<table>
<thead>
<tr>
<th>Title</th>
<th>Characteristic cycle of a rank 1 sheaf on a surface: research announcement (Algebraic Number Theory and Related Topics 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yatagawa, Yuri</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録別冊 (2017), B64: 201-208</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/243671</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Characteristic cycle of a rank 1 sheaf on a surface: research announcement

By

Yuri YATAGAWA*

Abstract

This is a research announcement about a study of characteristic cycle of a rank 1 sheaf on a surface on which I am writing a paper. In this announcement, we construct a canonical lifting of Kato's logarithmic characteristic cycle on the cotangent bundle of the surface. As a corollary, an index formula computing the Euler characteristic of the sheaf is yielded by the canonical lifting.

§1. Introduction

This is a research announcement about a study of characteristic cycle of a rank 1 sheaf on a surface on which I am writing a paper. We state without proof a result on the characteristic cycle of a smooth sheaf of rank 1 on a surface of positive characteristic.

Let X be a smooth separated connected scheme of dimension d over an algebraically closed field k of characteristic $p > 0$. Let \mathcal{F} be a constructible complex of Λ-modules on X, where Λ is a finite filed of characteristic $\ell \neq p$. A constructible complex \mathcal{F} is a complex of étale sheaves such that $\mathcal{H}^q(\mathcal{F})$ is constructible for any q, and equal to 0 except for finitely many q.

The characteristic cycle of \mathcal{F} is an analogue of that of a holonomic \mathcal{D}-module on a smooth variety of characteristic 0 in the theory of \mathcal{D}-modules. It is defined as a d-cycle on the cotangent bundle T^*X of X. The cotangent bundle T^*X of X is the vector bundle on X corresponding to Ω^1_X. The characteristic cycle of \mathcal{F} satisfies an index
formula computing the Euler characteristic

\[\chi(X, \mathcal{F}) = \sum_{i=0}^{2d} (-1)^i \dim H^i(X, \mathcal{F}) \]

of \(\mathcal{F} \).

We see a classical example of characteristic cycle. We assume that \(d = 1 \). Let \(U \) be the complement of a divisor \(D \) on \(X \) and \(j: U \to X \) the canonical open immersion. We assume that \(\mathcal{F} \) is the zero extension \(j! \mathcal{G} \) of a smooth sheaf \(\mathcal{G} \) of \(\Lambda \)-modules over \(U \). Let \(T_X^*X \) (resp. \(T_x^*X \)) denote the zero-section of \(T^*X \) (resp. the fiber of \(T^*X \) at a closed point \(x \) of \(X \)). For an integral closed subscheme \(C \) of \(T^*X \), we write \([C] \) for \(C \) as a prime cycle on \(T^*X \). Then the characteristic cycle \(\text{Char}(\mathcal{F}) \) of \(\mathcal{F} \) is defined by

\[
\text{Char}(\mathcal{F}) = - \left(\text{rank} (\mathcal{G}) [T_X^*X] + \sum_{x \in D} (\text{rank} (\mathcal{G}) + \text{Sw}_x \mathcal{G}) [T_x^*X] \right).
\]

In (1.1), the symbol \(\text{Sw}_x \mathcal{G} \) is an invariant of ramification called the Swan conductor of \(\mathcal{G} \) at \(x \). The Swan conductor of \(\mathcal{G} \) is a non-negative integer and measures the wild ramification of \(\mathcal{G} \). The index formula in this case is the classical Grothendieck-Ogg-Shafarevich formula ([SGA5]). That is, if \(X \) is proper, then

\[\chi(X, \mathcal{F}) = (\text{Char}(\mathcal{F}), T_X^*X)_{T^*X}, \]

where the right hand side denotes the intersection number in \(T^*X \).

In the general dimensional case, the characteristic cycle of a constructible complex \(\mathcal{F} \) is defined by T. Saito using Beilinson's singular support ([B]) and vanishing cycles in [S4]. The index formula yielded by this characteristic cycle generalizes Deligne and Lau- mon's formula for the Euler characteristic for surfaces ([L] Théorème 1.2.1). However, this characteristic cycle is hard to compute in general.

In the case where \(d = 2 \), let \(U \) be the complement of a divisor \(D \) on \(X \) with simple normal crossings, and \(j: U \to X \) the canonical open immersion. We assume that \(\mathcal{F} \) is the zero extension \(j! \mathcal{G} \) of a smooth sheaf \(\mathcal{G} \) of \(\Lambda \)-modules of rank 1 over \(U \). With this setting, Kato has given another definition of characteristic cycle on the logarithmic cotangent bundle of \(X \) with logarithmic poles \(D \) using ramification theory ([K2]). This characteristic cycle seems easier to compute. We denote it by \(\text{Char}(X, U, \mathcal{G}) \). The index formula computing the Euler characteristic \(\chi(X, \mathcal{F}) \) as the intersection number of this cycle with the zero-section \(T_X^*X(\log D) \subset T^*X(\log D) \) is proved by Kato ([S1]).

We keep the assumption in the last paragraph. The main result in this announcement is a construction of a 2-cycle on the cotangent bundle \(T^*X \) of \(X \) which is a canonical lifting of Kato's characteristic cycle (Theorem 3.2). For the construction of
this canonical lifting, we use Matsuda’s non-logarithmic ramification theory ([M]). Matsuda’s theory is non-logarithmic version of the ramification theory which Kato used. We expect that the canonical lifting is equal to Saito’s characteristic cycle (Conjecture 4.3).

In this announcement, we assume that \(p \neq 2 \) for simplicity. In the \(p = 2 \) case, a new interesting phenomenon arises, which we will discuss in the paper which I am writing.

Throughout this announcement, let \(k \) be an algebraically closed field of characteristic \(p \geq 3 \) and \(X \) a smooth separated connected scheme of dimension 2 over \(k \). We write \(D \) for a divisor on \(X \) with simple normal crossings, and put \(U = X - D \). The symbol \(\Lambda \) denotes a finite field of characteristic \(\ell \neq p \). We consider a smooth sheaf \(\mathcal{G} \) of \(\Lambda \)-modules of rank 1 on \(U \) corresponding to a character \(\chi: \pi^\text{ab}_1(U) \to \Lambda^\times \). We fix an inclusion \(\Lambda^\times \hookrightarrow \mathbb{Q}/\mathbb{Z} \) and identify \(\chi \) with an element of \(H^1(U, \mathbb{Q}/\mathbb{Z}) = \text{Hom}(\pi^\text{ab}_1(U), \mathbb{Q}/\mathbb{Z}) \).

We put \(\mathcal{F} = j_! \mathcal{G} \), where \(j: U \to X \) is the canonical open immersion.

\[\text{§2. Kato’s logarithmic characteristic cycle} \]

In this section, we recall Kato’s logarithmic characteristic cycle. Kato’s logarithmic characteristic cycle is defined as a 2-cycle on the logarithmic cotangent bundle \(T^*X(\log D) \) of \(X \) with logarithmic poles along \(D \). This cycle satisfies an index formula computing the Euler characteristic.

Let \(\{D_i\}_{i \in I} \) be the irreducible components of \(D \) and let \(\mathfrak{p}_i \) denote the generic point of \(D_i \). The local field at \(\mathfrak{p}_i \) means the complete discrete valuation field \(\text{Frac} \hat{\mathcal{O}}_{X, \mathfrak{p}_i} \), where \(\hat{\mathcal{O}}_{X, \mathfrak{p}_i} \) denotes the completion of the local ring \(\mathcal{O}_{X, \mathfrak{p}_i} \) at \(\mathfrak{p}_i \) by the maximal ideal. We denote the local field at \(\mathfrak{p}_i \) by \(K_i \). Let \(\chi|_{K_i} \) denote the image of \(\chi \) by the composition \(H^1(U, \mathbb{Q}/\mathbb{Z}) \to H^1(k(X), \mathbb{Q}/\mathbb{Z}) \to H^1(K_i, \mathbb{Q}/\mathbb{Z}) \), where \(k(X) \) denotes the function field of \(X \).

We consider the ramification filtration \(\{\text{fil}_n H^1(K_i, \mathbb{Q}/\mathbb{Z})\}_{n \geq 0} \) of \(H^1(K_i, \mathbb{Q}/\mathbb{Z}) \) defined in [K1] Definition (2.1). We define the Swan conductor \(\text{sw}(\chi|_{K_i}) \) to be the minimal number \(n \) such that \(\chi|_{K_i} \in \text{fil}_n H^1(K_i, \mathbb{Q}/\mathbb{Z}) \). We put \(R_X = \sum_{i \in I} \text{sw}(\chi|_{K_i}) D_i \), and call it the Swan conductor divisor of \(\chi \) on \(X \). This is an effective Cartier divisor on \(X \). Let \(Z \) denote the support of \(R_X \). For \(D_i \subset Z \), we define the refined Swan conductor \(\text{rsw}(\chi|_{K_i}) \) to be the image of \(\chi|_{K_i} \) by the map \(\text{gr}_{\text{sw}(\chi|_{K_i})} H^1(K_i, \mathbb{Q}/\mathbb{Z}) \to (\Omega_X^1(\log D)(R_X)|_Z)_{\mathfrak{p}_i} \), defined in [M] Remark 3.2.12.

Lemma 2.1 ([K2] (3.4.2)). There exists a unique global section \(\text{rsw}(\chi) \) of the sheaf \(\Omega_X^1(\log D)(R_X)|_Z \) whose germ \(\text{rsw}(\chi)_{\mathfrak{p}_i} \) at any generic point \(\mathfrak{p}_i \) of \(Z \) coincides with the refined Swan conductor \(\text{rsw}(\chi|_{K_i}) \).
Let $T^*X(\log D) = \text{Spec} \mathcal{V}(\Omega^1_X(\log D)^\vee)$ denote the logarithmic cotangent bundle of X with logarithmic poles along D. Kato introduced the notion of cleanness ([K2] (3.4.3)). We define a non-negative integer $\text{ord}_x(x, D_i)$ for a point x of Z and an irreducible component D_i of Z containing x by

$$\text{ord}_x(x, D_i) = \max\{n \in \mathbb{Z}_{\geq 0} ; \text{rsw}(\chi)|_{D_i,x} \in m_x^n\Omega^1_X(\log D)(R_{\chi})|_{D_i,x}\}.$$

Here m_x is the maximal ideal of the local ring $\mathcal{O}_{X,x}$ at x. We say that (X, U, \mathcal{G}) is clean at a point x of X if $x \notin Z$ or if $x \in Z$ and $\text{ord}_x(x, D_i) = 0$ for an irreducible component D_i of Z containing x. We say that (X, U, \mathcal{G}) is clean if (X, U, \mathcal{G}) is clean at all points of X. He defined a logarithmic characteristic cycle $\text{Char}(X, U, \mathcal{G})$ of (X, U, \mathcal{G}) as a 2-cycle of $T^*X(\log D)$ using the refined Swan conductor $\text{rsw}(\chi)$ above as follows ([K2] (3.4.4)).

Let $T^*_X X(\log D)$ be the zero-section of $T^*X(\log D)$, and let $T^*_x X(\log D)$ be the fiber at a closed point of X. We define a 2-dimensional integral closed subscheme L_i of $T^*_X X(\log D)$ for D_i contained in Z to be the sub line bundle of $T^*X(\log D) \times X D_i$ associated to the unique locally direct factor of rank 1 of $\Omega^1_X(\log D)|_{D_i}$ containing the image of the multiplication map $\mathcal{O}_X(-R_{\chi})|_{D_i} \to \Omega^1_X(\log D)|_{D_i} ; f \mapsto fr\text{rsw}(\chi)$. For D_i not contained in Z, we define L_i by $L_i = \emptyset$.

Then the logarithmic characteristic cycle $\text{Char}(X, U, \mathcal{G})$ is of the form

$$\text{Char}(X, U, \mathcal{G}) = [T^*_X X(\log D)] + \sum_{i \in I} \text{sw}(\chi|_{K_i})[L_i] + \sum_{x \in |D|} s_x[T^*_x X(\log D)],$$

where $|D|$ denotes the set of closed points of D. For the definition of s_x in (2.1), we take a composition $f : X' = X_s \to X_{s-1} \to \cdots \to X_0 = \text{Spec} \mathcal{O}_{X,x}$ of blowing-ups at closed points lying over x such that $(X', f^{-1}(U), f^*\mathcal{G})$ is clean ([K2] Theorem 4.1). We put $D' = (f^{-1}(D))_{\text{red}}$. Then D' is a divisor on X' with simple normal crossings. We define $r_x \in \mathbb{Z}$ by $r_x = -(R_{\chi'} - f^*R_{\chi}, R_{\chi'} + D + f^*R_{\chi})$, where χ' denotes the pull-back of χ to $H^1(f^{-1}(U), \mathbb{Q}/\mathbb{Z})$ and $R_{\chi'}$ denotes the Swan conductor divisor of χ' on X' ([K2] Remark 5.7). We define s_x by

$$s_x = \sum_{i \in I, x \in D_i} \text{sw}(\chi|_{K_i})\text{ord}_x(x, D_i) - r_x.$$

If (X, U, \mathcal{G}) is clean at x, the integer s_x is equal to 0 by the definition of s_x.

The following theorem follows from [S1] the remark right after the conjecture in the page 168 and the definition of $\text{Char}(X, U, \mathcal{G})$.

Theorem 2.2 (Index formula). If X is proper over k, we have

$$\chi(X, \mathcal{F}) = (\text{Char}(X, U, \mathcal{G}), T^*_X X(\log D))_{T^*X(\log D)}.$$
§ 3. Construction of a canonical lifting

In this section, we construct a 2-cycle on T^*X which is a canonical lifting of Kato’s characteristic cycle using Matsuda’s non-logarithmic ramification theory ([M]). This is the main result in this announcement (Theorem 3.2). As a corollary, we have an index formula yielded by the canonical lifting. For simplicity, we assume that (X, U, \mathcal{G}) is clean. For the general case, we will discuss in the paper which I am writing.

We consider another filtration $\{\text{fil}^n_1 H^1(K_i, \mathbb{Q}/\mathbb{Z})\}_{n \geq 0}$ of $H^1(K_i, \mathbb{Q}/\mathbb{Z})$ ([M] 3.1). We define a conductor $sw'(\chi|_{K_i})$ as the minimal number n such that $\chi|_{K_i} \in \text{fil}^n_1 H^1(K_i, \mathbb{Q}/\mathbb{Z})$. We put $R'_X = Z + \sum_{i \in I} sw'(\chi|_{K_i})D_i$. This is an effective Cartier divisor on X. For $D_i \subset Z$, we define the non-logarithmic version $\text{rsw}'(\chi|_{K_i})$ of the refined Swan conductor of $\chi|_{K_i}$ to be the image of $\chi|_{K_i}$ by the map

$$\text{gr}_{\text{rsw}'(\chi|_{K_i})} H^1(K_i, \mathbb{Q}/\mathbb{Z}) \to (\Omega^1_X(R'_X)|_{Z})_{\mathfrak{p}_i}$$

defined in [M] Definition 3.2.5.

Lemma 3.1 ([M] 5.2). There exists a unique global section $\text{rsw}'(\chi)$ of the sheaf $\Omega_X^1(R_X)|_Z$ whose germ $\text{rsw}'(\chi)_{\mathfrak{p}_i}$ at any generic point \mathfrak{p}_i of Z coincides with the refined Swan conductor $\text{rsw}'(\chi|_{K_i})$.

Let $T^*X = \text{Spec} \mathcal{V}(\Omega^1_X)$ denote the cotangent bundle of X. We define a 2-cycle $\text{Char}'(X, U, \mathcal{G})$ on T^*X, which will be a canonical lifting of Kato’s characteristic cycle, as follows. Let $T^*_X X$ denote the zero section of T^*X. Let $T^*_{D_i} X$ denote the conormal bundle of D_i in X, and $T^*_X X$ the fiber at a closed point x of X. We define a 2-dimensional integral closed subscheme L'_i of T^*X for D_i contained in Z to be the sub line bundle of $T^*_X X \times_X D_i$ associated to the unique locally direct factor of rank 1 of $\Omega^1_X|_{D_i}$ containing the image of the multiplication map

$$\mathcal{O}_X(-R'_X)|_{D_i} \to \Omega^1_X|_{D_i}; \quad f \mapsto \text{frsw}'(\chi).$$

For D_i not contained in Z, we define $L'_i = T^*_D X$. We put $R''_X = D + \sum_{i \in I} \text{sw}'(\chi|_{K_i})D_i$. Let $\text{dt}(\chi|_{K_i})$ denote the multiplicity of D_i in R''_X.

We construct a 2-cycle $\text{Char}'(X, U, \mathcal{G})$ of the form

$$\text{Char}'(X, U, \mathcal{G}) = [T^*_X X] + \sum_{i \in I} \text{dt}(\chi|_{K_i})[L'_i] + \sum_{x \in |D|} t_x [T^*_x X].$$

We define the integer t_x in (3.1) as follows. For a point x of Z and an irreducible component D_i of Z containing x, we define a non-negative integer $\text{ord}'_{\chi}(x, D_i)$ by

$$\text{ord}'_{\chi}(x, D_i) = \max\{n \in \mathbb{Z}_{\geq 0} ; \text{rsw}(\chi)|_{D_i, x} \in m_x^n \Omega^1_X(R'_X)|_{D_i, x}\},$$
where \(m_x\) is the maximal ideal of the local ring \(\mathcal{O}_{X,x}\) at \(x\). Let \(x\) be a closed point of \(D\). We define \(t_x\) by

\[
t_x = \#(T_x) - 1 + \sum_{D_i \in T_x'} sw(\chi_{|K_i})(\text{ord}_{\chi}'(x, D_i) + \sharp(T_x)) + \delta_{sw(\chi_{|K_i})dt(\chi_{|K_i})}(1 - \sharp(T_x)),
\]

where \(T_x = \{D_i \subset D \mid x \in D_i\}\) and \(T_x' = \{D_i \in T_x \mid sw(\chi_{|K_i}) > 0\}\). The symbol \(\delta_{sw(\chi_{|K_i})dt(\chi_{|K_i})}\) is the Kronecker delta.

Let \(\pi: T^*X \to T^*X(\log D)\) be the canonical morphism of vector bundles on \(X\). Let \(SS(X, U, \mathcal{G}) \subset T^*X(\log D)\) denote the support of (2.1). Let \(S/(X, U, \mathcal{G}) \subset T^*X\) denote the support of (3.1). Then it follows that \(SS(X, U, \mathcal{G}) \subset \pi^{-1}(SS(X, U, \mathcal{G}))\). Let \(\pi^1: CH_2(SS(X, U, \mathcal{G})) \to CH_2(\pi^{-1}(SS(X, U, \mathcal{G}))\) be the refined Gysin homomorphism for the l.c.i. morphism \(\pi\) ([F] 6.6). The following theorem is the main result in this announcement.

Theorem 3.2. The image of (3.1) in \(CH_2(\pi^{-1}(SS(X, U, \mathcal{G}))\) is equal to the image of (2.1) by \(\pi^1: CH_2(SS(X, U, \mathcal{G})) \to CH_2(\pi^{-1}(SS(X, U, \mathcal{G}))\).

The next corollary follows from Theorem 3.2 since Kato’s characteristic cycle (2.1) satisfies the index formula.

Corollary 3.3 (Index formula). If \(X\) is proper over \(k\), we have

\[
\chi(X, \mathcal{F}) = (Char'(X, U, \mathcal{G}), T^*_X X).\]

§ 4. Saito’s non-logarithmic characteristic cycle and a conjecture

Saito has given a definition of non-logarithmic characteristic cycle of a constructible complex on a smooth variety of general dimension using Beilinson’s singular support ([B]) in [S4]. This characteristic cycle is characterized by the Milnor formula and satisfies an index formula ([S4]). The index formula for this characteristic cycle is a generalization of Deligne and Laumon’s formula for the Euler characteristic for surfaces ([L] Théorème 1.2.1).

We keep the assumption in §2 and §3. Saito’s non-logarithmic characteristic cycle under this assumption is equal to that defined in [S3] ([S4] Theorem 7.14). In this section, we briefly recall Saito’s non-logarithmic characteristic cycle defined in ([S3]) without giving the detail of the construction. At the end of this section, we state a conjecture on the equality of Saito’s characteristic cycle and the canonical lifting of Kato’s characteristic cycle constructed in the previous section.

We keep the notation in §3. The divisor \(R_{\chi}'\) on \(X\) is shown to be equal to the slope \(R\) of \(\mathcal{G}\) ([S2] Definition 3.1) similarly as in the proof of Théorème 9.10 in [AS].
Saito’s non-logarithmic characteristic cycle $\text{Char}^R(F)$ in this case is a 2-cycle on T^*X of the form

$$
(4.1) \quad \text{Char}^R(F) = [T^*_X X] + \sum_{i \in I} \text{dt}(\chi|_{K_i})[L'_i] + \sum_{x \in |D|} u_x[T^*_X X]
$$

([S2] Definition 3.5, [S3] Definition 3.8, 3.15, and Proposition 3.19). The Milnor formula characterizing this characteristic cycle is Theorem 4.1 below. Let $f: X \to C$ be a flat morphism to a smooth curve C over k. Let df denote the section of T^*X defined by the image of a basis of $T^*C \times_C X$ by the canonical morphism $T^*C \times_C X \to T^*X$ induced by f. The condition that f is non-characteristic with respect to F is introduced by Saito ([S3] Section 1). This means that the intersection of df and the support of the characteristic cycle is empty.

Theorem 4.1 (Milnor formula, [S3] Theorem 3.17). Let $f: X \to C$ be a flat morphism to a smooth curve over k. Let x be a closed point of X. Assume that f is non-characteristic with respect to F in a neighborhood of x possibly except for x and that D is étale over C. Then we have

$$
(4.2) \quad -\dim \, \text{tot} \phi_x(F, f) = (\text{Char}^R(F), [df])_{T^*_X X, x},
$$

where $\dim \, \text{tot} \phi_x(F, f)$ denotes the total dimension of the space $\phi_x(F, f)$ of the vanishing cycles at x, and the right hand side means the intersection number in the fiber of T^*X at x.

Saito’s characteristic cycle satisfies the index formula.

Theorem 4.2 (Index formula, [S3] Theorem 3.19.). If X is proper over k, we have

$$
\chi(X, F) = (\text{Char}^R(F), T^*_X X)_{T^*X, x}.
$$

Finally, we state a conjecture.

Conjecture 4.3. Assume that (X, U, G) is clean. Then the characteristic cycles $\text{Char}^R(F)$ and $\text{Char}^*(X, U, G)$ are equal.

In order to prove this conjecture, by (3.1) and (4.1), it is sufficient to prove the equality of t_x in (3.1) and u_x in (4.1) for any closed point x on D. The equality of the sum of t_x and that of u_x follows from the index formulas Corollary 3.3 and Theorem 4.2. When the sheaf G is Artin-Schreier, this conjecture is proved using this equality and the fact ([S3] Corollary 3.15) that u_x is determined étale locally.
Acknowledgment

I would like to express my gratitude to the organizers for giving the opportunity for the talk. I would like to thank Professor Takeshi Saito for giving many helpful advices on the draft of this article. I would like to thank the referee for the helpful comments.

References

[S2] Saito, T., Wild ramification and the cotangent bundle, Journal of Algebraic Geometry published online.

[S3] Saito, T., Characteristic Cycle and the Euler Number of a Constructible Sheaf on a Surface, Kodaira Centennial issue of the Journal of Mathematical Sciences, the University of Tokyo, vol 22, 2015 pp. 387-442.
