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Remark on the analytic smoothing effect for the
Hartree equation

By

Hironobu SASAKI*

Abstract

We give a review of [19], in which the author studied analytic solutions to the Cauchy
problem for the d-dimensional Hartree equation under the assumption that the interaction
potential V is in the weak LY 2_space. Furthermore, we show some extended results. More
precisely, we first give various smoothing effects for the equation. Next, an estimate for the
radius of convergence of exp(—i|z|?/(4t))u(t, z) is given.

§1. Introduction

In this paper, we give a review of the author’s previous work [19], and show some
extended results. We consider analytic solutions to the Cauchy problem for the nonlinear
Schrodinger equation of the form

(1.1) {iut+Au=F(u),

u(0,x) = ¢(x).

Here, u is a complex-valued unknown function of (¢,7) € R x R4, d > 3, i = \/—1, A is
the Laplacian in R%, F(u) denotes the Hartree term (V x|u|?)u and * is the convolution
in R?. Throughout this paper, we assume that the interaction potential V is a complex-
valued given function on R? and belongs to the weak L%? space. In other words, we
assume that

2/d
(1.2) sup)\‘ {z e R |V ()] > A} ‘ < 0.
A>0
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There is a large literature on the Cauchy problem for nonlinear Schrodinger equations
(see, e.g., [1,11,21] and references therein). In particular, Mochizuki [12] has proved
that if the condition

either |V (z)] < Clz|™2 or Ve LY?,

which is stronger than (1.2), holds and ¢ is sufficiently small in the L2-sense, then there
exists a time-global solution u to the integral equation of the form

(1.3) u(t) =U(t)p — i/ot Ut —t"Fu®))dt', teR

such that u(t) behaves like a free solution U(t)¢, in the L2-sense as t — oo, where
L? = L*(R%) and U(t) = e"*~. In particular, the inverse wave operator V. : ¢ — ¢, is
well-defined on a neighborhood of 0 in L?2.

We now mention the analytic smoothing effect for Schrédiner equations. We first
define linear operators
=]

M(t) : S'(R?) 3 9+ exp <ZZt

) eSS RY, t#0
and
J* =U@t)z°U(-t), aecNi teR.
Then we have for any t # 0,
(1.4) J = M(t)(2it0,)*M(—t), « € Ng.

As for the free Schrodiner equation iu; + Au = 0, it is easy to show that if the initial
data ¢ satisfies e**l¢ € L? for some A > 0, then for any ¢ # 0, the corresponding
solution U (t)¢(z) becomes real-analytic in . Indeed, since

a 1/l
£(z, ¢, L?) := limsup <M> < 00,

|| =00 a!

we see from the Sobolev embedding W (R?) — L>°(R¢%) and the identity (1.4) that

< 10 M (—t)U (t)9| o, ) 1/lal (HagM(—t)U(t)¢|y2>1/o‘|

< lim sup
|| =0

lim sup
|| =00

1 JeU(t 1/|e| 1 a 1/l
(1.5) — lim sup <—“ ( )¢H2) = — limsup (||x ¢H2) < 00,

a |2t’ || =00 a! a |2t| || =00 al

al al
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and hence that the mapping x — M(—t)U(t)¢(x) can be extended a holomorphic
function on the domain RY + iP(|2t|/£(z, ¢, L?)) of C¢ for any t # 0. Here, we have
defined the polydisc P(r) = (—r,7)% (0 < r < 00).

The analytic smoothing effect still holds for some nonlinear Schrédiner equations
and related equations (see, e.g., [2-10,13-18,22]). In particular, we can use methods
in [8,9,15] to show the analyticity of the solutions to (1.1) and more detailed properties
provided that V(x) satisfies (1.2). In these methods, one has to assume that the initial
data ¢ is small in the sense of some exponential weighted norm. On the other hand,
as we mentioned above, when one shows only the global existence and asymptotics of
solutions u to (1.1), one has only to assume that ¢ is small in the L?-sense. Therefore,
it is a natural question to ask whether we can show the analytic smoothing effect and
related results even if we only to assume that ¢ is small in the L?-sense and that
eM@lg € L? for some A > 0. The author [19] gave the following positive answers to this

question:

(I) We can choose some 7 so that if 0 < ||¢|| < n and
(1.6) 2,6, 1?) < 0,

then the solution u to (1.1) is real-analytic for any ¢t # 0, where ||-[| = |||/ 2-
More precisely, the mapping « +— M (—t)u(t, ) can be extended to a holomorphic
function on the domain R¢ + i P(|2t|/C(¢)) of C¢. Here, we have defined

(1 + [a])? 29| ) Hlel

(7) Cl9) = sup. < o [4]

and p is a positive constant dependent only on ||¢||, d and V.

(IT1) For any A > 0 and 0 < § < 7 there exists some ¢ € L? such that ||¢| = § and

o 1r(— 1/l
sup lim sup |2t (Hax ( t)u(t)H) < &(z, ¢, L) = A

t£0 |a|—o0 al

Remark that if V' = 0, then the above inequality becomes equality for any ¢ € L?
satisfying (1.6).

(ITI) If ¢ and V satisfy some strong condition, then the mapping = — M (—t)u(t, z)
can be extended to an entire function on C? for any ¢ # 0.

(IV) In the case of the final value problem, we have some properties similar to (I)—(III).

The rest of this paper is organized as follows. In the next section, we state main results
in [19] precisely. In Section 3, we introduce extended results. More precisely, we first
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give various smoothing effects for (1.1). Next, an estimate for the radius of convergence
of M(—t)u(t,x) is given. In Sections 4 and 5, we show the extended results.

§2. Main results in [19]

We first list some notation used in main results of [19]. For 1 < a < oo, we denote
the Lebesgue space L*(R?) and its norm by L and ||-||, respectively. For 1 < a < oo
and s € R, HS denotes the inhomogeneous Sobolev space H(R%). For n > 0, by B, L?
we denote the closed ball in L? with radius n centered at origin. We put No = NU{0}.
For a multi-index o € N4, we set (a) = 1 + |a]. Put

/1 2N\
"T\2738d)
We denote L3(R; L") and (C'N L*)(R; L?) N L3(R; L") by Y and Z, respectively.
Zoo:{veZ;aﬁveZ(aeNg)}, Zoo:{veZ;Jo‘veZ(aeNg)},

and
H> = ﬁ H* Hey = ﬁ FH
k=0 k=0

where F is the Fourier transform on S’(RY). For a Banach space X C S'(R?) and
Y € X, we put

a 1/l
2(8, Y, X) = lim sup (M)

|a] =0 a!
and

@ /e
£(J,1, X) = limsup (M) .

|| =00 al
Remark that the embedding HI (R?) — L implies that £(9,, L) < £(8,v, L9)
for any ¢ € [1,00]. In particular, if £(9,v,L9) < oo then 9 can be extended to a

holomorphic function on the domain R? +iP(1/£(9,1, L)) of C?. For a Banach space
Y CS'(R xR and v € Y, we put

Ja 1/l
£(J,v,Y) = limsup <|| va) .

|| =00 a!

For ¢ € H* and p > 0, we define C¥? =0 if ¢y = 0, and

« /el
cvr = sup (M) , Y #0.

jaj>0 \ ! |
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For ¢ € Hy, and p > 0, we define Cy , = 0 if ¢ = 0, and

a3\ 1o
Cyp = sup (M) w0

a0 \ - al[[¥]]

We remark that C¥P (resp. Cy ) is finite for any p > 0 provided that £(9,v, L?) < oo
(resp. £(z,1, L?) < o0).
We are ready to state main results of [19] precisely.

Theorem 2.1.  Assume (1.2). Then a positive number n > 0 satisfies the fol-
lowing properties:

(1) For any ¢ € B,L?, there exists a unique solution u € Z to (1.3) and a function
¢ € L? such that U(—t)u(t) — ¢ ast — +oo in L. Hence the inverse wave
operator Vy : By L? 3> ¢ — ¢ € L? is well-defined.

(2) If p € B,L>* N H* and £(9, ¢, L?*) < oo, then u € Z*, V. (¢) € H* and
£(0,u,2), £(0,V,(¢),L?) < CP.
Here, p is a positive constant dependent only on ||¢||, d and V.
(3) If p € B,L?> N He and £(x, ¢, L?) < 0o, then u € Zoo, Vi (¢) € He and

sup |2t[£(9, M (—t)u(t), L*), £(J,u,Z), £(x, V4 (¢),L*) < Cy .

t£0
Here, p is a positive constant dependent only on ||¢||, d and V. In particular, it fol-
lows that M (—t)u(t,x) (t # 0) (resp. FV1(¢)(z)) can be extended to a holomorphic
function on the domain R? +iP(|2t|/Cy.p) (resp. R +iP(1/Cy ).

Remark.  Property (3) indicates that the analytic smoothing effect still holds even
if we assume only that ¢ is small in the L?-sense and that e*®l¢ € L? for some \ > 0.

Remark.  The proof of Theorem 2.1 is quite similar to that of Theorem 3.1 shown
in Section 4.

Under the assumption ¢ € B,L?NH*> and £(9, ¢, L?) < oo (resp. ¢ € B, L* N Hy
and £(z,¢,L?) < o0), it is clear that £(9,¢,L?) < £(0,u,Z) (resp. £(z,¢,L?) <
£(J,u,Z)). For some ¢, the inequality becomes the equality, which is natural in the
case of the free Schrédinger equation.

Corollary 2.2.  Assume (1.2) and let n be the number appearing in Theorem
2.1. Fiz § € (0,n) and X > 0.
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(1) There exists some ¢ € H™ such that ||¢|| = 0 and the solution u to (1.3) and the
function V1 (¢) satisfy that

£(0,V(9), L*) < sup £(0,u(t), L*) = £0,u, Z) = £(0, ¢, L*) = \.

teR

(2) There exists some ¢ € Hy, such that ||¢|| = § and the solution u to (1.3) and the
function V(@) satisfy that

Lz, Vi(¢), L?), sup [2t[£(9, M(~t)u(t), L?) < £(J,u, Z) = £(x, ¢, L%) = \.
t£0

Remark.  Applying known methods, one can obtain other estimates for £(J, u, 7).

For example, if we use the norm
1299 4)a
6 0l =D Ty AY,

which was defined in [8,15], then we can choose positive constants §, C' > 0 so that for
any ¢ € L? and A > 0 with [|¢]| ) < 9, the solution u to (1.3) satisfies

Z ||J u||ZA|a\ < C6.
a!
Hence we obtain
) 1
&, 7) < mf{z, 16050 < a}.
Unfortunately, it seems that such estimates are not applicable to prove Corollary 2.2.

Sketch of the proof of Corollary 2.2. We prove only (2) since (1) can be shown
similarly. Let p > 0. Fix m € N and a € (0,1). Define the function

C(Y) = Xjaoo) W)y ™27V, yER,

where X[q,00) is the indicator function of [a,00). If m > [2p] + 3 and a is sufficiently
small, then the function

O(x) = (1) - p(xq) (ac = (z1,--,xq) € Rd)

satisfies ® € H,, and

/e
(@) [Jzo®|\ )
— = d. L7 =1.
@Tfo( ] e, 2, L7)
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Set
¢(z) = SA 2o\ tz)/|@, xeR™

Then we obtain ||¢|| = § and Cy, = £(z,¢,L?) = X\. By Theorem 2.1 and (1.4), we
have the desired properties. U

It is a natural and interesting question to ask whether the solution u(t) can be
extended to an entire function on C?% provided that ¢ satisfies some strong condition.

The following result is a partial answer:

Corollary 2.3.  Assume (1.2) and let n be the number appearing in Theorem
2.1. Assume, in addition, that ¢ € B, L*.

(1) If € H*, £(0,¢,L*) =0, 00V € L¥? (o € N&) and £(0,V,LY?) = 0, then the
solution u to (1.3) and the function V1 (¢) satisfy

£(0,u,Z), £0,Vy(9),L*) =0,

and for any € > 0,

. sup 122 (U(1u(t) = Vo (6)]

=0.
t—+oo o alelel

(2) If p € Hy, L£(z,0,L?) =0, 0%V € L*>® (a € N&) and £(0,V,L>®) = 0, then for
any t # 0, the solution u to (1.3) satisfies
£(0, M(—t)u(t), L*) = 0.

In particular, u(t,z) (t # 0) can be extended to the entire function

o
Z mu(tvo) za7 = (Cd.
a!

Remark.  The proof of Theorem 2.3 is similar to that of Theorem 3.3 shown in

Section 5.

A result for the final value problem is obtained as in the proof of Theorem 2.1 and
Corollary 2.3.

Theorem 2.4.  Assume (1.2) and let n be the number appearing in Theorem 2.1.

Then a positive number ' > 0 satisfies the following properties:
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(1) For any ¢ € B,y L?, there exists a unique solution u € Z to

u(t) = Ut)g — @'/t Ult— ) F(u(t))dt, teR

—0

such that uw(0) € B,L? and U(—t)u(t) — ¢ ast — —oo in L?. Hence the wave
operator W_ : By L? 5 ¢ — u(0) € B,L? and the scattering operator S = V4 o
W_: Bn/L2 — L? are well-defined.

(2) If p € B,y L2 N H> and £(0, ¢, L?) < oo, then u € Z>, W_(¢),S(¢) € H® and
£(0,u,Z), £(0,W_(¢),L?), £(8,8(¢),L?) < C¥P.

Here, p is a positive constant dependent only on ||¢||, d and V. Assume, in addition,
that ¢ € H*, £(0,¢,L?*) =0, 900V € L¥? (a € N¢) and £(0,V,L%¥?) =0, then

£(0,u,Z), £0,W_(¢),L?), £(9,8(¢),L*) =0,

and for any € > 0,
s 122 UEDUO =W @) _ o (U(=)ult) = S(0))]

t——00 4 alelel t—+oo 4 alelel

=0.

(3) If p € By L?> N Hy and £(z, ¢, L?) < 00, then u € Zoo, W_(¢),S(¢) € Hy, and
(0, 2), LW (9), 1), S, 8(6),1%) < Cy

Here, p is a positive constant dependent only on ||¢||, d and V.

§ 3. Extended results

In this section, we give some properties which are an extended version of Theorem
2.1 and Corollary 2.3. For this purpose, we list some notation. By 0, we denote the
zero multi-index in d-dimensions. For ;1 > 1, by S, we denote the set of all functions v
on R? such that

a 1/]el
£, (x, 1, L?) == limsup (||x ¢H> < 00

o o0 \ O
Remark that for any p > 1, The following three conditions are equivalent to each other:
(i) Y €S§,.
(ii) v € Hoo(R?) and some positive constants C' and A satisfy that

x| < CAMal#, o e Nd.
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(iii) Some positive constant A satisfies that
e)“wll/M@ZJ e L?
Let p>1and t # 0. If U(—t)u(t) € S, then we see from the proof of (1.5) that

||03M<—t>u<t>||oo>” !

alb

< o 8w, U(=t)u(t), I2),

lim sup ( = T2

|| =0

and hence that M (—t)u(t,-) € G*(R?). Here, G*(R?) is the Gevrey space, which is the
set of all C* functions 1) on R? such that for any compact subset K of R? there exists
some A > 0 satisfying

0% (x)| < AFlelalt ) 2z e K a e N&
For a function V on R%, we define

o £(0,V, L) if 92V € L*® (o € Ng),
v 00, otherwise.

For a,b € R, we set a V b = max{a,b} and a A b = min{a, b}.
The first theorem includes one of smoothing effects for (1.1).

Theorem 3.1.  Assume (1.2). Let p > d. Then a positive number k > 0 and
C > 0 satisfy the following properties:

(1) For any ¢ € B.L?, there exists a unique solution u € Z to (1.3) and a function
¢ € L? such that U(—t)u(t) — ¢ ast — +oo in L. Hence the inverse wave
operator V. : B, L?> > ¢+ ¢ € L? is well-defined.

(2) If ¢ € B,L>NH>\ {0}, then the solution u to (1.3) and the function V. (¢) satisfy
that u € Z*°, Vi (¢) € H* and

x|

ol 1oV () < Clellat @ o2\ "L o
xz VIZ > z ¥+ = <a>p Or;z?ﬁa%(a B'”(bH ) O\{ }

(3) If ¢ € B,L>NHy, \ {0}, then the solution u to (1.3) and the function V. (¢) satisfy
that u € Zoo, V() € Hoo and

||

7l eV ()] < Clella! @ =\ " e o
2o WV = o A AR

In particular, for any t # 0, the mapping x > M(—t)u(t,x) is in C(RY).
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We establish the above theorem in Section 4. We now give a corollary.

Corollary 3.2.  Assume (1.2). Let p > d and let k be the number appearing in
Theorem 3.1. If p > 1 and ¢ € B,L> NS, \ {0}, then the solution u to (1.3) and the
function Vi (¢) satisfy that U(—t)u(t) € S, (t € R) and V. (¢) € S,.. Furthermore, for
any t # 0, the mapping x — M (—t)u(t,z) is in the Gevrey space G*(R?).

Proof. Assume that p > 1and ¢ € B,L* NS, \ {0}. We see from Theorem 3.1(2)
that the solution u to (1.1) and the function V (¢) satisfy that u € Zo,, Vi (¢) € Hy

and

(3.1)
/161 1!
o o C ¢l a! (B)" |l="9||
[J%ull 5, |z V(@) < ) oBaX (W , a € N3\ {0}.
By the inequality
(3.2) BIIBL < dat/lelif 0 #£ B <

and the existence of constants K and A such that
|z%¢|| < KAl*lat, o e Ng,

we obtain

max M v < max (<5>p KA|f3|5[u>1/|5|
0#f<a ﬂ' ||¢|| T 0#£B8<La B| ||¢||

/181
<6>pK)1 —1\ /18l
A ma ma I
- O;éﬁi{a( 9]l 0%h<a C

D 1/18]
Y N T — (@_K) _
B 0#£B<a \ |4l

Therefore, it follows from (3.1) that
o]
N N C B ﬂ p K 1/|/3|
1l eV (@) < Y gt (< ) ) o, o e N¢\ {0},
() i8>0 \ |9l

and hence that Vi (¢) € S, and U(—t)u(t) € S,.
For the sake of completeness, we finally show (3.2). For any n,m € N, we have

n™ < ()" < (M)

n!
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which implies
/™ < (n 4 m)1t/ (ntm),
Therefore, we obtain
B < B IBL < ot /lelif 0 #£ B < a.

Then (3.2) follows from the inequality

!

|
F< Y ml“--«l“zd'a', o € N&.
.

— !
[v|=|c]

We next introduce an estimate for the radius of convergence of M (—t)u(t, z).

Theorem 3.3.  Assume (1.2). Let p > d and let K be the number appearing in
Theorem 3.1. For any ¢ € B,L* NSy, the solution u to (1.1) and the function V(o)
satisfy

(8, M(—t)u(t), L?) < <S(— v zv) pGon 40

Remark.  We establish the above theorem in Section 5. Known results (Theorem
2.1 and Corollary 2.3) imply the following properties:

(a) For any ¢ € B,L? N &y, it follows that

£(0, M(—t)u(t), L?)

IN

for some p > d.
(b) If &£(x, ¢, L?) = £(0,V, L>®) = 0, then
£(0, M(—t)u(t), L*) =0, t#0,
where v is the solution to (1.1) with ¢ = 1.

Hence Theorem 3.3 is strictly stronger than the above (a) and (b) provided that & is
sufficiently small.

§4. Proof of Theorem 3.1

Before proving Theorem 3.1, we first mention some inequalities (for the proof,
see [19]).



102 HIRONOBU SASAKI

Proposition 4.1 (Strichartz type estimates).  Forany € L? and G € L'(R; L?),
we have

t
U(t)y, / Ut —tG{t)dt' € Z
0
and
U@l <Clill,  felL?
/t Ut —t")G(t)dt'
0

1

Here, C' is a positive constant independent of f and G.

<C ”GHLl(R;L?) , GeL'(R;L?.
z

Proposition 4.2 (Estimates for the nonlinearity).

(1) Assume (1.2). Then

[V (r92)) sl < Cllgonll, el (195l w1, has hs € LT
Here, C' is a positive constant independent of 11,19 and 3.

(2) If W € L, then
(W (P102)0s]] < W1 ka2l 11l 91, 02,905 € L2

Proposition 4.3. Ifp > d, then

w2 <<ﬁ<;(<>v>)p§52p 2. <%)p<“'

We next define a function space. For ¢ € Ho \ {0} and p > 0, we define g4(0) = 1,

lev]

By ||2°4| ) Ve ;
go(a) = ¢ max (— , ae€Nj\{0}
|g|§>a0 Bl

and
a)? || J%
Z¢ =qveE Zoo; ||v||Z¢ = sup <>'||—||Z <00 5.
acnd  lgp(a)

Remark that we obtain for any ¢ € H,

m ()" 129

<|¢ll, aeNg
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and

(4.2) 96(B+7+6) > 95(8)96(1)94(5), B,7,6 € Nj.

The reason why we put the term (a)” in the definition of the Zg-norm is that we
establish the inequality

AV [ TE )| 10010 L ’
@ W F Oy g (0 BN\, e
alge() <o Blge(B)

Proof of Theorem 3.1. Assume (1.2). We have only to show (1) and (3) in the
case ¢ € Hy \ {0}. Put p > d and v € Z,. By C, we denote a positive constant
independent of ¢, v, a, 5,7 and 4. By (1.4), the Leibniz rule and Proposition 4.2(1), we
obtain

17 PO s 122y = [M@@it0n)* { (v (M (=)0 M(=0)0) ) M(-t)0}|

o!
= Z { Bly!o!

Btrt+ié=a

LY(I;L?)

L1(I;L?) }

X H (v « <(2it8x)/3M(—t)v (2it8m)’YM(—t)v>> M(t)(zitax)w(—t)v‘

a! _
< 2 Byl IV (170 70)) J6U||L1(I;L2)
B+v+dé=a

and

| T“F @) 1 (1.2 1770l 1770l (|70
a <2 THE o w o oe

BHy+i=a
By (4.2) and Proposition 4.3, we have
<04>p ||JaF(U>||L1(I;L2)
algy(a)

(@) N\ BT, ()P, (8)F |0,
<¢ > (<@> )

P {7) (6) Blgs(B)  ge(v)  6lge(9)
G LAY
< c (I/Bngaé( WB)Z , Q& Ng

Therefore, it follows from Proposition 4.1 and (4.1) that the mapping

Zsdv—=0:=U(t)dp —1i /Ot Ut —t")F(v(t'))dt' € Zy
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is well-defined,
B, <Cligll+Clvly, vez
and
(4.3) Bz, < Cloll+Cloly,, veZy
Similarly, we have
1 = Ball; < € max fuj 7 lor = vall ;w102 € 2
and
1 =2z, < Cmax |loslly, or —vellz, » viv2 € Zs.

We see from the standard contraction argument that if x > 0 is sufficiently small and
¢ € B, L?, then (1.3) has the unique solution u in the sense of Z, and that u € Z, and

(4.4) lullz, < Cllell-

By (4.4), we obtain for any a € N¢ with |a| > 0,

[ T%ullz < flullg,

olgs(0) _ Cliollot [ (1) a7\
(@ 7 )’ Jozssa\ B¢

As in the proof of (4.3), we see from the formula

Vo(6)=¢—i / T U F ) de

that V(¢) € Hy and

/181
o C o] o (B)" [|=7¢| 1
[V (ol = = 3 | o2, (W

Hence Theorem 3.1 holds true. O

]

§5. Proof of Theorem 3.3

In this section, we show Theorem 3.3. Assume (1.2). Let p > d and let k be the
number appearing in Theorem 3.1. Fix € > 0 and ¢ # 0. Define £, . = £(x, ¢, L?) + ¢,
Ly =Ly +eand £.(t) = L4 V |2t|€y,.. Assume in addition that ¢ € B,L? N Sy.
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Let u be the solution to (1.3). We see from Theorem 3.1(3) that £(9, M (—t)u(t), L?) <
Cysp/|2t|. Therefore, it suffices to show that £(9, M (—t)u(t), L*) < £.(t)/|2t| in the
case ¢,V # 0 and £y < oo. By C, we denote a positive constant independent of
o, u,a, 3,7 and e.

We can choose some N € N so that

1/|ef d+1 1/|e]
<05>d+1 |z¢|] () [0V
< 00 <
(—a! Tl <Ly and TV < Lye

for any a € N& with |a| > N. Therefore, we have

d+1 d+1
a x o 0V
sup LI g sup % Ve
la|>N C“!£¢>,e la|>N a!ﬂv’g
Put
d+1 d+1
Ko e O @ 8V
la|<N a! la| <N a!
Hence we obtain
d+1 | o
(5.1) sup<0&>—||Léx|¢H <(1v E;g)K(b
@ 04!2(1)’5
and
d+1
oxv
(5.2) sup ”;l I < (1v ey M) Ky
o ally .
Fix a € N&. By (1.4), the Leibniz rule and Proposition 4.2(2), we obtain
[J@F (u®)[| = || M (#)(2itd,)* {(V * [u(®)]) M(—t)u(t)]}
a! . .
Z E | ((26t0,)°V * |u(t)[?) M (t)(2it0,)" M (—t)u(t)||
Bty=a "
a!
< D g PUPIEIV + u®P) S
Bry=a
and
[T @) _ o |02V [ 77u()]
R <y Y e R

Bry=a
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Define I = [0,¢] if ¢ > 0, and I = [¢,0] if ¢ < 0. By Proposition 4.3 and (5.2), we have
for any t' € I,

(T F (u(t)))]

alg.(t)lel
) (@ s BTV () )]
<z 2. (@) SgAgpl AL

d+1 /
2 N (™ I u@)]
< CHUHZ(lv’QV,e )KV I’?Sa;( ’7'25(15/)‘7‘

It follows from (1.3) and (5.1) that

@™ Il _ (@™ avsl | [ (@ e F@E)]
LR gl 1 A

d+1 !
N 9 N N @)
<SQAVE, Ky +Cllullz 1V L) Ky L hea ~IE ()N d.

Using the Gronwall inequality, we have

d
o YT )]
y<a AL (E)1]

< (1v €YKy exp (0 lul% (1 v 2‘77];7)Kv|t|> .

Therefore, we obtain

L(J,u(t), L?) < £.(t).

The desired inequality £(9, M (—t)u(t), L?) < £.(t)/|2t| follows from (1.4).
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