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Log abelian varieties (Survey)

By

Chikara NAKAYAMA*

Abstract

This is a survey on the theory of lo abelian varieties, which is a new formulation of
degenerating abelian varieties in view of lo eometry in the sense of Fontaine‐Illusie.

This manuscript is a survey on the theory of  \log abelian varieties, a joint work

with T. Kajiwara and K. Kato. In Sections 0‐2, we try to describe faithfully what I
lectured or planned to lecture in the conference. We omit the technical details, and the

description is pretty rough and even sometimes inaccurate for explanatory reasons. We
include some omitted details in the last Section 3.

§0.  {\rm Log} Geometry

We explain the  \log geometry in the sense of Fontaine‐Illusie briefly (cf. [1]).

Definition 0.1. A log structure on a ringed topos  (X, \mathcal{O}_{X}) is a pair of a shea
 M_{X} of (commutative) monoids and a homomorphism

 \alpha :  M_{X}  arrow \mathcal{O}_{X}

of sheaves of monoids such that

 \alpha^{-1}(\mathcal{O}_{X}^{\cross}) \simeq \mathcal{O}_{X}^{\cross}

is an isomorphism. Here we regard  \mathcal{O}_{X} as a sheaf of monoids by multiplication (not by
addition).
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Example 0.2. The canonical inclusion

 \mathcal{O}_{X}^{\cross}arrow \mathcal{O}_{X}

defines a  \log structure. We call it the trivial lo structure.

Example 0.3. Let  N=N_{X} be the constant sheaf of nonnegative integers. Then

the homomorphism

 \mathcal{O}_{X}^{\cross}\oplus N_{X}arrow \mathcal{O}_{X}

which is the canonical one on the first factor and which is the homomorphism sending

the generator 1 of  N to the zero section  0 in  \mathcal{O}_{X} on the second factor defines a  \log
structure. We call it the  N‐hollow lo structure.

These examples suggest that we can regard the sheaf  M_{X} of monoids as a kind  0

amplification of the sheaf  \mathcal{O}_{X}^{\cross} of invertible sections.

An essence of  \log geometry is: equipped with a  \log structure, a singular space (or
a singular object) starts to behave as if it were nonsingular.

Definition 0.4. A lo scheme is a pair of a scheme and a  \log structure on its

étale topos.

Practically, we mainly use the  \log structures satisfying a certain finiteness condition

called fs lo structures  (^{\backslash \backslash }fs ” means fine and saturated). Both the trivial  \log structure
and the  N‐hollow  \log structure are fs. A  \log scheme whose  \log structure is fs is called

an fs log scheme.

Example 0.5. Let  k be a field. Consider a semistable family over a trait whose

closed point is  {\rm Spec}(k) . Then the special fiber  X of this family carries a natural fs

 \log structure. In particular, the closed point itself carries a natural fs  \log structure,

which is isomorphic to the  N‐hollow one. We call this  \log scheme  ({\rm Spec}(k) ,  N‐hollow

one) the standard log point and denote it by  s . The structure morphism of the family
induces a natural morphism  X  arrow  s of fs  \log schemes and it is  \log smooth (smooth in
the logarithmic sense) and shares many properties with a usual smooth morphism  0

schemes. For example, it has an infinitesimal lifting property in the category of fs  \log

schemes exactly in the same way as a usual smooth morphism has it in the category  0

schemes. Further, it has neat (  Betti/\ell-adic/p‐adic) cohomologies (cohomologies in the
logarithmic sense) etc.

§1.  {\rm Log} Elliptic Curves

We explain the idea of the definition of  \log abelian varieties in the one‐dimensional

case, that is,  \log elliptic curves.
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Assume that we want to apply the  \log geometry explained in the previous section

to the theory of abelian varieties. Our principle is the following:

Meta‐conjecture. Every statement for an abelian variety can be generalized to a  \log

abelian variety.

What should a  \log elliptic curve be, say, over  s (the standard  \log point defined in
Example 0.5)? A naive definition is that it is a one‐dimensional proper  \log smooth fs
 \log scheme over  s of “genus one” in a suitable sense or that it is the special fiber  0

a degenerate family of elliptic curves. For example, a Tate curve with the natural  \log

structure is such an fs  \log scheme: it is certainly proper and  \log smooth. But a problem

is that it has no (natural) group structure (because the underlying singular scheme has
no group structure.) It contradicts Meta‐Conjecture for it is the group structure that
is one of the most important features of abelian varieties.

An idea is the following:

To et a roup structure, consider “the roup generated by the naive one. ”

But in which ambient group can the naive one generate a group?

As a test case, consider the crossed two lines

 X={\rm Spec} k[x, y]/(xy)

endowed with the  \log structure charted by

 N^{2}arrow k[x, y]/(xy);e := \{\begin{array}{l}
1
0
\end{array}\} \mapsto x, f := \{\begin{array}{l}
0
1
\end{array}\} \mapsto y.
This  X also has no group structure. But, before degeneration, it was

 {\rm Spec} k[x, y]/(xy-q)

for a fixed  q\in k^{\cross} , which has a group structure. Indeed it represents the functor

 (sch/k) \ni T\mapsto\{(x, y) \in \mathcal{O}^{\cross} \cross \mathcal{O}
^{\cross} |xy=q\}=\{x\in \mathcal{O}^{\cross}\},

i.e.,  G_{m} . Here,  (sch/k) is the category of schemes over  k . (Here and hereafter, we
identify the sheaf on  T and its set of global sections.)

So, since to add a  \log structure should erase the degeneration, we can expect, in

the  \log world, the above

 X={\rm Spec} k[x, y]/(xy)={\rm Spec} k[x, y]/(xy-q) with  q=0

still has a group structure in some sense. (Formally,  q here is understood first as the
image of 1 by  Narrow M_{s} , and then as its image in  M_{X} by abuse of notation. Recall that
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 M_{s} where  q lives is an amplification of the sheaf of invertible sections  k^{\cross}  =  \mathcal{O}_{s}^{\cross}. ) In
actual,  X represents the functor

(fs log sch /s )  \ni T\mapsto\{(x, y) \in M_{T}\cross M_{T}|xy=q\}=\{x\in M_{T}^{gp}|1|x|q\}.

Here,  s is the standard  \log point (Example 0.5), (fs log sch /s ) denotes the category  0

fs  \log schemes over  s endowed with the topology by the strict étale coverings, we give

the structure morphism
 Xarrow s

by

 Narrow N^{2};1arrow \{\begin{array}{l}
1
1
\end{array}\} ,

 q\in M_{T} is the image of  q\in M_{s} by abuse of notation,  M_{T}^{gp} is the group  \{a^{-1}b|a, b\in M_{T}\}
associated to the monoid  M_{T} , and, for  a,  b\in M_{T}^{gp},  a|b means that  a^{-1}b\in M_{T}  \subset M_{T}^{gp}.
Visually, the last set

 \{x\in M^{gp}|1|x|q\}

is the bounded region  M_{T}\cap q
 -1

in  M_{T}^{gp} . Unfortunately, this subset of  M_{T}^{gp} is not

closed under multiplication. But it has a partial multiplication in the sense that for

many pairs of elements of this subset, we can find its product within this subset. (For
example, two elements near 1 within this subset can be multiplied within this subset.)

Here comes the main idea of definition, that is, take the subgroup

(  T\mapsto\{x\in M^{gp}| there are integers  m,  n such that  q^{m}|x|q^{n}\} )  =:G_{m,\log}^{(q)}
 0

 G_{m,\log}:=(T\mapsto M_{T}^{gp})

generated by the last subset. (Precisely,  G_{m,\log}^{(q)} is a subsheaf. Notice that we can easily
see that this subsheaf  G^{(q)} m,i_{0} is in fact a subgroup sheaf as follows: Let  x,  x' be sections

of this subsheaf. By definition, there are integers  m,  n,  m',  n' such that

 q^{m}|x|q^{n}, q^{m'}|x'|q^{n'}

Then we have

 q^{m+m'}|xx'|q^{n+n'}

Hence  xx' also belongs to this subsheaf.)
We remark that the subgroup  G_{m,\log}^{(q)} is better than  G_{m,\log} itself in the sense that

it is not too big; it is nearly representa∪le (ind‐representable . In fact we have

  G_{m,\log}^{(q)}(T)=\bigcup_{n\geq 1}\{x\in M^{gp}|q^{-n}|x|q^{n}\}
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(modulo sheafification), and each

 \{x\in M^{gp}|q^{-n}|x|q^{n}\}

is represented by an fs  \log scheme

 {\rm Spec} k[x, y]/(xy-q^{2n}, q)={\rm Spec} k[x, y]/(xy)

endowed with the  \log structure charted by

 P_{n} :=\langle e_{n}, f_{n}, q|e_{n}f_{n}=q^{2n}\ranglearrow{\rm Spec} k[x, y]
/(xy);e_{n}\mapsto x, f_{n}\mapsto y, q\mapsto 0,

where the monoid  P_{n} is generated by 3 elements  e_{n},  f_{n},  q with one relation  e_{n}f_{n}=q^{2n}.
This is because an  x such that  q^{-n}|x|q^{n} gives the homomorphism from this monoid  P_{n}

to  M_{T} by sending  e_{n} to  xq^{n},  f_{n} to  q^{n}x^{-1} , and  q to  q.

Note that the underlying scheme of this fs  \log scheme is just the crossed two lines

and independent of the index  n . Let’s calculate the transition morphism corresponding
to the inclusion

 \{x\in M^{gp}|q^{-n}|x|q^{n}\}arrow\{x\in M^{gp}|q^{-n-1}|x|q^{n+1}\}.

As was said in the above, an  x with  q^{-n}|x|q^{n} induces the morphism of monoids  P_{n}  arrow

 M_{T} sending  e_{n} to  xq^{n} and  f_{n} to  q^{n}x^{-1} . If we regard this  x as a section of  \{x  \in

 M^{gp}|q^{-n-1}|x|q^{n+1}\} , it induces the morphism of monoids  P_{n+1}  arrow  M_{T} sending  e_{n+1}

to  xq^{n+1}  =  (xq^{n})q and  f_{n+1} to  q^{n+1}x^{-1}  =  q(q^{n}x^{-1}) . Hence, the above inclusion

corresponds to the homomorphism of monoids

 P_{n+1} arrow P_{n}

sending  e_{n+1} to  e_{n}q and  f_{n+1} to  f_{n}q . Then the induced morphism of fs  \log schemes is a

partial  \log blow‐down. The underlying morphism of schemes is just the zero‐map, that

is, the constant map into the origin, and the system looks like

(crossed two lines)  arrow^{0} (crossed two lines)  arrow^{0} (crossed two lines)  arrow^{0} . . .

endowed with the  \log structures

  P_{1} arrow P_{2}arrow P_{3}arrow\cdots

Thus, if we only look at the underlying objects, the system is too poor. But, in ac‐

tual, the transition morphisms are all monomorphisms in virtue of the existence of  \log

structures. Here is a big difference between the usual world and the  \log world: In the

usual world, a blow‐down is not a monomorphism, but in the  \log world, a blow‐down is

a monomorphism.
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A space like  G_{m,\log}^{(q)} might be called a ghost. Formally, it belongs to the category  0

algebraic log spaces. The definition of algebraic  \log space is parallel to that of algebraic

space. It is a functor obtained as a quotient of the sheaf represented by an fs  \log scheme

by a  \log étale relation.

We summarize the story so far:

A roup  ob\cdot ect appears in the limit of the successive lo blow‐downs.

Now we proceed to the definition of  \log elliptic curves. Let  s be an fs  \log point over

a separably closed field  k , that is, an fs  \log scheme whose underlying scheme is  {\rm Spec} k.

First we introduce two typical  \log elliptic curves over  s.

Type 1.  G_{m,\log}^{(q)}/q^{z} for a section  q  \in  M_{s}\backslash k^{\cross} . Here the group sheaf  G_{m,\log}^{(q)} can

be defined similarly as in the case where  s is a standard  \log point.

Type 2. A usual elliptic curve endowed with the pullback  \log structure from  s.

Definition 1.1. A log elliptic curve over an fs  \log scheme  S is a sheaf  E  0

abelian groups on (fs  \log sch/S)ét (the subscript expresses that we endow the category
with the topology by the strict étale coverings) satisfying the following conditions (1)  -

(3).
(1) For any  s\in S , the pullback  E_{\overline{s}} of  E to a geometric point over  s (cf. Definition

3.6 (1)) is isomorphic to either the one of type 1 or the one of type 2.
(2) There exists a one‐dimensional semiabelian scheme  G over  S , a section  q  0

 M_{S}/\mathcal{O}_{S}^{\cross} , and an exact sequence

 0arrow Garrow Earrow G_{m,\log}^{(q)}/G_{m}q^{z}arrow 0
of sheaves of abelian groups on (fs  \log sch/S)ét. Here  G_{m,\log}^{(q)} means  G_{m,\log}^{(\tilde{q})} for a local
lift  \tilde{q}\in M_{S} of  q , which is independent of choices of  \tilde{q} and is globally defined.

(3) (Separability.) The diagonal morphism  Earrow E\cross E is finite.

We remark that after pulling back to  S  (s \in S) , the conditions (2) and (3) are
deduced from the condition (1): As for (2), let  s\in S . Then if  E_{\overline{s}} is of type 1, we have
 G_{S}=G_{m} , and the exact sequence concerned is

 0arrow G_{m}arrow G_{m,\log}^{(\tilde{q})}/\tilde{q}^{z}arrow G_{m,\log}
^{(\tilde{q})}/G_{m}\tilde{q}^{z}arrow 0
for a lift  \tilde{q}\in M_{\overline{s}}\backslash \mathcal{O}_{\overline{s}}^{\cross} of  q_{S}.

If  E_{\overline{s}} is of type 2, we have  G_{S}=E_{\overline{s}},  q is invertible, and the exact sequence concerned
reduces to

 0arrow E_{S}arrow E_{\overline{s}}arrow 0arrow 0.

Next we define level structures. In virtue of the fact that a  \log elliptic curve has a

group structure, the definitions are exactly parallel to those in the nonlog case.
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Definition 1.2. Let  N  \geq  1 . Let  S be an fs  \log scheme over SpecZ  [1/N] . Let
 E be a  \log elliptic curve over  S.

(1) A  \Gamma(N) ‐structure on  E is an isomorphism  (Z/NZ)^{2}
 \cong

 Ker(N: Earrow E) .
(2) A  \Gamma_{1}(N) ‐structure on  E is a section  Sarrow E of exact order  N , i.e., of order  N

in each geometric fiber.

We define the moduli problems also just as in the nonlog case. Let   N\geq  1.

Definition 1.3. Let  S be an fs  \log scheme over SpecZ  [1/N] . We define two

functors  \overline{F}_{N} and  \overline{F}_{N,1} : (fs log sch /S)  arrow (set) as follows. Let  T be an object  0

(fs log sch /S).
(1)  \overline{F}_{N}(T) is the set of isomorphism classes of  \log elliptic curves over  T with  \Gamma(N)-

structure.

(2)  \overline{F}_{N,1}(T) is the set of isomorphism classes of  \log elliptic curves over  T with
 \Gamma_{1}(N) ‐structure.

Then our theorem is the following.

Theorem 1.4 ([4, THEOREM 5.1]). Let  N  \geq  3 (resp.  N  \geq  4 ) and  S an fs lo
scheme over SpecZ  [1/N] with the trivial log structure. Then  \overline{F}_{N} (resp.  \overline{F}_{N,1} ) is repre‐
sented by the Deligne‐Rapoport compactification  X(N) (resp.  X_{1}(N) ) over  S with the
log structure defined by the cusps.

§2.  {\rm Log} Abelian Varieties

Higher dimensional theory is in progress. Here is the whole plan.

Part I (complex analytic theory [2]) 2008, J. Math. Sci. Univ. Tokyo
Part II (definition and first properties [3]) 2008, Nagoya Math. J.
Part III (case of  \log elliptic curves; illustration [4]) 2013, Nagoya Math. J.
Part IV (proper models [5]) 2015, Nagoya Math. J.
Part V (projective models [6]) preprint
Part VI (local moduli) in preparation
Part VII (global moduli) in preparation

Some expected applications are

‐ Compactification of various moduli of abelian varieties (original motivation)
‐ Grothendieck conjecture on monodromy coupling

‐ Fundamental theorem of Hodge‐Arakelov theory for  \log elliptic curves
‐Fourier‐Mukai transform for  \log abelian varieties
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We explain roughly the definition of  \log abelian varieties based on the definition  0

 \log elliptic curves in the previous section. See Section 3 for a precise definition.

In the definition of  \log elliptic curves, first we replace  G_{m} with a semiabelian scheme
 G.

Next, over each point, we replace

 q :  Zarrow G_{m,\log}

with a polarizable  \log  1‐moti

 Yarrow G_{10} ,

where  Y is a locally free sheaf of  Z‐modules of finite rank and  G_{\log} is an extension  0

 G as a sheaf.

Then we obtain the definition of  \log abelian varieties. The definition of level struc‐

tures and moduli problems are the same as before.

Finally, we want to explain, by an example, what kind of difficulty we encountered

in this theory of  \log abelian varieties. As an example, consider the following statement.

Statement 1. Let  S_{\lambda} be a filtered projective system of affine fs  \log schemes whose

transition morphisms are strict. Let  S= \lim S_{\lambda} . Then the natural map

 \underline{1i!}\{\log abelian variety over  S_{\lambda}\}_{/\cong}  arrow\{\log abelian variety over  S\}_{/\cong}

is bijective.

This is clearly important and should be valid. (In the above, the projective limit is
represented by the projective limit of the underlying system of schemes endowed with

the pullback  \log structure of the  \log structure of some  S_{\lambda}. )
To show this Statement 1, take a subsheaf  A^{(\Sigma)} of a  \log abelian variety  A over  S,

where  \Sigma is a certain combinatorial data. This  A^{(\Sigma)} is called a model of  A , which is

an analogue of  \{x \in G_{m,\log}|1|x|q\}/q^{z} in the case of  \log elliptic curves, and generates

the original  A as a group sheaf. We descend this  A^{(\Sigma)} to some  S_{\lambda} and it generates an
abelian sheaf  A_{\lambda} over  S_{\lambda}.

To show that  A_{\lambda} is a  \log abelian variety, we must check

(a) the pointwise polarizability, and
(b) the separability.
If  A^{(\Sigma)} is represented by an algebraic space with an fs  \log structure, the separability

descends via  A^{(\Sigma)} . So we encounter another problem.

Statement 2.  A^{(\Sigma)} is represented by an algebraic space with an fs  \log structure.

If the base is excellent, this Statement 2 is checked by (a  \log version of) Artin’s
criterion. The general case is reduced to this case by Statement 1 which is a circular

argument!
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A solution for this issue of Statements 1 and 2 is as follows.

‐We prove by a  \log version of Artin’s criterion a variant of Statement 2 over an

excellent base relaxing the condition (a) and discarding the condition (b).
‐ Applying this variant of Statement 2 to the above  A_{\lambda} (assuming, without loss  0

generality,  S_{\lambda} is excellent), we prove the following variant of Statement 1 by a modifi‐
cation of the argument before Statement 2.

Proposition 2.1 ([5, COROLLARY 9.3]). Let  S_{\lambda} and  S be as above. Then the
natural map

  \lim\{ weak  \log abelian variety over  S_{\lambda}\}_{/\cong}  arrow\{ weak  \log abelian variety over  S\}_{/\cong}

is bi
 \cdot

ective.

Here a weak  \log abelian variety is defined by relaxing the condition of pointwise

polarizability in the definition of  \log abelian varieties to the condition of pointwise

admissibility.

‐By this proposition instead of Statement 1, the above argument after Statement

2 shows the next generalization of Statement 2.

Proposition 2.2 ([5, THEOREM 8.1]). Let  A be a weak lo abelian variety. The
 A^{(\Sigma)} is represented by an algebraic space with an fs lo structure.

(We include a more precise statement of this last proposition as Proposition 3.10
below.)

This is our current best, that is, we have known yet neither if  A_{\lambda} eventually satisfies

the condition (a) or not, nor if Statement 1 itself is valid or not.

§3. Appendix: Precise Definitions

In this section, we give a precise definition of  \log abelian varieties, that of weak  \log

abelian varieties, that of models, and that of algebraic  \log spaces. For more details, see

[3, Sections 2−4], [5, Section 1], [5, Section 2], and [5, Section 10], respectively.
Let  S be an fs  \log scheme. Let  G be a commutative group scheme over the un‐

derlying scheme of  S which is an extension of an abelian scheme  B by a torus  T . We

identify  G,  B , and  T with the sheaves on (fs  \log sch/S)ét represented by them endowed
with the pullback  \log structure from  S , respectively. (Here, the subscript “ét” means
that we endow the category with the topology by the strict étale coverings.) Let

 X :=Hom (T, G_{m})
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be the character group sheaf of  T , where Hom denotes the sheaf of homomorphisms.

This  X is a locally constant sheaf of finitely generated free  Z‐modules on (fs  \log sch/S)ét:
Let

 T_{\log} :=Hom (X, G_{m,\log}) .

We define

 G_{\log}

as the pushout of  T_{\log}arrow Tarrow G in the category of sheaves of abelian groups on (fs  \log

sch/S)ét: Then we have the exact sequence

 1arrow T_{\log}arrow G_{\log}arrow Barrow 1.

Definition 3.1 ([3, DEFINITION 2.2]). A lo 1‐motif  M over  S consists of the
following data.

‐A locally constant sheaf  Y of finitely generated free  Z‐modules on (fs  \log sch/S)ét:
‐ A commutative group scheme  G over the underlying scheme of  S which is an

extension of an abelian scheme  B by a torus  T.

‐A homomorphism  Yarrow G_{\log}.

We denote  M by

 [Yarrow G_{\log}]

viewed as a complex of sheaves of abelian groups with  Y of degree  -1 and with  G_{\log}o
degree  0.

Next, we define the dual of a  \log  1‐motif.
Let  M=  [Yarrow G_{\log}] be a  \log  1‐motif over  S . We use the same notation as above.

We define the dua

 * =[Xarrow G_{\log}^{*}]
of  M , where the semiabelian scheme  G^{*} is defined as follows. Let

 B^{*}

be the dual abelian scheme of  B , and

 T^{*} :=Hom (Y, G_{m}) .

We define  G^{*} as the sheafification of the preshea

(fs log sch /S)  \ni U\mapsto\{ pair  (F, h) of an extension  F of  B by  G_{m} over  U and

a homomorphism  h :  Yarrow F such that the composite

 Yarrow Farrow B coincides with  Yarrow G_{\log}arrow B\}_{/\cong}.
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This  G^{*} is representable and there is a natural exact sequence

 1arrow T^{*} arrow G^{*} arrow B^{*}arrow 1.

The homomorphism  Xarrow G_{10}^{*} is defined as follows. We can identify the sheaf  G_{10}^{*}
associated to  G^{*} with the sheafification of the preshea

(fs log sch /S)  \ni U\mapsto\{ pair  (F, h) of an extension  F of  B by  G_{m} over  U and

a homomorphism  h :  Yarrow F_{\log} such that the composite

 Yarrow F_{\log}arrow B_{\log}=B coincides with  Yarrow G_{\log}arrow B\}_{/\cong}.

For a section  x of  X , let  F be the extension of  B by  G_{m} obtained as the pushout

of 1  arrow  T  arrow  G  arrow  B  arrow  1 with respect to  x :  T  arrow  G_{m} . Let  h be the composite

 Yarrow G_{\log}arrow F_{\log} . Then the desired homomorphism  Xarrow G_{\log}^{*} is defined by associating
to  x the class of  (F, h) .

Next we define a polarization on a  \log  1‐motif.

Definition 3.2 ([3, DEFINITION 2.8]). Let  M  =  [Y arrow G_{10} ] be a  \log  1‐moti
over  S . A polarization on  M is a homomorphism

 h :   Marrow
 *

 =  [Xarrow G_{\log}^{*}]

of  \log  1‐motifs satisfying the following four conditions (1)  -(4) .
(1) The induced homomorphism  Barrow B^{*} is a polarization on  B.

(2) The induced homomorphism :  Yarrow X is injective and each stalk of its cokernel
is finite.

(3) For any  s\in S and any nontrivial  y\in Y_{\overline{s}} , the element  \langle\phi(y) ,  y\rangle_{S} of  M_{S,\overline{s}}^{gp}/\mathcal{O}_{S,S}^{\cross} is
nontrivial and belongs to  M_{S,S}/\mathcal{O}_{S,S}^{\cross} . Here,

 \langle,  \rangle :  X\cross Yarrow M_{S}^{gp}/\mathcal{O}_{S}^{\cross}

is the canonical pairing induced by

 Yarrow G_{10} arrow G_{10} /G\cong T_{10} /T\cong Hom (X, G_{m,10} /G_{m}) .

(4) The homomorphism  T_{\log}arrow T_{\log}^{*} induced by  G_{\log}arrow G_{\log}^{*} coincides with the one
induced by

A  \log  1‐motif is said to be polarizable if there is a polarization on it.

Now we associate to a polarizable  \log  1‐motif a  \log abelian variety.
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Let  M=  [Yarrow G_{\log}] be a  \log  1‐motif over  S . Let the notation be as above. Define

a subgroup shea
Hom  (X, G_{m,\log}/G_{m})^{(Y)}

of Hom  (X, G_{m,10} /G_{m}) by

(fs log sch /S)  \ni U\mapsto\{\varphi| for any  x\in X , locally there are  y_{1},  y_{2}  \in Y such that

 \langle x,   y_{1}\rangle divides  \varphi(x) and  \varphi(x) divides  \langle x,   y_{2}\rangle }.

Here, for  a,  b\in M_{U}^{gp}/\mathcal{O}_{U}^{\cross} , we say that  a divides  b if  a^{-1}b belongs to  M_{U}/\mathcal{O}_{U}^{\cross}.
Define a subgroup shea

 G_{\log}^{(Y)}
of  G_{\log} as the inverse image of Hom  (X, G_{m,\log}/G_{m})^{(Y)} by the canonical homomorphism

 G_{\log}arrow Hom(X, G_{m,\log}/G_{m}) .

The homomorphism  Yarrow G_{\log} factors through  G_{\log}^{(Y)} and we denote by

 G_{\log}^{(Y)}/Y
the cokernel of the induced homomorphism  Yarrow G_{10}^{(Y)}.

If  M is polarizable, then this last quotient sheaf makes an example of (polarizable)
 \log abelian variety over  S.

Example 3.3 (cf. [3, EXAMPLE 2.8.1]). Let  s be an fs  \log point, that is, an fs
 \log scheme whose underlying scheme is the spectrum of a field  k . Let  X=Y=Z . Let

 q\in\Gamma(s, M_{s})\backslash k^{\cross} . Consider the  \log  1‐moti

 M=[Yarrow G_{m,\log};1\mapsto q].

Then the dual  \log  1‐motif of this is

 *=[Xarrow G_{m,\log};1\mapsto q]

and the identity map   Marrow  *

is a polarization on  M . Hence

 A:=Hom (X, G_{m,\log})^{(Y)}/Y

is a  \log abelian variety. Here, the canonical pairing

  \langle, \rangle:X\cross Yarrow M_{s}^{g}\frac{p}{s}/\mathcal{O}_{s,S}
^{\cross}

sends (1, 1) to the class of  q , Hom  (X, G_{m,\log}) is identified with  G_{m,\log} , the subshea
Hom  (X, G_{m,\log})^{(Y)} is identified with

 G^{(q)} m,i_{0}  := {  x\in G_{m,\log}| there are integers  m,  n such that  q^{m}|x|q^{n} },

 Y is identified with the subgroup generated by  q , and hence,  A is identified with

 G_{m,\log}^{(q)}/q^{z}.
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We introduce the concept of admissible pairing.

Definition 3.4 ([3, 7.1]). Let  X and  Y be finitely generated free  Z‐modules and
let  P be an fs monoid. A  Z‐bilinear form  \langle ,  \rangle :  X\cross Yarrow P^{gp} is admissible (precisely,
 P ‐admissible) if for any face  \sigma of  P and any homomorphism  N :  \sigmaarrow R_{\geq 0} (regarded as
a monoid by addition), the pairing of  R‐linear spaces

 (X_{\sigma}/X_{\tau})_{R}\cross (Y_{\sigma}/Y_{\tau})_{R}arrow R

induced by  N is nondegenerate, where  \tau is the face  N^{-1}(0) of  \sigma . Here, for a face  \sigma 0

 P,  X_{\sigma} (resp.  Y_{\sigma} ) is the subgroup of  X (resp.  Y ) consisting of all elements  x (resp. y)
such that  \langle x,   Y\rangle (resp.  \langleX,   y\rangle ) is contained in  \sigma^{gp}.

Definition 3.5 ([3, 7.1]). Let  X,  Y be as above. Let  S be an fs  \log scheme.  A

 Z‐bilinear form  X\cross Yarrow M_{S}^{gp}/\mathcal{O}_{S}^{\cross} is admissible if, for any  s\in S , the induced pairing

 X\cross Yarrow M_{S,\overline{s}}^{gp}/\mathcal{O}_{S,S}^{\cross} is  M_{S,S}/\mathcal{O}_{S,S}^{\cross}‐admissible.

Now we come to the definition of  \log abelian variety.

Definition 3.6 ([3, DEFINITION 4.1, 4.3]). A lo abelian variety over an fs  \log

scheme  S is a sheaf  A of abelian groups on (fs  \log sch/S)ét satisfying the following three
conditions.

(1) For any  s\in S , let  S be the spectrum of a separable closure of the residue field
of  s endowed with the pullback  \log structure from  S . Then there is a polarizable  \log
 1‐motif  [Yarrow G_{\log}] over  S such that the pullback of  A to (fs  \log sch/s)ét is isomorphic
to  G_{\log}^{(Y)}/Y.

(2) Étale locally on  S , there are a semiabelian group scheme  G over  S , finitely
generated free  Z‐modules  X and  Y , an admissible pairing  \langle ,  \rangle :  X  \cross  Y  arrow  M_{S}^{gp}/\mathcal{O}_{S}^{\cross},
and an exact sequence

 0arrow Garrow Aarrow Hom(X, G_{m,\log}/G_{m})^{(Y)}/\overline{Y}arrow 0

of sheaves of abelian groups, where  \overline{Y} is the image of  Y in Hom  (X, G_{m,\log}/G_{m})^{(Y)}.
(3) (Separability.) The diagonal morphism  Aarrow A\cross A is finite.

Precisely, (3) means that for any morphism  Uarrow A\cross A from a representable sheaf,
the base‐changed morphism  A  \cross A\cross A  U  arrow  U is represented by a morphism of fs  \log

schemes whose underlying morphism of schemes is finite.

The semiabelian group scheme  G in (2) in fact exists globally on  S and is uniquely
determined by  A (see 9.2 of [3] for a proof). We define the dimension of  A to be the
relative dimension of  G over  S , which is a locally constant function on  S.

The following proposition is proved in [4].
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Proposition 3.7 ([4, PROPOSITION 1.4]). The log elliptic curves defined in Def‐
inition 1.1 are one‐dimensional log abelian varieties in the above sense. Conversely,

one‐dimensional lo abelian varieties are lo elliptic curves.

Next we will give the definition of weak  \log abelian variety.

A  \log 1‐motif with  X and  Y being constant is said to be admissible (resp. nondegen‐
erate) if the associated canonical pairing  \langle ,  \rangle :  X\cross Yarrow M_{S}^{gp}/\mathcal{O}_{S}^{\cross} is admissible (resp.
nondegenerate). Here that the pairing is nondegenerate means that the induced two
homomorphisms  Xarrow \mathcal{H}om(Y, M_{S}^{gp}/\mathcal{O}_{S}^{\cross}) and  Yarrow \mathcal{H}om(X, M_{S}^{gp}/\mathcal{O}_{S}^{\cross}) are injective.

Definition 3.8 ([5, DEFINITION 1.6]). A weak lo abelian variety over an fs  \log

scheme  S is a sheaf  A of abelian groups on (fs  \log sch/S)ét satisfying the conditions (2)
and (3) in Definition 3.6 of the  \log abelian variety together with the following condition.

(1) For any  s\in S , there is an admissible and nondegenerate  \log  1‐motif  [Yarrow G_{\log}]
over  S such that the pullback of  A to (fs  \log sch/s)ét is isomorphic to  G_{\log}^{(Y)}/Y.

Let  A be a weak  \log abelian variety over an fs  \log scheme  S . We will give the
definition of models of  A.

By the condition (2) (cf. Definition 3.6) of the definition of a weak  \log abelian
variety, étale locally on  S , there are a semiabelian group scheme  G over  S , finitely

generated free  Z‐modules  X and  Y , an admissible pairing

 \langle,  \rangle :  X\cross Yarrow M_{S}^{gp}/\mathcal{O}_{S}^{\cross},

and an exact sequence

 0arrow Garrow Aarrow Hom(X, G_{m,\log}/G_{m})^{(Y)}/\overline{Y}arrow 0.

Further étale locally on  S , there are an fs monoid  S , a homomorphism of sheaves of fs
monoids

 Sarrow M_{S}/\mathcal{O}_{S}^{\cross},

where we regard  S as a constant sheaf, and an admissible pairing

 X\cross Yarrow S^{gp}

such that the composite

 X\cross Yarrow S^{gp}arrow M_{S}^{gp}/\mathcal{O}_{S}^{\cross}

coincides with the above  \langle ,  \rangle . We assume that the above data are given globally on
the base  S.
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Now, let  C be the submonoid of  Hom(S, N)  \cross Hom(X, Z) defined as

 C=\{(N, l)|l(X_{N(0)}-1)=0\}.

Let  \Sigma be a fan in  Hom  (S^{gp} \cross X, Q) whose support is contained in the submonoid

generated by  C over  Q\geq 0 . Assume that  \Sigma is stable under the action of  Y on  C , where

 y\in Y acts on  C by the formula

 (N, l)\mapsto(N, l+N(\langle-, y\rangle)) .

For any member  \triangle\in\Sigma , let

 \overline{V}(\triangle) \subset Hom (X, G_{m,\log}/G_{m})^{(Y)}

be the subsheaf defined by

 \overline{V}(\triangle)(U)= {  \varphi\in Hom (X,  G_{m,\log}/G_{m})(U)|\mu\varphi(x)  \in M_{U}/\mathcal{O}_{U}^{\cross} for any  (\mu, x)  \in\triangle^{v} },

where  U is an fs  \log scheme over  S and  \triangle^{\vee}  \subset S^{gp}  \cross X is the dual cone of  \triangle . Let

Hom  (X, G_{m,10} /G_{m})^{(\Sigma)}

be the union of such  \overline{V}(\triangle)s for all  \triangle\in\Sigma . Consider the image of Hom  (X, G_{m,\log}/G_{m})^{(\Sigma)}
in Hom  (X, G_{m,10} /G_{m})^{(Y)}/\overline{Y} . Then let

 A^{(\Sigma)} \subset A

be the pullback of this image by the projection  Aarrow Hom(X, G_{m,\log}/G_{m})^{(Y)}/\overline{Y} . We
call such  A^{(\Sigma)} a model of  A.

Example 3.9. Let the notation be as in Example 3.3. The canonical pairing

 \langle, \rangle:X\cross Yarrow M_{s}^{g_{\frac{p}{s}}},/\mathcal{O}_{s,S}
^{\cross}

factors as

 X\cross Yarrow N^{gp}arrow M_{s}^{g_{\frac{p}{s}}},/\mathcal{O}_{s,S}^{\cross},
where the first arrow sends (1, 1) to 1 and the second arrow sends 1 to the class of  q.  I

we identify  Hom(N, N)  \cross Hom(X, Z) with  N  \cross  Z naturally, the submonoid  C in the
above is identified with

{  (n, l)  \in N\cross Z|l=0 if  n=0},

on which  y\in Y=Z acts via  (n, l)\mapsto  (n, l+ny) . Let  \Sigma be the fan consisting of all faces
of the cone

 \triangle:=\{(n, l) \in Q_{\geq 0} \cross Q|0\leq l\leq n\}
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and its all translations. Then  \overline{V}(\triangle) is identified with the subshea

 \{x\in G_{m,10} /G_{m}|1|x|q\}

of  G_{m,\log}/G_{m} and its pullback

 \{x\in G_{m,\log}|1|x|q\}

to  G_{m,\log} is represented by an fs  \log scheme whose underlying scheme is the crossed
two lines. The model  A^{(\Sigma)} is the subshea

{  x\in G_{m,\log}| there is an integer  n such that  q^{n}|x|q^{n+1} }  /q^{z}

of  A=  G_{m,\log}^{(q)}/q^{Z} , which is represented by an fs  \log scheme whose underlying scheme

is obtained by identifying the two points  0 and 1 of the projective line. Some detail

calculations are found in [3] 1.5.

A more precise statement of Proposition 2.2 is as follows.

Proposition 3.10 ([5, THEOREM 8.1]). Let  A be a weak lo abelian variety ove
an fs lo scheme  S . Assume that there are the above  G,  X,  Y,

 \langle,  \rangle :  X\cross Yarrow M_{S}^{gp}/\mathcal{O}_{S}^{\cross},

 0arrow Garrow Aarrow \mathcal{H}om(X, G_{m,\log}/G_{m})^{(Y)}/\overline{Y}arrow
0,
 Sarrow M_{S}/\mathcal{O}_{S}^{\cross} , and  X\cross Yarrow S^{gp} globally on S. Let  \Sigma be a  Y ‐stable fan as above. The

the model  A^{(\Sigma)} is represented by  a (quasi‐separated) algebraic space over the underlyin
scheme of  S endowed with an fs lo structure over  S.

Finally, we give a definition of  \log algebraic space.

Definition 3.11 ([5, 10.1]). Let  S be an fs  \log scheme. A log algebraic space
(called a  \log algebraic space in the second sense in [5]) over  S is a sheaf  F on (fs  \log sch/S)ét
such that there are an fs  \log scheme  F' over  S and a surjective morphism  F'  arrow  Fo

sheaves such that, for any fs  \log scheme  T and any morphism  Tarrow F , the fiber product
 T\cross {}_{F}F' is represented by  a (quasi‐separated) algebraic space with an fs  \log structure
which is  \log étale over  T . Here we identify an fs  \log scheme over  S with the sheaf it

represents. That  T\cross {}_{F}F'  arrow T is  \log étale means that for any fs  \log scheme  T' which

is strict étale over  T\cross {}_{F}F' , the composite  T'arrow T\cross {}_{F}F'arrow T is  \log étale.

 A (quasi‐separated) algebraic space with an fs  \log structure over  S is a  \log algebraic
space in the above sense ([5, PROPOSITION 10.2]). A weak  \log abelian variety over  S is
also a  \log algebraic space  ( [5, THEOREM 10.4 (1)]  ) .
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