_{L}=a_{0}-1.

The proof of Theorem 1 is omitted. We give some remarks.

Remark 2.2. (1) It is known by a classical result (see Perron [11, Satz 3.14])
that one of the three conditions

 a_{L}=a_{0},  a_{L}=a_{0}-1 or  a_{L}  \leq   \frac{2a_{0}}{3}
holds under the above settin.

(2) In the case  d=19,  19=  [4, \overline{2,1,3,1,2,8}] , all of conditions  (i)-(iv) hold except
for  a_{L}  \geq 4.

(3) Golubeva proved that (iii) yields the equation and the congruence in (ii),  d

being a prime number congruent to 3 modulo 4 ([2, Theorem 1]).
(4) The implication  (iii)\Rightarrow(iv) is shown in the proof of [11, Satz 3.14] or [2, p.1279].

The next theorem gives a way of constructing every positive integer  d satisfying

the condition (i) of Theorem 1

Theorem 2. Assume that a string  a_{1},  a_{2} , :::,  a_{L}  (L \geq 3) is of ELE type.  I

addition, we assum

(2.7)  2a_{L}  >a_{1},  a_{2} , : : : ,  a_{L-1}

(2.8)  ( resp:  2a_{L}+2>a_{1},  a_{2} , : : : ,  a_{L-1}) ,

and put  \epsilon  :=0 (resp.  \epsilon  :=1 ) if  a_{1},  a_{2} , :::,  a_{L} is of  ELE_{1} type (resp.  ELE_{2} type).
(1) There doespnot exist a positive integer  d,  d\equiv 1  (mod 4) , with period  2L of min‐

imal type for  (1+ d)/2 whose simple continued fraction expansion has the symmetric
part  a_{1} , :::,  a_{L-1},  a_{L},  a_{L-1} , :::,  a_{1}.

(2) Put

 d:=(a_{L}+ \epsilon)^{2}+\frac{2r_{L+1}+\epsilon r_{L}}{q_{L}}.
Then  d is a positive integer with

  d\equiv  \{\begin{array}{ll}
2 (mod 4)   if a_{L} is even,
3 (mod 4)   if a_{L} is odd.
\end{array}
Furthermore, the simple continued fraction expansion of  d is

 d= [a_{L}+\epsilon, \overline{a_{1},\ldots,a_{L-1},a_{L},a_{L-1},\ldots,a_{1},
2a_{L}+2\epsilon}]

and  d is a positive integer with period  2L of minimal type fo  d.
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(3) Let  d be as in (2). Then we hav

(2.9)  (-1)^{n}Q_{n}=- \frac{2r_{L+1}+\epsilon r_{L}}{q_{L}}q_{n}^{2}+2(a_{L}+
\epsilon)q_{n}r_{n}+r_{n}^{2} (1\leq n\leq 2L-1) .

Moreover, let  m_{d} be the Yokoi invariant of  d defined below. Then we have  m_{d}=2q_{L}^{2} if
 L is even, and  m_{d}=2q_{L}^{2}-1 if  L is odd.

The proof of Theorem 2 is also omitted. We give some remarks.

Remark 2.3. (1) In the case  n=L of (2.9), we have the condition (iii),  Q_{L}=2,

of Theorem 1. The values of  Q_{n} are related to the class number one problem (cf.
Louboutin [10]). They will be studied on another occasion.

(2) Let  d be a non‐square positive integer with  d\equiv 2 , 3  (mod 4) . We let  d=d_{1}d_{2}^{2}
be a factorization of  d nto positive integers with  d_{1} square‐free, and consider a real

quadratic field  K=\mathbb{Q}  ( d_{1}) . Let  \mathcal{O}_{d_{2}} be the order of conductor  d_{2} in  K , that is, the

subring of the ring  \mathcal{O}_{K} of integers in  K , containing 1, with finite index  (\mathcal{O}_{K} : \mathcal{O}_{d_{2}})  =d_{2}.

By [9, Lemma 2.3], the discriminant of  \mathcal{O}_{d_{2}} is  4d . Thus we consider the real quadratic
order of discriminant  4d (cf. [9, Remark 2.4]). We dnote by  E_{d}  >  1 the fundamental
unit of  \mathcal{O}_{d_{2}} . Then we can write uniquely  E_{d}=  (T+U d)/2 with positive integers  T,  U.

We define an integer  m_{d}(\geq 0) by  m_{d}=  [U^{2}/T] and call it the Yokoi invariant of  d([9,
Definition 2.1]). By a theorem of Yokoi  ( [9, Theorem 2.1 [B]]  ) for a non‐square positive
integer, it holds that  m_{d}d<  E_{d}  <  (m_{d}+1)d if  d>  13 . Thus the quantity  m_{d} gives a

size of the fundamental unit  E_{d} for  d . The value of  m_{d} gives a rough size of  E_{d} instead

of the regulator  \log E_{d}.

§3. A string of pre‐ELE type

In this section, we examine a construction of primary symmetric parts of ELE type.

Theorem 1 implies that the primary symmetric part  a_{1},  a_{2} , :::,  a_{L} is of  ELE_{1} type (resp.
 ELE_{2} type) only if the string  \langle a_{1},  a_{2} , :::,   a_{L-1}\rangle satisfies

 r_{L}=2q_{L-1} (resp:  r_{L}=2q_{L-1}-q_{L} ).

Definition 3.1. For a string of  m  (\geq 1) positive integers  \langle a_{1},  a_{2} , :::,   a_{m}\rangle , we

define  q_{n} and  r_{n}  (0 \leq n \leq m+1) by using (2.1) inductively. If either  r_{m+1}  =  2q_{m} or
 r_{m+1}  =  2q_{m}-q_{m+1} holds, we say that  \langle a_{1},  a_{2} , :::,   a_{m}\rangle is of pre‐ELE type with length
 m . Specially  \langle a_{1},  a_{2} , :::,   a_{m}\rangle is said to be of pre‐ELE1 type (resp. pre‐ELE2 type) with
length  m if  r_{m+1}  =2q_{m} (resp.  r_{m+1}  =2q_{m}-q_{m+1} ) holds.

We can show basic properties for finite strings of pre‐ELE type.
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Proposition 3.1. Let  a,  b be positive integers and let  A  =  \langle a_{1} , :::,   a_{m}\rangle be

string of  m  (\geq 1  ) positive integers. We denote the reversed string of  A  byarrow A  :=

 \langle a_{m} , :::,  a_{2},   a_{1}\rangle . Then the following properties hold.

(1) There does not exist a string of pre‐ELE1 type with length 1.  A is of pre‐ELE2
type with length 1 if and only if  A=  \langle 1\rangle.

(2)  A is of pre‐ELE1 type with length 2 if and only if  A=  \langle a_{1},   2a_{1}\rangle . Moreover,  A

is of pre‐ELE2 type with length 2 if and only if  A=  \langle 2,  1\rangle.
(3) Assume  m\geq 2 . If  A is of pre‐ELE1 type then either  a_{m}=2a_{1} or  a_{m}=2a_{1}+1

holds.

(4) If  A is of pre‐ELE2 type then  a_{m}=1 holds.
(5)  A is of pre‐ELE1 type with length 3 if and only if  A=  \langle a_{1} , 1,   2a_{1}+1\rangle . Moreover,

 A is of pre‐ELE2 type with length 3 if and only if  A=  \langle 2 , 2,  1\rangle.
(6) If  \langle a,  A,  b,   1\rangle is of pre‐ELE2 type,  a\geq 2 and  b\geq 2 , then  a=b=2.

(7) If  b=1 or 2 then  \langle 1,  A,  b,   1\rangle is not of pre‐ELE2 type.
(8)  \langle A,   1\rangle : pre‐ELE2 type  \Leftrightarrow  \langle A,   1\rangle : pre‐ELE2 type:
(9)  \langle 2,  A , 1,   1\rangle is not of pre‐ELE2 type.
(10)  \langle a,  A,   2a\rangle : pre‐ELE1 type  \Leftrightarrow  A : pre‐ELE1 type:
(11)  \langle a,  A,   2a+1\rangle : pre‐ELE1 type  \Leftrightarrow  A : pre‐ELE2 type:
(12) Assume  a\geq 2 . Then,

 \langle 1,  A,  a+1,   1\rangle : pre‐ELE2 type  \Leftrightarrow  \langle A,   a\rangle : pre‐ELE1 type:

(13) Assume  a\geq 2 . Then,

 \langle a+1,  A , 1,   1\rangle : pre‐ELE2 type  \Leftrightarrow  \langle A,   a\rangle : pre‐ELE1 type:

(14)  \langle 2,  A , 2,   1\rangle : pre‐ELE2 type  \Leftrightarrow  \langle A,   1\rangle : pre‐ELE2 type:

Proof. We shall prove only (2), (3), (8) and (10).
We calculate nonnegative integers  q_{n} and  r_{n}  (1 \leq n\leq m+1) by using (2.1) from

the string  A . Then it is known that

(3.1)  (\begin{array}{ll}
q_{n+1}   q_{n}
r_{n+1}   r_{n}
\end{array})  =  (\begin{array}{l}
a_{1}1
10
\end{array}) . . .  (\begin{array}{ll}
a_{n}   1
1   0
\end{array})  (1\leq n\leq m) .

(See, for example, Halter‐Koch [4, Chapter 2] or [8, (2.5)].)
(2) Let  m=2 . Then we have the following table:

3

 a_{1}a_{2}  +  1

 n

 q_{n}

 r_{n}

 0

 0

1

1

1

 0

2

 a_{1}

1  a_{2}
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Hence,  A is of pre‐ELE1 type if and only if  a_{2}  =2a_{1} , and then we have  A=  \langle a_{1},  2a_{1}\rangle.
Moreover,  A is of pre‐ELE2 type if and only if  \backslash \backslash a_{2}=1 and  a_{1}  =2” because we have

 r_{3}=2q_{2}-q_{3} \Leftrightarrow a_{2}=2a_{1}-a_{1}a_{2}-1 \Leftrightarrow a_
{2}+1=a_{1}(2-a_{2}) ,

and then we obtain  A=  \langle 2,  1\rangle.
(3) If  m=2 , then our assertion follows from (2). So we assume  m\geq 3 . Let  \tilde{q}_{n} and

 \sim n  (1\leq n\leq m+1) be nonnegative integers calculated by using (2.1) from the reversed
string  A of  A . Then by (3.1), we have

 (\sim m+1\tilde{r}_{m})  =  (\begin{array}{ll}
a_{m}   1
1   0
\end{array}) . . .  (\begin{array}{l}
a_{2}1
10
\end{array})  (\begin{array}{l}
a_{1}1
10
\end{array})
By taking the transpose of matrices in both sides, we get

 (\begin{array}{ll}
\tilde{q}_{m+1}   \tilde{r}_{m+1}
\tilde{q}_{m}   \tilde{r}_{m}
\end{array})  =  (\begin{array}{l}
a_{1}1
10
\end{array})  (\begin{array}{l}
a_{2}1
10
\end{array}) . . .  (\begin{array}{ll}
a_{m}   1
1   0
\end{array})  =  (\begin{array}{ll}
q_{m+1}   q_{m}
r_{m+1}   r_{m}
\end{array})
so that  \tilde{r}_{m+1}  =q_{m},  \tilde{r}_{m}=r_{m} . Hence,

 q_{m}=\tilde{r}_{m+1} =a_{1}\tilde{r}_{m}+\tilde{r}_{m-1} =a_{1}r_{m}+\tilde{r}
_{m-1}

and then we obtain

(3.2)  a_{m}r_{m}+r_{m-1} =r_{m+1} =2q_{m}=2a_{1}r_{m}+2\tilde{r}_{m-1}.

Here we remark that  r_{m-1}  >  0 and  \tilde{r}_{m-1}  >  0 by  m  \geq  3 . Therefore, on the one hand,

the first inequality and (3.2) yield that

 a_{m}r_{m}<2a_{1}r_{m}+2\tilde{r}_{m-1} \leq 2a_{1}r_{m}+2\tilde{r}_{m}=(2a_{1}
+2)r_{m}.

Hence,  a_{m}  <  2a_{1}+2 holds. On the other hand,  r_{m}  \geq r_{m-1} , (3.2) and  \tilde{r}_{m-1}  >0 yield
that

 a_{m}r_{m}+r_{m}\geq 2a_{1}r_{m}+2\tilde{r}_{m-1} >2a_{1}r_{m}.

Hence,  a_{m}  >2a_{1}-1 holds. Thus either  a_{m}=2a_{1} or  a_{m}=2a_{1}+1 holds.

(8) For brevity, we put

 (\begin{array}{ll}
x   y
zw   
\end{array})  :=  (\begin{array}{ll}
q_{m+1}   q_{m}
r_{m+1}   r_{m}
\end{array})  =  (\begin{array}{l}
a_{1}1
10
\end{array})  (\begin{array}{l}
a_{2}1
10
\end{array}) . . .  (\begin{array}{ll}
a_{m}   1
1   0
\end{array})
Then it holds that

 (\begin{array}{ll}
x   z
yw   
\end{array})  =  (\begin{array}{ll}
a_{m}   1
1   0
\end{array}) . . .  (\begin{array}{l}
a_{2}1
10
\end{array})  (\begin{array}{l}
a_{1}1
10
\end{array}) ,

 (\begin{array}{ll}
x   z
yw   
\end{array}) (\begin{array}{l}
11
10
\end{array}) = (\begin{array}{ll}
x+z   x
y+w   y
\end{array}) , (\begin{array}{ll}
x   y
zw   
\end{array}) (\begin{array}{l}
11
10
\end{array}) = (\begin{array}{ll}
x+y   x
z+w   z
\end{array})
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Hence we have

 \langle Aarrow,   1\rangle : pre‐ELE2 type  \Leftrightarrow  (y+w)-2x+(x+z)=0

 \Leftrightarrow (z+w)-2x+(x+y)=0
 \Leftrightarrow  \langle A,   1\rangle : pre‐ELE2 type:

(10) We have

 (\begin{array}{l}
1a
10
\end{array})  (\begin{array}{ll}
x   z
yw   
\end{array})  (\begin{array}{l}
2a1
10
\end{array})  =  (^{ax_{X}+y}
az

 z+w)  (\begin{array}{l}
2a1
10
\end{array})
 = (2a^{2}x   +2ay+az+w2ax+z   ax_{X}+y) ,

and hence

 \langle a,  A,   2a\rangle : pre‐ELE1 type  \Leftrightarrow  (2ax+z)-(2ax+2y)=0

 \Leftrightarrow z-2y=0

 \Leftrightarrow  A : pre‐ELE1 type,

as desired.  \square 

Definition 3.2. Let  a,  c be positive integers and let  A,  B be strings of posi‐

tive integers with length  \geq  1 . By using Proposition 3.1 (10)  -(14) , we define 5 growth
transformations for a finite string of pre‐ELE type:

 e_{a}(A) :=\langle a, A, 2a\rangle,

 o_{a}(A) :=\langle a, A, 2a+1\rangle,
For  c\geq 2,  F(\langle B, c\rangle)  :=\langle 1,  B,  c+1,  1\rangle,

For  c\geq 2,  G(\langle B, c\rangle)  :=\langle c+1 , , 1,  1\rangle,

 H(\langle B, 1\rangle) :=\langle 2, B, 2, 1\rangle.

(pre‐ELE1 type  arrow pre-ELE_{1} type)

(pre‐ELE2 type  arrow pre-ELE_{1} type)

(pre‐ELE1 type  arrow pre-ELE_{2} type)

(pre‐ELE1 type  arrow pre-ELE_{2} type)

(pre‐ELE2 type  arrow pre-ELE_{2} type)

Theorem 3. Every nite string  A of pre‐ELE type can be obtained by the nite
compositions of possible 5 growth transformations  e_{a},  0_{a},  F,  G and  H starting from one

of the three “kernel”  \langle  \rangle,  \langle 1\rangle and  \langle 2,   1\rangle . Furthermore this “growth decomposition” of  A

is unique.

Outline of proof. Let  A be any string of pre‐ELE type with length  m  (\geq 1) . By

using Proposition 3.1 (3), (4), (6), (7) and (9)  -(14) , we can show that there exists a
string  B of pre‐ELE type with length  \leq 3 such that

 A= (f_{n}\circ f_{n-1^{O}} . . . \circ f_{1})(B) ,
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where  f_{i} are growth transformations. Assume that  B is of pre‐ELE1 type. Then by

Proposition 3.1 (1), the length of  B is 2 or 3. If the length of  B is 2 (resp. 3) then
Proposition 3.1 (2) (resp. (5)) implies that  B  =  \langle a,   2a\rangle (resp.  B  =  \langle a,   1,2a+1\rangle ) with
some positive integer  a and we have  B=e_{a}  (\langle \rangle) (resp.  B=o_{a}(\langle 1\rangle) ). Assume that  B is
of pre‐ELE2 type. If the length of  B is 1 (resp. 2, 3) then Proposition 3.1 (1) (resp. (2),
(5)) implies that we have  B=  \langle 1\rangle (resp.  B=  \langle 2,  1\rangle,  B=  \langle 2 , 2,   1\rangle  =H(\langle 1\rangle) ). Therefore,
we see that one of the three strings  \langle  \rangle,  \langle 1\rangle and  \langle 2,   1\rangle appears as a starting point. (We
call this decomposition a growth decomposition and call the above strings 3 kernels of

growth decomposition.)
As for the uniqueness of a growth decomposition, we can argue as follows. Note

that for a growth transformation  f and for a finite string  A of pre‐ELE type, the length

of  f(A) is increasing by two. By looking at the last two numbers of  f(A) , we see that

each growth transformation is distinguishable. Hence, for growth transformations  f,

and for finite strings  A,  B of pre‐ELE type, it holds that

(3.3)  f(A)= (  B )  \Rightarrow  f= ,  A=B.

Let  A be a string of pre‐ELE type,  K,  K' two kernels and assume that a growth

decomposition of  A is

 A= (f_{n}\circ f_{n-1^{O}} . . . \circ f_{1})(K) = (g_{n}, \circ g_{n-1^{O}} . 
. . \circ g_{1})(K') .

First, assume that the length of  A is odd. Then by the definition of growth decompo‐

sition, we have  K=K'  =  \langle 1\rangle . Since the length of  A is equal to  2n+1  =2n'+1 , we

get  n=n' . Hence by (3.3), we obtain  f_{i}  =g_{i} for all  i(1 \leq i \leq n) . Next, assume that
the length of  A is even. Then the possible kernel becomes  \langle  \rangle or  \langle 2,   1\rangle . If we assume
 K  \neq  K' then we may have  K  =  \langle  \rangle,  K'  =  \langle 2,   1\rangle . Since the length of  A is equal to
 2n=2n'+2 , we get  n'=n-1 . Hence by (3.3), we obtain  f_{i}=g_{i-1} for all  i(2\leq i\leq n)
and then

 f_{1} (\langle \rangle)=\langle 2, 1\rangle.

Since the lengths of  \langle\rangle and  \langle 2,   1\rangle are  0 and 2 respectively, it follows from the definition

of growth transformation that  f_{1}  =e_{a} for some positive integer  a . Therefore,  \langle a,   2a\rangle  =

 \langle 2,   1\rangle and this is impossible. Hence,  K  =  K' so that  n  =  n' . Then (3.3) yields that
 f_{i}=g_{i} for all  i(1\leq i\leq n) .  \square 

We give some growth decompositions. For a positive integer  L with  4\leq L\leq 26 , let

 d_{2L}' denote the smallest positive integers  d such that  d\equiv 2 , 3  (mod 4) and the minimal

period of the simple  \sqrt{}ontinued fraction expansion  0  d is equal to  2L . Let

 \sqrt{d_{2L}'}= [a_{0}, \overline{a_{1},\ldots,a_{L-1},a_{L},a_{L-1},\ldots,
a_{1},2a_{0}}]
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 \overline{\frac{Ld_{2L}'thegrowthdecompositionofA}{431o_{1}(\langle 1\})}}
 5 43 Foe_{1}(\langle \})
 6 46 (e_{1}oo_{1})(\langle 1\})
 7 134 (Foe_{1}oe_{1})(\langle \})
 8 94 (Foe_{2}oo_{1})(\langle 1\})
 9 139 (e_{1}\circ 0_{1}\circ F\circ e_{3})(\langle \})

 10 151 (G\circ e_{1}\circ e_{2}\circ 0_{3})(\langle 1\})
 11 166 (e_{1}\circ 0_{3}\circ F\circ 0_{1})(\langle 2,1\})
 12 271 (H\circ G\circ 0_{2}\circ G\circ 0_{4})(\langle 1\})
 13 211 (F\circ e_{1}\circ 0_{4}\circ G\circ e_{2}\circ e_{1})(\langle \})
14 334 (o3  oGoe_{1}oe_{1}o  o5  oH )  (\langle 1\})
 15 379 (e_{2}\circ 0_{3}\circ G\circ e_{1}\circ e_{2}\circ e_{1}\circ e_{6})
(\langle \})
 16 463 (o_{1}oFoe_{6}oe_{1}oo_{2}oGoo_{1})(\langle 1\})
 17 331 (G\circ e_{2}\circ 0_{5}\circ F\circ 0_{2}\circ H\circ G\circ e_{1})
(\langle \})
 18 478 (F\circ e_{6}\circ 0_{1}oGoo_{1}oFoe_{1}oo_{2})(\langle 1\})
 19 619 (F\circ e_{7}\circ 0_{1}\circ G\circ e_{2}\circ 0_{4}\circ F\circ e_{1}
\circ e_{1})(\langle \})
 20 526 (e_{1}oe_{7}oe_{3}oe_{2}oe_{1}oo_{1}oHoFoo_{3})(\langle 1\})
 21 571 (e_{1}oe_{4}oo_{1}oHoGoo_{1}oFoe_{7}oe_{3}oe_{1})(\langle \})
 22 766 (Foe_{2}oe_{5}oe_{1}oe_{1}oe_{1}oo_{1}oFoe_{1}oo_{8})(\langle 1\})
 23 694 (0_{2}\circ F\circ e_{4}\circ e_{1}\circ e_{3}\circ 0_{1}\circ G\circ 0_
{1}\circ H\circ G\circ e_{8})(\langle \})
 24 631 (e_{8}oe_{1}oe_{1}oe_{2}oe_{1}oo_{4}oGoo_{1}oHoGoo_{2})(\langle 1\})
 25 1051 (H^{2}oFoe_{1}oe_{1}oe_{4}oe_{2}oo_{10}oGoe_{3}oe_{6}oe_{1})(\langle \}
)

 -26 751 (e_{2}\circ e_{1}\circ 0_{8}\circ H\circ G\circ e_{3}\circ 0_{2}\circ F
\circ 0_{4}\circ G\circ e_{1}\circ 0_{1})(\langle 1\})

Table 3.1. Some growth decompositions

 \sqrt{}
be the simple continued fraction expansion  0  d_{2L}' and put  A  :=  \langle a_{1} , :::,   a_{L-1}\rangle . Then

the string  A,  a_{L} becomes of ELE type, as we have stated in Introduction. In Table 3.1,

for each  L with  4  \leq  L  \leq  26 we list the value of  d_{2L}' and the growth decomposition  0

 A , which is of pre‐ELE type.

In the last of this section, we show that there exist strings each of pre‐ELE1 type

or of pre‐ELE2 type with any length  (\geq 2) .

Proposition 3.2. Let  k be a nonnegative integer.

(1) A string
 k

(2) For any   a+1\rangle are of
 k

pre‐ELE1 type with length 2 and  k+3 , respectively.

Proof. For brevity, we put  A  :=  \langle 2 , :::, 2, 2,  1\rangle.
(1) By Proposition 3.1 (1), (2), both  \langle 1\rangle and  \langle 2,   1\rangle are of pre‐ELE2 type. When

 k is even (resp. odd), it follows from the definition of  H that  A  =  H^{\frac{k}{2}}(\langle 1\rangle) (resp.



real UADRATiC fields of minimal type and primary symmetric parts of ELE type 119

 A=H \frac{k-1}{2}(\langle 2,1\rangle)) . Hence we see from Proposition 3.1 (14) that  A is of pre‐ELE2 type.
(2) By Proposition 3.1 (2),  \langle a,   2a\rangle is of pre‐ELE1 type. Moreover since  \langle a , 1, 2, 2, :::,

2,   2a+1\rangle  =o_{a}(A) , this is of pre‐ELE1 type by (1).  \square 

§4. Application

The goal of this section is to give an application of our theorems.

First we will define “minimal type” for a positive integerpand for a real quadratic

field. Let  d be a non‐square positive integer and put  \omega_{d}  =  d or  \omega_{d}  =  (1+ d)/2.
Here we assume   d\equiv  1  (mod 4) if  \omega_{d}  =  (1+ d)/2 . Then it is known that the simple

continued fraction expansion is of the form

 \omega_{d}= [a_{0}, \overline{a_{1},a_{2},\ldots,a_{\ell}}].

From the string of partial quotients  a_{1},  a_{2} , :::,  a_{\ell-1} , we define nonnegative integers  q_{n}

and  r_{n}  (0\leq n\leq\ell) by using (2.1) inductively. For brevity, we put

 A:=q_{\ell}, B:=q_{\ell-1}, C:=r_{\ell-1},

and define linear polynomials  g(x) ,  h(x) and a quadratic polynomial  f(x) by

 (x)=Ax-(-1)^{\ell}BC, h(x)=Bx-(-1)^{\ell}C^{2}, f(x)= (x)^{2}+4h(x) .

Furthermore, let  s_{0} be the least integer  x for which  g(x)  >  0 . Then we see from

[7, Theorem 3.1], which is an improvement of results of Friesen [1, Theorem] and  0

Halter‐Koch [3, Theorem  1A , Corollary  1A], that  d can be written uniquely as

 d=f(s)/4 (resp.  d=f(s) ) if  \omega_{d}=  d (resp.  \omega_{d}=(1+  d)/2),

with some integer  s\geq s_{0}.

Definition 4.1 ([7, Definition 3.1]). Under the above setting, if  s=s_{0} , that is,
 d=f(s_{0})/4 (resp.  d=f (s0)) holds, then we say that  d is a positivp integer with period  \ell

of minimal type for (the simple continued fraction expansion  0  d (resp.  (1+  d)/2 ).
Furthermore, for a square‐free positive integer  d>  1 , we say that  \mathbb{Q} ( d) is a rea

quadratic field with period  \ell of minimal type, if  d is a positive integer with period  \ell 0

minimal type for  d whep  d\equiv 2 , 3  (mod 4) , and if  d is a positive integer with period  \ell

of minimal type for  (1+ d)/2 when  d\equiv 1  (mod 4) .

Remark 4.1. There exist exactly 51 real quadratic fields of class number 1 that

are not of minimal type, with one more possible exception ([7]).
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As for the existence of real quadratic fields of minimal type, the following have been

known; i) only  \mathbb{Q} ( 5) is a real quadratic field with period 1 of minimal type, ii) there
does not exist a real quadratic field with period 2, 3 of minimal type, iii) there exist
infinitely many real quadratic fields with period  \ell of minimal type for any even  \ell  \geq  4

with 8  \ell . By using our theorems, we can remove the condition 8  \ell in the above iii).
Namely, we can prove that there exist infinitely many real quadratic fields with period
 \ell of minimal type for any even  \ell\geq  4 . Now we will state it more precisely. Let  L  \geq  2

and define positive integers  q_{L-1} and  q_{L} by using (2.1) from a string  \langle 2, :::, 2, 2,   1\rangle with
length L—1.

Theorem 4. Let  L  \geq  3 and  e_{0}  =  2 , 3. Then, for any positive integer  h , there

exist in nitely many real quadratic fields  \mathbb{Q}  ( d) ,  d  \equiv  e_{0}  (mod 4) with period  2L of

minimal type such that  h_{d}>h,

(4.1)  m_{d}=  \{\begin{array}{ll}
2q_{L}^{2}   if L is even,
2q_{L}^{2}-1   if L is odd
\end{array}
and the primary symmetric part of the simple continued fraction expansion of  d is of
 ELE_{2} type. Here we denote the class number of  \mathbb{Q} ( d) by  h_{d}.

Outline of proof. For any positive integer  t , we define

 d(t) .:=q_{L}^{2}t^{2}+4q_{L-1}t+2.

From straightforward calculations, we can verify that for each  t,  d(t) is a positive integer

with period  2L of minimal type for  d(t) satisfying (4.1) and the primary symmetric
part of the simple continued fraction exzansion  0  d(t) is

2; : : : ; 2; 2 ;1  q_{L}t,

 L-2

which is of  ELE_{2} type (cf. Proposition 3.2). Moreover,  q_{L} must be odd in this case. Then
we have  d(t)  \equiv  2 , 3  (mod 4) . If  d(t) is square‐free, therefore, then  \mathbb{Q}( d(t)) is a real

quadratic field with period  2L of minimal type. By using Nagell’s result, we can show

that there exist infinitely many positive integer  t such that  d(t) is square‐free and the

class number  h_{d(t)} of  \mathbb{Q}  ( d(t)) is greater than given integer  h (cf. [7, Proposition 6.1,
Lemma 4.5]).  \square 

Remark 4.2. In [5], we give infinitely many real quadratic fields with even
period  2L  (\geq 8) of minimal typepsuch that the primary symmetric part of the simple
continued fraction expansion  0  d is of  ELE_{1} type.
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