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Weighted Morrey spaces—complex interpolation and
the boundedness of the Hardy-Littlewood maximal
operator

By
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Abstract

The aim of this paper is to address two difficult problems of the Morrey spaces. One is the
complex interpolation and another is the behavior of the Hardy-Littlewood maximal operator.
Weighted Morrey spaces are difficult to handle due to the following reasons:

1. They are not reflexive.
2. Unlike Lebesgue spaces, there are many non-trivial closed linear subspaces.
3. The norm of the indicator function of the cubes is difficult to calculate.

Nevertheless, it is possible to calculate the second complex interpolation in some special cases.
This will allow us to calculate the complex interpolations in such cases. Although we can not
always calculate the norm of the indicator function of the cubes, the boundedness of the Hardy-
Littlewood maximal operator makes this possible. In this connection, the first half of this artile
is devoted to the complex interpolation. In the latter half we investigate what happens if the
Hardy-Littlewood maximal operator is bounded on weighted Morrey spaces. As an application,
we prove what can we say for the class of weights by using the complex interpolation.
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§1. Introduction

Let (X, d, 1) be a metric measure space. In this paper we consider various weighted
Morrey spaces. Here and below by a weight w, we mean a measurable function w : X —
(0, 00) which is positive p-a.e. and satisfies

0 < w(B(z,r)) = /B L e dn) <0

for all z € X and » > 0. Here B(z,r) stands for the ball centered at z of radius
r > 0. In particular, we assume X = supp(u) for simplicity. To state our results in full
generality, we adopt the following definition of generalized weighted Morrey spaces.

Definition 1.1. Let ¢ € [1,00), ¢ : X x (0,00) — (0,00) be a function and
w,v : X — [0,00) be weights. One defines M (X, u;w, v) as the set of all y-measurable
functions f for which the norm

zeX,r>0

1t o) == SUD ol 7) (m /B @l du(y)>

is finite.

We chose to work in the framework of this definition of generalized Morrey spaces
because it turns out that the underlying geometry is not important for the theory of
complex interpolation of Morrey spaces. In particular, the weight v does not affect
strongly the results on complex interpolations.

Here are some standard cases we envisage:

Example 1.2. Let 1 <¢q<p<o0.

1. The most standard example of (X, d, i) is the Euclidean space (R™, |-|, dx), endowed
with the Lebesgue measure, o(z,7) = |B(z,7)|'/?, and v = w = 1. In this case, we
use the symbol M to denote M (X, p;w,v), which goes back to the initial work
by C. Morrey [24].

2. The generalized Morrey space M is defined by Nakai [26], where we consider
the case (X,d, ) is the Euclidean space (R™,| - |,dz), endowed with the Lebesgue
measure, and v = w = 1.

3. Since we have freedom in choosing ¢, we can consider the parametrized Morrey
space MP(k, i) for k > 0, the set of all y-measurable functions f for which the

norm

Q=

up  p(Bla,kr))e

in(,r>0 </B(:17,7") |f(y)|qdu(y))

Il Az e,y =
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is finite. By letting v = w = 1 and

p(x,r) = p(Bx,r)) u(Blx, k)1,

we can recover this case. See [32] in the case of the Euclidean space and [7] in the case
of the non-doubling metric spaces satisfying the geometrically doubling condition.
The Gaussian Morrey space M?(7) is an example of the spaces considered in [32].
Our results on the complex interpolation will cover the function spaces above. In
particular, although we do not work on the quasi-metric spaces, a modification of
our result will be available.

. Let pu be the Lebesgue measure. The Samko type weighted Morrey space Mb (w) =
MPE(w, 1) [30], whose norm is defined by

I lmzwy = 1 lmz w1y = sup  [B(z,r)[»74 (/B( )If(y)|"w(y)dy> :

rz€ER™ r>0

If one takes p(x,r) = |B(m,r)|% and v = 1 in Definition 1.1, then one can notice
that MP(w) is an example of M (X, u; w, v).

. Let p be the Lebesgue measure again. The Komori-Shirai type weighted Morrey
space M?(w) = MP(w,w) [20], whose norm is defined by

-

1 lag ) = IF Iz oy = sup  w(B(a,r)¥ s (/B( )\f(y)!q’w(y)dy> :

z€ER™ r>0

If one takes p(x,r) = w(B(:E,T))% and v = w in Definition 1.1, then one can
notice that M?(w) is an example of M# (X, y;w,v). In particular, many authors
investigated the case when go(x,r)v(B(w,r))_% = w(B(z,r))7. See [10, 17, 18, 37,
38, 39, 40, 42, 45].

. Let p be the Lebesgue measure again. Then we can slightly generalize the above
definition to have M¥(w;,w2) [20], whose norm is defined by

( / \f(y)!qwz(y)dy> .
z€R™,r>0 B(z,r)

‘d\"
Q\H

LAl (or w0y = sUP — wa(B(z, 7))~

. As a special case of the weights, we can consider the power weight w(x) = |z|®.

. As an example of the function ¢ we can list the weight of the type

n
H (|lx — zkl),
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x1,%2,..., Ty is a fixed point and wy,ws, ..., w, are suitable functions. See [19] for
example.

9. One can also consider the mixture of in the above to consider generalized weighted

Morrey spaces.

Although some important properties of Morrey spaces became clear recently, it is
still difficult to investigate Morrey spaces. Let us review some recent progress on Morrey
spaces to see why the interpolation of Morrey spaces are difficult. Let 1 < ¢ < p < o0.

1. The Morrey space M? is not reflexive; see [34, Example 5.2] and [41, Theorem 1.3].

2. The Morrey space ML does not have CZ° as a dense closed subspace; see (36,
Proposition 2.16].

3. The Morrey space MY is not separable; see [36, Proposition 2.16].
4. The Morrey space M? is not included in L' + L°°; see [16, Section 6].

Not only the complex interpolation but also the real interpolation is difficult. However,
Burenkov and Nursultanov obtained the description of the interpolation of local Morrey
spaces [5]. Note that local Morrey spaces are the modification of Morrey spaces. We
also refer to [27] for the extension of the results in [5] to B, spaces. We do not go
into the detail of the interpolations of Morrey spaces here. In Section 2.3, we recall the
progress of the complex interpolation of Morrey spaces.

Taking the supremum over all cubes seems to make things more difficult. Due to
this fact, it is difficult to calculate or estimate the norm of the indicator function of
the cubes, for example. Since we can not estimate of the norm of such functions, it is
difficult to estimate the norm of any other function. Thus, it seems difficult to describe
the necessary and sufficient conditions for the Hardy-Littlewood maximal operator M,
which is defined by

1
MJ@) = s B )

for a p-measurable function f, to be bounded on ./\/lf(X, s w, v).

/ F@)lduy) (€ X)
B(z,r)

In view of the beautiful theory of A,-weights for Lebesgue spaces [25], it seems
natural to propose the following problem:

Problem 1.3.  Look for the condition for which there exists a constant C' > 0
such that || M f | a2 (x,psw,0) < CNFllame (x,psw,0) holds for all f € Mg (X, p;w,v).

One trivial necessary condition is that

1
(11) —/ |f(y)|d:u'(y) X ||XQ||M§(X,u;w,v) < CHfHMf(X,u;w,v)
wQ) Jo
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for all f € M (X, pu;w,v). The condition (1.1) seems attractive because this condition is
equivalent to the A,-condition in the case of (X, d, ) = (R",|-|,dzx) and 1 < p = ¢ < o0
[9, Chapter 7]. So, we conjecture the following:

Conjecture 1.4.  The condition (1.1) is sufficient for the Hardy-Littlewood mazx-
imal operator to be bounded in the case of (X,d,pn) = (R™,|-|,dx) and 1 < ¢ < p < o0.

Although Problem 1.3 is still open, we can say something more about this problem
and Conjecture 1.4.

We organize the remaining part of this paper as follows: In Section 2, we review the
definition of the complex interpolation functors and then we formulate the main results
on the complex interpolation. Our strategy to calculate the complex interpolation spaces
is to consider the second complex interpolation of the spaces first and then move on to
the first complex interpolation. Section 3 contains the proof of the results in Section 2.
Section 4 considers Problem 1.3. We describe what is known about this problem and
then we apply the result in Section 2 to have a related result.

§2. Complex interpolation of Morrey spaces

§2.1. Two interpolation functors

Let S:={2€C:0<Re(z) <1l}and S:={z€ C:0 < Re(z) < 1}. We adopt
the following definition of two complex interpolation functors:

Definition 2.1 (Calderén’s first complex interpolation space).  Let (X, X7) be
a compatible couple of Banach spaces.

1. Define F(Xy, X1) as the set of all functions F : S — X + X; such that

(a) F is continuous on S and sup || F(2)||x,1x, < o0,
z€8
(b) F' is holomorphic on S,
(c) the functions t € R — F(j 4 it) € X, are bounded and continuous on R for
j=0,1

The space F(Xo, X1) is equipped with the norm
1F o 0y = max{sup IF(it) | xo sup [F(1 +z‘t>||xl}.
teR teR

2. Let # € (0,1). Define the complex interpolation space [Xo, X1]p with respect to
(X0, X1) to be the set of all functions x € Xy + X1 such that z = F(#) for some
F € F(Xo,X1). The norm on [Xy, X1]p is defined by

HxH[Xo,Xﬂe = lnf{HFH]:(XO,Xl) = F((g) fOI' some F € f(Xo,X1>}
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Let Y be a Banach space. We let Lip(R,Y") be the set of all continuous functions

t)— f(s
f R =Y for which the quantity || f||rip®,y) = sup 1) = Fs)lly is finite.
’ —oco<s<t<o0 ‘t - 3‘
Definition 2.2 (Calderén’s second complex interpolation space).  Suppose that

X = (Xo, X,) is a compatible couple of Banach spaces.

1. Define G(Xg, X1) as the set of all functions F : S — Xy + X such that

F(2)
T+2]

(a) F is continuous on S and sup H < 00,
2€8

Xo+X1
(b) F is holomorphic on S,

(c) the functions t € R +— F(j+it) — F(j) € X; are Lipschitz continuous on R for
j=0,1.

The space G(Xo, X1) is equipped with the norm

(2.1) 1 llg(x0. 1) = max {|F (i) l|Lip(. x0)» (1 + i) |Lip(e,x,) }

2. Let 6 € (0,1). Define the complex interpolation space [Xy, X1]? with respect to
(X0, X1) to be the set of all functions x € Xy + X; such that = F'(6) for some
F € G(Xo, X1). The norm on [Xg, X1]% is defined by

HxH[Xo,Xl]e = inf{||Flg(x,,x,) 1 T = F'(0) for some F € G(Xo, X1)}-

To describe our main results in this paper, we write

(2.2)

=< . T QO—qu(x) =<{ . )90~ w()(l‘) %
Bro={z e X [f@l ) > o) = {a e x s o U0 > 1
(2.3)

— ) T q1—qw1(x) B . . )41~ w () PTEeT
ER,1.—{ €eX :|f(x) w(x)ZR} { €eX :|f(x) wo(m)ZR( >}
(2.4)

Er:=FEroUFER1,

when we have measurable functions f, wg, wi, and w satisfying

(1-6)q 94

(2.5) w(z) :=wo(x) 0 wi(z)n (reX).

The set Er will play the role of the level set of f in the weighted setting. Note that
this does not depend on v. Define

(2.6) fr:=f(1-x&g)
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for R >0 and f € M?(X, y;w,v). We are interested in the condition:
(2.7) f= lim frin M?(X,p;w,v).
R—o0

In fact, it will turn out that (2.7) will be the standard approximation of the weighted
Morrey spaces. Our first main result is as follows:

Theorem 2.3. Let 0 < 6 <1 and qo,q1 € [1,00). Let pg,p1 : X x (0,00) —
(0,00) be functions and wg,wy,v : X — [0,00) be weights satisfying (2.5). Assume that

q0,q1,Po and @1 satisfy
(2.8) wo(z, ) = 1 (x,t)? (x € X,t>0).

Define q and ¢ by

1 1-0 0
(2.9) = and () = ol ) (o)

Then
(210) [Mgoo <X7 M3 Wo, ’U), Mfll (X7 i Wy, ’U)]g = {f € Mqu<X7 M w, U) : (27) h0ld5}7
(211) M2 (X, 3 wo, v), ME! (X, w1, 0)]° = ME(X, i3, v).

To investigate the role of these two functors, we further consider the following
closed subspaces;

Definition 2.4. Let ¢ € [1,00), ¢ : X x (0,00) — (0,00) be a function, and
w, v, : X — [0,00) be weights. Write Ug := {f € L°(u) : fw € L>®(u)}.

1. Denote by L%(u) the set of all u-measurable functions.
2. Denote by LY(u) the set of all y-measurable functions having bounded support.

3. Let U C L%u) be a linear subspace with the lattice property: |g| < |f| and f € U
implies ¢ € U. One defines the closed subspace U /\/lf(X,g;w,v), called closed
subspace of M¥ (X, u;w,v) generated by U, as the closure of U N M$ (X, y;w,v) in
ME (X, p;w,v).

4. The bar subspaceﬂj(X, s w,v) of ME (X, p; w, v) is defined to be UM? (X, p; w, v)
with U = L (j).

5. The star subspace /{k/lg(X, s w,v) of ME(X, p;w,v) is UME (X, p;w,v), where U =
LY (p).

6. The tilde subspace Mg(X,u;w,v) of MZ(X, p;w,v) is UMZ(X, p;w,v), where
U= L.
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7. The bar subspace Mg(X, p;w,v; el W) of ME(X, u;w,v) relative to w is defined
to be the closure of the set Uy in M$ (X, p; w,v).

8. The tilde subspace Mf(X,,u;w, v; rel ) of M¥ (X, p;w,v) relative to w is defined
to be the closure of the set Ug N LY (p) in M (X, p; w, v).

We now describe the second complex interpolation of these closed subspaces:

Theorem 2.5.  Maintain the same assumption on qo, q1,q, Lo, L1, P, Wy, W1, and
w as Theorem 2.3. Define

q 1
q 1 1 1

(2.12) A= |f|i dwn W wi®w, B (: |fyqo—q1@> Y w= (@> v
w1

w1

1. For the interpolation of the bar subspaces relative to weights, we have

(2.13) [MfOO(X,,u;wo,v; rel ﬁ)),ﬂff (X, ju;wy, v; rel )]°
= [ME (X, p3wo,v; rel ), MEN(X, pywr,v)]” = M (X, p;w,v).

In particular, when wy = wy = w, we have

(214) [Mgoo (X7 5 Wo, U)? szll (Xa s wy, U)]O
= [ME (X, p3 wo, v), MEN(X, s w1, v)]" = ME(X, 3w, v).

‘ , a 1 -1
2. Let GU) = G;{l‘,wo,whw = X{%SASR}mqﬂ‘wqa‘ w; “ for f € ME(X, p;w,v). For
the interpolation of the tilde subspaces relative to weights, we have

(2.15) m {f € M7 (X, p;w,v) : GU) ¢ M (X,u;wj,v)}
R>1
je{0,1}
C (M2 (X, i wo, v; vel ), MEH(X, pswn, v; vel @)
- [Mgoo(Xnu;wOav; rel w)ngll (Xnu;wlav)]a
c [Mgoo(XaM;UJOaU%Mff (X7M;w17v)]0
Mg(()) (X7N;w0av)+M§11 (le"/;'U)l:’U)

C ME(X, p;w,v) N MG (X, p5w,v)
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In particular, when wy = wy, = w, we have

210 () { € MO piw.0) xin (1) € A7 (X s,

R>1

* MES (Xoi5w0,0)+ MEE (X, pi501,0)
= M7(X, pyw,v) N MG(X, p;w, v)

We move on to the first complex interpolation of the closed subspaces of Morrey spaces.

Theorem 2.6.  Maintain the same assumption on qo,q1,q, Lo, L1, P, Wo, W1 and
w as Theorem 2.3. Let W be a weight defined by (2.12).

1. The description of the star subspaces is as follows:
(217) [Mgoo(XaM;woav)7Mff (X7N;w17v)]0
= [Mgoo (X; K3 Wo, U)a Mgll (X7 3 W1, U)]G
={fe /{k/lg(X,,u;w,v) : (2.7) holds}.

2. The description of the bar subspaces relative to weights is as follows:

(2.18) (Mg (X, w0, v; vel @), My (X, p; w1, v; rel )]
— [ﬂgOO(X,,u;wo,v; rel W), M (X, p1;w1,v)]e
={f € MZ(X, p;w,v; rel W) : (2.7) holds}.

In particular, when wy = w; = w, we have the following description of the bar
subspaces:
(2.19) [Mfoo (X, p; wo, v), le (X, p;wy,v)]g

= [mfoo (X7 5 Wo, U)v Mff (Xv s wy, v)]G
={fe ﬂf(X,,u;ww) : (2.7) holds}.

3. The description of the tilde subspaces relative to weights is as follows:

(220) [MgOO(XJM;wO,U; rel w);-]{/lv?;ll (X7M5w17v; rel ’lz))]g
= ['/\A/llgoo (Xv M3 Wo, U5 rel w)ngll (Xmu;wlav)]@
= {f € ME(X, p;w,v; vel @) : (2.7) holds}.
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In particular, when wy = w; = w, we have the following description of the tilde
subspaces:

(2.21) (ME(X, 3 w0, v), MEH (X, 5 w1, 0)]g
= [MP(X, p;wo,v), MPH(X, 13wy, v)]g
={f¢€ /{/lvg(X,p;w,v) : (2.7) holds}.

§2.2. Auxiliary lemmas

As for the five closed subspaces, we have the following characterization:
Lemma 2.7.  Let w be a weight. For f € M¥(X, u;w,v), we write
Fr(w) ={z € X : [f(z)|w(z) < R}, Fr=Fgr(1).

Fiz a point o € X, which is called the base point. Write B(R) = {y € X : d(o,y) < R}.
Then
(222) M (X, i, 0)

= {F e ME(X pmw,0) ¢ Tim fxp, = fin ME(X, pw,0) )
(2.23) mf(X, p; w, v; rel w)

= {F e ME(X prw) + Jim FXiya) =  in ME(X piw,v) )
(2.24) M (X, i w, v)

= {f € Mg(Xaﬂ‘aw7'U) : Rh—r>noo fXB(R) - f in Mq@(X7M7w7U)} :
(2.25) M?;(X, s w, v; rel W)

—{F e ME(X, piw,0) ¢ i Fxpmnm = f in ME(Xpw,0) )
(2:26) Mg(X, s w, )

= {f € MZ(X, p;w,v) : ngnoofXB(R)mFR = fin /\/lf(X,u;w,v)}.

Proof. In (2.22)—(2.26), “D” is easy to prove. To prove “C”, we mimic the proof
of our earlier results. See [16, Lemma 2.6] for mg(X,u;w,v) and [14, Theorem 1.3]
for (2.26). Let us prove (2.23). Let f € M$ (X, u; w,v;relw). For every ¢ > 0, choose
g = ge € MZ(X, p;w,v) such that gw € L>(X, ) and that ||f — gl amex pswe) < 5-
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Set C := [|g0|| Lo (x,). Observe that, for each R > 2C, we have
|f = fxEray| <1 =gl +19(1 = Xpaa))|
<1f =gl + 5o (1= xru(a)
<|f—gl+ %’f — [XFr(w)l-

ConsequentIYa for every R > 207 ||f - fXFR(?I/)Hle(X,u;w,U) < 2||f _g“/\/lq“a(X,u;w,v) <e.
Thus, we have showed that (2.23) holds.

For (2.24), we adapt the proof of [14, Theorem 1.3]. Let f € M$ (X, u;w,v). Given
e > 0, there exists g. € L) N M#(X, p;w, v) such that

(2.27) 1 = gell pmg (X s,y < €

For any R > 0, we have |f — fxg(r)| < |9:(1 — xB(R))| + |f — 9c|. Choose R. > 0 such
that supp(g:) C B(R:). Then, |f — fxB(r)| < |f — ge| for all R > R., and hence

”f - fXB(R)HMf(X,,u;w,v) < Hf _gEH/\/lg(X,,u;w,v) <e.

Thus, we have proved (2.24). We can prove (2.25) combining the argument in the proof
of (2.23) and (2.24). O

We invoke the Holder inequality for generalized weighted Morrey spaces as follows:

Lemma 2.8.  Keep using the same assumption on qo, q1, q, Yo, 1, ¥, Wo, W1, and
w as Theorem 2.3. If f € ME°(X, p;wo,v) N MEH(X, 3 w1, v), then

—0
(2'28) ||f||MqLP(X,,LL7w,’U) S ||f||}\4§§(x7u,w0’v)||f||?\/‘§11 (X,,LL,U]l,’U).

Proof. The proof uses (2.9) and the Hélder inequality. O
Combining inequality (2.28) and Lemma 2.7, we obtain the following inclusions:

Lemma 2.9.  Keep using the same assumption on qo, q1,q, Lo, P1, ¥, Wo, W1, and
w as Theorem 2.3. Let also w be a weight. Then

M (X, pywo, v; rel @) N MEH(X, pywi,v) € My (X, p;w,v; rel 0);
ME(X, 3 wo, v) N MEHX, pywr,v) © ME(X, 5w, 0);
M2 (X, s wo, 5 vel @) N MEHX, pwn, v) © M (X, 3w, 05 rel @).
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Now, for given f € Mf(X , s w, v), we construct the second complex interpolation
functor as follows: Define

1—2 _ =z

z z —

(229)  F(2) :=sgn(f)|f|9% Maws Taw, © w, ™, G(2) ::/ F(h)dh,
00—z

where § — z stands for any C'-curve in S from 0 to z. We set

q

1 L a0491
(2.30) A= |f|ﬁ_%wa1 ) w® w, Tar (|f|CIDQ1@) 0
w1
and
(2.31) Fo = X{Agl}R F1 =F — FQ, G() = X{ASl}Gv Gl =G — Go.

We prove several lemmas as follows:

Lemma 2.10. For all z € S, G(2) € ME( X, pswo, v) + MEVX, p;wy,v).
Moreover,

G
(2.32) sup G=) < 00.
2€S 1+ |Z| MZDOO (X,M;wo,v)—k/\/lf;ll (X, pswi,v)
Proof. Let z € S. Since Re(z) > 0, we have
1 a1
a ([ w % a ([ w |9
2.33 Fo(z)| = o (— ) ARG <flaw (—) .
23) ARG =l ()" A < g (2

Therefore,

Gl <l -0l ()" <+ laisti ()"

Wo

which yields ||Go(z )HMwo(X,M wo0) = ( + ]z])Hf\|M¢(qu v+ Similarly, we can prove

’|G1(Z)||M§11(X7M;wl’v) < (1+ |z|)||f||M¢(quv) Combining the norm estimates for
Go(z) and G1(z), we get

16 atgp x5 soner < 1 D) (108t + 1 gt ) -
and hence, (2.32) holds. O

Lemma 2.11. Letqy > qi. Then G : S — ME (X, pswo, v) + MEH(X, p; w1, v)
is continuous. More precisely, G : S — M@j (X, p; wj,v) is continuous.
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Proof. Let us concentrate on Gg; the proof for G; is similar. Fix 2,2y € S. By
1

using (2.33), we obtain |Go(z) — Go(20)| < ]f|% <ﬂ) “ |z — 2zg|. Consequently,

wo

1Go(2) — Golz0) |l mgo (x o) < 12 — Zo|||f||faqw(x,mw,v)-
Thus, ||Go(z) — GO(ZO)HM;"Q (X, uswo,0) = Oz — 20]) as z — 20, as was to be shown. [

Lemma 2.12.  The function G|S : S — ME (X, u;wo,v) + MEHX, p; wy,v) is
holomorphic and G'(z) = F(2) in ME (X, u;wo,v) + MEH(X, p;wy,v) for all z € S.
In particular,

(2.34)  f=G'(0) = lim

h—0

Gh+0)—G(0) .
( ZL ) i M (X, pywo, v) + MEHX, pswi, v).

Proof. By virtue of (2.33) and its analog for Fy(z), for every z € S, we have
P(2) € M (X, i w0, 0) + MEH(X, sy, 0).

Let 0 <e<land S;:={2z€ S :e<Rez<1—¢}. Wefix z € S.. Suppose h € C
satisfies |h| < § and z+h € S. Consider the functions defined by (2.30). Since Rez > ¢
and |h| < §, we have

— Fp(2)

Go(Z+h)—G0(Z) Ah—l 1‘
h

hlog A B

= X{a<y[F(2)] ’

Wo

< X{asulfl® <E) " ARz |plog Alelhlos Al
1
5 w a0 g —_ £
< X{a<ip|f]® (f) ® A%|hlog A|A™ 2
< Mm% (%)%,
ge w

Therefore,

(2.35)

H Go(z + h})l —Go(z) Fo(2)

20l o6

MEO (X, p3wo,v)

Hence, Gy(2) = Fo(2) in ME0 (X, pu;wo, v). Likewise, G (2) = F1(2) in MEH(X, p;w,v).
As a result, G'(z) = F(z) in M$(X, p1; wo,v) + MEH(X, p;w,v). Since € is arbitrary,
we conclude that G is holomorphic in S and G'(z) = F(z) for every z € S. In particular,
evaluating this relation at z = 6, we obtain (2.34). O

Lemma 2.13. Forall j =0,1 and t,t' € R,

a
HG(j + Zt/) - G(] + Zt)Hijj (X, w5 ,0) < ’t - t/‘(‘|f|’M§(X,u;w,v))qj s
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Proof. As before, by using the triangle inequality for the complex line integral and

1

PG+ iw)| < || (ﬂ)

J

for every u € R, we obtain |G(j + it') — G(j + it)|%w; < |f|?w[t’ — |, so the result is
immediate. O

Concerning the following construction, we have the following helpful remark:
Remark.  Let f € M$(X,p;w,v) and R > 0. Define Gr := xg-1,r(|4])G,
GO,R = GR = X[R*l,R](‘ADGO and Gl,R = GR = X[R*l,R](|A|)G1-

(A) As for the function G, if we truncate it at the level set {R™! < |A| < R}, we have

a0
(Hf“Mf(X,u;w,v)) 4
log R

and
1G;(j+it") —Gjr(j +it') — G;(j +it) + G r(j + it)HMZ;(x,u;w,v)

’ (Hf”Mg(X,u;w,v))‘Tj
s le=t log R
0g

Thus, Gr — G as R — oo in G(M#0(X, p;wo,v), MEH(X, 3wy, v)).

B) Define w by (2.12). Similar to above, one can check Gy € Mo X, p;wo,v; rel w
q0
and G € Mfll (X, p;wy,v; rel ).

For the complex interpolation of closed subspaces, we prove the following lemmas:

Lemma 2.14.  Keep using the same assumption as in Theorem 2.3. Then

*

n ML (X, pw,0)
ME (X, s w,v) O MG (X, p; wo,v) N MEHX, p;w1,v)

- - [MEO (X 3w ,0), MEL (X, pwn )]
(236) - Mgoo (X,,u;wo,v) mell (Xnu;wlvv)

Proof. Let

AP . @0 3 71 - ME (X, pw,v)
fqu(X,,u,w,U)quO (X7Naw07v)ﬂM(11 (X,[L,wl,'l)) :

Take { fr}72; © MEO(X, p;wo, v) NMEH(X, p1; w1, v) convergent to f in M (X, u;w,v).
Define fi g := XB(r)fr for R € N. Note that, the following inequality

Hf - fk,R’|M§(X,u;w,v) < Hf - XB(R)fHMf(X,,u;w,v) + Hf - kaMf(X,u;w,v)a
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implies
(237) k,}%goo ||f - fk,RHMf(X,u;w,v) = 0.
For each z € S, define
1—=z z P
1-z =z W 90 91
(2.38) FkyR(Z) = Sgn(fkyR)|fk7R|q 90 +q‘11 1= and Gk’R(z) ::/ Fk’R(u) du.
woqo wlq1 6

By virtue of Lemmas 2.10-2.13, we have G g € G(MZ° (X, p;wo,v), M (X, 15 w1, v)).

Since supp(fx,r) € B(R),
a(w)"
w1 ’

1

. : a fw\ Y
Grrli +i0) = Gl < - frl & ()

J

w

|Gk:,R(Z)| S (1 + |Z|) <|fk,R|q% <w_0) " + |fk:7R

and

for every j € {0,1} and ¢ € R, we have Gy r(z) € M&(X, j1; wo,v) + MEH(X, p; wy,v)
and Gy gr(j + it) — Gy,r(j) € Mg (X, p; wj,v). Therefore,

Gk,R S Q(Mfoo (X7 s Wo, ’U), M?]Dll (Xa s Wy, U))
Since f,r = G}, g(0), we have

I fs.ll o < Gr.rll

Mgoo (X7I"L;w0 77-))7M:1011 (Xnu;wlrv)] g(Mg(()) (Xnu;w()av)w/\/[?ll (X7/J'§w1 ,’U))

a
(2:39) = 20 ka’R”/‘ilq“’(X,u;w,v)'
Since {fx r}k ren is a Cauchy sequence in M# (X, u;w,v), {fk,r}r Rren is a Cauchy

sequence in [ME0(X, 1 wo, v), M (X, ;w1 )]’ Hence,

(2.40) lim | fu,r — 9||[ “ w0

* = 0
k,R— MED (X, pwo0,0), MEH (X, psw,v)]°

for some g e [/{k/tfoo (Xa Hs Wo, U)a -/Clgf (X7 M W1, U)]e'
Combining (2.37), (2.40), and

*

[qu(?(Xau;w07v)7M§]011 (Xmu;wlav)]e - M?(X,u;w,v%

we conclude that f = g, so

. - [MEO (X prswo,0), MED (X s v))°
f e ME (X, p;wo,v) N MG (X, p1; w01, v) ,

as desired. 0
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Lemma 2.15.  Keep using the same assumption as in Theorem 2.3. Let f €
ME (X, p;w,v) and define w by (2.12). Then

1

a (fw Y _ - .
(2.41) X{rR-1<A<R}|f|% (w—> € M/ (X, p;wj,v; rel ) (j=0,1).

J

Proof. Without loss of generality, assume that gg > ¢1. An arithmetic shows that

9 1 -9
( w ) qa; (w0> 0—a1 (w0> 95 (a0 —a1)
w w1 w1

Therefore, in view of (2.30), on {R™! < A < R}, we have

1

1 1
a fw\Yy [w q0—a1 —j
|f|qj — -0 —A‘IO a1 <Rf10 q1'
wj w1

Thus, (2.41) follows. O

Next, we collect some information on the Poisson integral. We define

sin(7@) sin(7@)
2[cosh(7t) — cos(md)] 2[cosh(7t) + cos(mh)]’

(2.42) po(t) := and pq(t) :=

Note that [|uo|lz1m)y = 1 —6 and |1 1 m) = 0. We need two other lemmas on complex
analysis.

Lemma 2.16. [11, Lemma 1.3.8, Exercise 1.3.8.] Let F' be analytic on the open
strip S = {z € C : 0 < Re(z) < 1} and continuous on its closure such that

(2.43) supe~ Mm@ g |F(2)] < A <
2€8

for some fixed A and a < w. Then, for all 0 < 0 < 1, we have
(2.49) log |F(6)| < [ [no(t)log [P(it)] + pun (6)log [ F(1 +it)] .
R

We include the proof for the sake of convenience for readers.

Proof. For each z € S, define H(z) := log |F(z)| and g(2) := —. Let A(0,1) :=

e'Lﬂ'Z +Z

{z € C: |z|] < 1}. Observe that g(z) € A(0,1) when z € S and that g7 '(2) =

1 (1
— log (2(1 + Z)) Notice that Im( (1+Z)) > 0 for every z € A(0,1), so z € A(0,1) —
i — 2

log (%) is a well-defined holomorphic function on A(0,1). Thus, g~ maps A(0, 1)

conformally to S.
For each z € A(0,1), define G(z) := H(g '(2)). Since H(z) is subharmonic on S,
we see that G(z) is subharmonic on A(0, 1). Then, for every r € (0, p) with p < 1 and
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0 <s <2m G(re™) < 5= fo% pg_zprpcoggt_s)+rgG(pe”) dt. For every p € (r/2,1), we
have
22 22
p>—r it p>—r p+r
Re(G < Hz)—————— = H
p? — 2prcos(t — s) + r? e(Glpe)) < ilel% (2) p% —2pr + r2 i:g (z)p —r
and hence
2 _ 2
pe—=r it 1+7r 24 2r
Re(G(pe")) < supH(z)——— =sup H(z .
p? — 2prcos(t — s) + 12 (Gl ))_zeg ()’"‘2”—1" Zeg ()1—r
By the Fatou lemma and continuity of G, we get
‘ 1 27 p2 - 7,2 )
G(re*®) <li — G(pe™) dt
(re”) < 1pn_1>sllip 21 Jo  p? —2prcos(t —s) +1r? (pe”)
1 [ 1—1r? :
= G(e™) dt.
27r/0 1 —2rcos(t — s) + r? (%)
For 0 € (0,1), we have g(0) = 2::;2 = — fizi(;ri)e, so, the solution of
re® =g(0) (re€(0,1),s € (0,27))
is
cos(m0) _71-> 0 1/2
(2.45) (r,5) = <”S;‘;i?f2 .
< T+sin(70) 5) S 1/2 1
. 2m r — i
For (r,s) in (2.45), we have H(0) = G(g(9)) < oy T 2TC})S(t e H (g~ (™)) dt

1—r2 sin wé

and 1—2rcos(t—s)+rZ 1+s1ntcos(7r9)’
1 [T H(g ' (e"))sinmd 1 [* H(g~'(e"))sinnh
H() < o E |
2w Jo 1+ sintcos(md) 2w /. 1+ sintcos(mf)

For t € [0, 7], let 1+ iy = g~ (e") with y € R. Then an arithmetic shows

et = g(1 4 iy) = — tanh(my) + isech(ry).

Consequently,
1 [ sin 76 ,
- H —1 (13 dt
21 Jo 1+ sintcos(mf) (g7 (e))
[ sin 6
27T/ 1 + sech(7y) cos(mh) H(1+y) m sech(my) dy

1 sin(7)
(2.46) 2 /_Oo cosh(my) + cos(m0)

H(1 +iy) dy.

125
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For t € [m,27], let iy = g~ !(e'). Then e = g(iy) = — tanh(ry) — isech(my). Therefore,

1 [ sin w6 1
or J, 1+ Sintcos(w@)H(g (€")) di
I sin 7m0
= — H . B h
2m /Oo 1 — sech(my) cos(m0) (iy) (—msech(my)) dy
1 [ sin(7) .
24 _ = - |
(2.47) 2 /_OO cosh(my) — cos(md) (iy) dy

By combining (2.46), (2.47), and H(z) = log|F(z)|, we get the desired inequality. [

Lemma 2.17. Let § € (0,1). We define po and py by (2.42). Then, for all
functions F' analytic on the open strip S and continuous on its closure satisfying (2.43),

28 1Fol< (1 [ Mo(t)|F(it)|dt>1_9 (5 [ mtnraioa)

Proof. Let j € {0,1}. Equipp S; = {(j,t) : t € R} with a probability measure P;

given by P;({j} x E) = [, Hu?ﬁitl)m dt for any measurable set £ C R. We use (2.44)

and the Jensen inequality to get

- lexp <1T19/R“0(t) log |F(it)] dt)r_g {exp (%/R,ul(t) log | F(1 +it)] dt)]e
|

e ( ™) aryw) ) -

x [exp( log |F(1 + iT(w))| dPl(w)ﬂe

0

< (/[ Iperen arye ) [ p0 i) inw)
= / e ) (5 [ mioira i a)
Thus, (2.48) follows. 0

§2.3. Further remarks on the complex interpolation of Morrey spaces

Complex interpolation is a technique basically depending on the following three

lines theorem.

Theorem 2.18. Let F': S — C be a bounded continous function such that F|S
is holomorphic. Then |F(0)| < ||F(i )HLOO(R)HF(I + i-)l\%w(R) for all0 <6 < 1.
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Based on Theorem 2.18, interpolation theory of Morrey spaces can be established.
Despite a counterexample by Blasco, Ruiz and Vega [4, 31], interpolation theory of Mor-
rey spaces progressed so much recently. As for the real interpolation results, Burenkov
and Nursultanov obtained interpolation results in local Morrey spaces [5]. Nakai and
Sobukawa generalized their results to B setting [27]. We made a significant progress in
the complex interpolation theory of Morrey spaces. In [8, p. 35] Cobos, Peetre and Pers-
son pointed out that [Mbo, MPi]y C MP as long as the parameters 1 < go < py < 00,
1<qg1 <p1<ooand 1< qg<p< oo satisfy

1 1—-6 0 1 1—-6 0
(2.49) - = + —, + —.
b Po b1 q qo q1

Note that (2.49) corresponds to (2.9). As is shown in [22, Theorem 3(ii)], when an

interpolation functor F' satisfies F'[Mb0, MP1] = MPD under the condition (2.49), then

(2.50) o2
bo P1
holds, using the counterexample by Ruiz and Vega [31]. Note again that (2.50) cor-
repsonds to (2.8). Lemarié-Rieusset also proved that we can choose the second com-
plex interpolation functor, introduced by Calderén in [6] in 1964. Meanwhile, as for
the interpolation result under (2.49) and (2.50) by using the first complex interpola-

tion functor by Calderén [6], Lu, Yang and Yuan obtained the following description:
—MP

[MPo  MPg = Mo N MG~ in [23, Theorem 1.2]. They also extended this result in

the setting of a metric measure space. Their technique is again to calculate the Calderon

product. The definition of Calderén product is given as follows: Let X = (Xg, X;) be
a compatible couple of Banach spaces and @ € (0,1). The Calderén product Xo'=%X,?
of Xy and X is defined by

X' 7'x = | ASRT = C (@) < [ fo(@)] 0 (@)

fo€Xo,f1€X1

For f € Xo'%X1?, define the norm || f|| x,1-¢x,¢ by

£ 1l x01-0 %0
=inf{|[follx," I fillx.” : fo € Xo, fr € Xu, | ()] < |fo(2)['~°) f1 ()|}

We shall use the following density result:

Lemma 2.19. [6], [2, Theorem 4.2.2], [3] Let Xy and X; be a compatible couple

- 1—6 ] - 0

of Banach spaces. Then [Xg, X1]g = Xo N X1XO Xt XoN Xl[XO’Xﬂ
Xo N Xy is dense in [Xo, X1]o.

. In particular,
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We refer to [44] for further extensions: Results are available to smoothness Morrey
spaces described in [33, 43].

8§3. Proofs

§3.1. Proof of Theorem 2.3

Let us prove (2.10) and admitting (2.11). By virtue of Lemma 2.19 and (2.11), we
have

(31) [MZDOO(XM;IUO,U)anwf (Xaﬂ;wlav)]e

ME X, psw,
:MQWOO(X,/L;wO,U>ﬂMgll(X’lu;wl’v) q( uwv).

Let f € M#(X, u;w,v) be such that

(32) Rh—I>noo ”f - fRHM?;(X,u;w,U) = 0.
1 =
Since HfRHM;"J? (Kpwy0) = Y ”fH_/q\ilf(w,v) for every j = 0,1, from (3.2) we deduce

M (X, psw,v
f e ME(X, pw;wo,v) N MEHX, p; we,v) o (o), Therefore, by the identity (3.1),

we conclude f € [MZ0(X, pu;wo,v), MEH(X, 3 w1, v)]o.
We remark that, for every f € M#0(X, y1;wo,v) N MEH(X, p; w1, v), we have

|f (@) xzq (0)Tw(@) <[f(@)XER o ()| w(@) + [f(2)XER , (2)] w(2)
< R7Yf ()| *wo(z) + R f ()| " wi ().

Therefore,

”f - fRHMf(X,u;w,v) = |’fXER’|Mf(X,u;w,v)
(33) < R_leHMfO(X,u;wo,v) + R_l”fHMfl (X, p;w1,v) —0

0 1

as R — oo. Hence,
MEO (X, 5 wo, v) N MEHX, pswy,v)
(3.4) C {f € M7(X,p;w,v) + lim fr=fin Mf(X,u;w,v)}.
R—o0
Thus, by combining (3.1) and (3.4), we obtain
[ME(X, 5 wo, v), MEH (X, w1, v)]g
C {f € M?(X, p;w,v) : lim fr=fin ./\/lf(X,,u;w,v)}.
R—o0
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Let us prove (2.11). Then, f € [M£(X, u;wo,v), M¥! (X, u;wy,v)]? whenever
f e MZ(X, u;w,v), according to Lemmas 2.10-2.13.

Conversely, suppose that f € [M$(X, p;wo,v), MZH(X, p; wy,v)]?. Let € > 0 be
arbitrary. Then we can find G(M£ (X, pu; wo, v), MZH (X, u;wy,v)) such that f = G'(0)
and that

Gl g0 (x s0,0), M58 (X pswr,0)) < (L ENFllanso (X wsuwo,0), MED (X s 010
0 1 0 1

In particular, the last inequality implies

1

1 y y y q; . E
@j(z,7) (W /B(:c,r) |G(j +it,y) — G(7,y)| w;(y) du(y)>

(35) < (1 + e’:‘)’t‘ ’ ||f||[MfO(X,u;w0,v),Mfll (X, pw1,v)]¢

0

forallz € X, r>0and t > 0. Now, we fix x € X, r >0 and j =0, 1. For each z € S,
define

(3.6) Hy(z):=

1 (G(zw)—G(z)) e e

—— wy™ wit oz, r) 1 (z,T)"
o(B(x,r) @ o it
Then, by combining (3.6) and (3.5), for each ¢ty € R, we have

”Ht(j + ito, ')”qu (B(z,r)) < (1 + E)It‘ ’ ”f”[MqWO(X,u;wo,v),Mfll (X,pw1,v)]? "

0

Let a be a simple function such that |(a|| o (p (s, = 1 and

V0, oy = / Hy(6, y)aly) duy).

B(z,r)

Define

1—=2

Filz) = /B«,C ) (e, sn(ala@)” CF ) duty).

We use the Holder inequality to obtain

(37) |Ft(j + Zt0)| < (1 + €)|t| ’ ||f||[M§O(X,[,L;U}0,U),M:;11 (X, w1 ,v)]? "

0

By virtue of the three line theorem and (3.7), we have

||Ht(9 + to, ')HL‘?(B(QC,T)) < (1 + 8)|t| ' ||f||[MfO(X,u;wo,v),Mgll (X, pm5w1,v)]?

0

or equivalently,

Q=

1 ) .
o(x,r) (W /B(m) |G(0 +it,y) — G(0,y)|"w(y) d#(l/))

(3-8) < (L)t 1l g (X puswo,0), MEE (X st o110

0
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Write Ky(0) = w. We know that Ky(#) — f at least in the topology of
Mgoo <X7 M3 Wo, U) + Mfll (X7 5w, ’U). Since Mﬁoo (X; W5 Wo, U) + qull (X7 W5 Wy, U) -
L°(X, u), we can find a positive sequence {t,,}°°_; decreasing to 0 such that

lim XB(z,r) (y)Ktm(97 y) = XB(z,r) (y)f(y)

m—o0

for almost every y € B(z,r). As a result, using the Fatou lemma and (3.8), we obtain

q

1 q
ol 7) (W /B W) du(y)>

< (U Mamago xpswoo) MEE (X pasion 010

Since € > 0 is arbitrary, we see that || f]| pe (x,usw,0) < HfH[M;’g (X, 5w0,0) MED (X pisws )]0

§3.2. Proof of Theorem 2.5

We prove (2.13). Let f € M¥(X, pu;w,v). Define I, G, A, Fy, F1, Go and G by
(2.29) and (2.30). The proof of G € G(M° (X, p; wo, v; rel W), MEH(X, p; wy, v; rel w)),
amounts to establishing that G;(z) € My’ (X, w;w;,v; rel W) and G(j +it) — G(j) €
MG (X, pywj,v; rel @) for j =0,1, 2 € S, and ¢t € R. Let R > 1. By Lemma 2.15 and

9q 1 _ 1
(3.9) X2 <a<rylGi(2)] < X <acry (L 2D ww; =,

we have x(1<4<p)Gj(2) € MG (X, p;wj, v; rel ). Moreover, since

(3.10) 1G5 ()1 =X <azr)llangs (x o < 2008 B IFI2E, — 0

aj
as R — oo, we conclude that G;(z) € Mg? (X, u;wj,v; rel ). Finally, since

(3.11) X(n<acmy|Glit) = GO)] = [ty <acmy | fl70w!/®wy /@

and
(312)  [[(Glit) — CO)xx (1 cascmylnizo oy S 108 B FIYE iy — 0

as R — oo, we conclude G(it) — G(0) € My’ (X, u;w;,v; rel w). We have an analogy
of G(1+1it) — G(1) to (3.11) and (3.12). Hence, it follows that

G € GIMEP (X, pw;wo,v; rel W), MZH(X, p; wi,v; rel w)).

Consequently, we obtain f = G'(0) € [M£° (X, w; wo, v; rel W), MEH (X, p; wy, v; el w)]°.

Observe that ﬂ;lﬁi,lu; wy,v; rel w) C MZH(X, p;wy,v) yields the first equality
in (2.13). Meanwhile, [M_ ' (X, p; w1, v; rel @), M (X, p; wo, v)]? € ME(X, p;w,v) as
a consequence of (2.11).
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We move on to the proof of (2.15). Let f € M#(X,u;w,v) be such that GU) ¢

/{k/lg;j (X, p;w;,v) for every j = 0,1 and R > 1. Define G, Gy, and G as in (2.29) and
(2.30). According to Lemmas 2.11-2.13, G € G(MZ°(X, p; wo, v), MEH(X, p; w1, v)).

Moreover, arguing as in (3.9)—(3.12) and using G € M7/ (X, pu; w;,v), we have
G(z) € ./T/llgoo (X, 5 wp, v; rel W) + Mﬁf (X, p; wy,v; rel w)

for every z € S and G(j + it) — G(j) € va]7 (X, p;wj,v; rel w) for every t € R and
j=0,1. Thus, G € Q(MfOO(X,u;wo,v; rel w)’ﬂgll (X, p;wy,v; rel w)). Consequently,
f=G'(0) € [M£AX, s wo, v; el w), MEH(X, p;wy, v; rel w)]? as desired.

Next, let us show the last inclusion in (2.15). To this end, let

f e ME(X, uwo,v), MZ? (X, p;wy,v)]°.

Then, by (2.11), f € M¥(X, p;w,v). Take G € GMEO (X, p; wo, v), MEH(X, p; w1, v))
such that f = G'(0). Fix x € X and r > 0. Let B(o, R) be the ball as before. For every
z€ S and h € R\ {0}, define

1—=2 z

(G(z+1ih) — G(z)) wy’ wl‘T1 wo(z, 7“)1_2901(33, r)*.

XX\B(o,R)
v(B(z,r) @ T

(3.13) Ga(z) ==

Let H € L>(X) be such that u{H # 0} < oo, [|H|| L4 (s = 1, and

(3'14) ||Gh(07 ')XB(ac,T)HLq(,u) = / Gh(07y)H(y) d/L(y)

B(z,r)
For every z € S, set

1—=z z
—+

Ju.r(2) ::/B< Gz e H)E UF ) duy),

Then, by Lemma 2.17 and the Holder inequality, we have

0

Jrnl0 = <1—19 /R |, r ()10 (%) dt) - (% /R \fr,r(1+t)|p(t) dt>
< (1—i0 /R Ixx\B(o,r) (G(i(t +h)) — G(it))HMgg (vawo,v)/to(t) dt) 1-6

0
1 . |
X (5/RIIG(1+z(t+h)) — G+ t) | s (x s 0y 11 () dt> _
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As a consequence of the last inequality and (3.14), we have
HXX\B(OaR) (G(Q) - G(9 + ih))”./\/l?f(X,u;w,v)

1 _ _ ‘ 1-6
= (1 By /R Ix\B(o,m) (G0t) = Gt + i) |z (x pswo.yHo(F) dt)

0
1
X (5 / HG(l + Zt) - G(l + it + ih)”./\/lfll (X,u;wl,v):ul(t) dt) .
R

Letting R — oo, we obtain |[xx\B(o,r) (G(0) — G(0 + ih))|| me (x,usw,0) + 0 @8 R — 00

thanks to the Lebesgue convergence theorem. Thus, G(6+ih) —G(6) € M? (X, u;w, v).
Since f = G'(0), that is,

. G(0 + i) — G(9) H
h—0t ih

f_

— O’
MEO (X, p3wo,0)+ MEL (X, w1 ,v)

; MEO (X, pswo,0)+ MEH (X, psw1,0)
we conclude that f € M7 (X, p; w,v) , which proves the last
inclusion. Finally, remark that the remaining inclusions in (2.15) are consequences of
trivial inclusion
MEH(X, pswy,v; rel W) € MEHX, 3w, v)
and .K/lvaO(X,,u;wo, v; rel W) C MEO(X, p;wo, v).
The proof of (2.16) is similar to above and [15]. We omit the further detail.

§3.3. Proof of Theorem 2.6

We begin with the proof of (2.17). By virtue of Theorem 2.3 and also Lemmas 2.9
and 2.19, we obtain

[Mgoo (X7 K5 Wo, U), Mff (Xa 5w, U)]G

C [Mgoo (Xv M5 Wo, U)7 Mff (X7 s Wi, U)]G

* [Mf(? (X7N§w07v)7M§11 (Xaﬂ;wlyv)]e
C Mgoo (X, w5 wo,v) N Mgll (X, py w1, v)

" ME (X, pyw,0)
C Mg (X, 5 wo, v) N MEHX, p; wy,v)
" MZ (X, pw,v) N

C MG(X, p; w,v) = M7 (X, g w, ).

We combine this with (2.10) to obtain
[Mfoo (X7 M5 Wo, U)? Mff (X7 s Wy, U)]g - [M;)O (X7 K3 Wo, U)v Mqlpll (Xa KWy, U)]@

C{fe /{k/lf(X, w;w,v) : (2.7) holds}.
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Conversely, let f € M (X, u;w,v) be such that (2.7) holds. By the argument in the
proof of (2.11), we have

* MO (X, pw,v
f € ME(X, s w,v) 0 ME (X, 1 wo, 0) N ME (X, g, o) 0 O,

Hence, f € [M$(X, p;wo,v), MEH(X, p; w1, v)]g thanks to Lemmas 2.14 and 2.19.
We prove (2.18). From Theorem 2.3 and also Lemmas 2.9 and 2.19, we have

[Hgoo (X,:U’;w()av; rel w)amgll (Xmu';whv; rel TIJ)]Q
- [mgoo(Xa M5 Wo, U5 rel w)7M§11 (X,M;’whv)]e

(20 (X, paswo,v5 rel @), MEL (X, pswn )]

N
<]

o (X, pwo, v; rel W) N MEHX, p;wy,v)

ME (X, pw,0)

N
<]

qLPOO (X’ H; Wo, U; rel ’lIJ) N Mgll (X7 M5 W1, U)
ME (X, p3w,v)

N
<]

(X, s wo, v; el W) :mf(X,u;wo,v; rel ).

Let f € ﬂj(X,,u;w,v; rel W) satisfy (2.7). Define Fyy r and Fj r by replacing f with
fr in the definition of Fj and F} in (2.31), respectively. Then Fr = Fyr + Fir
goes to F'in F(MEo (X, p;wo,v), MEH(X, u;wi,v;)), since fr goes to f as R — oo in
ME(X, p;wo,v). Since Fr € }"(m;"oo(X,u;wo,v; rel @),ﬂgll(X, p; wy,v; rel w)) for
each R > 0 from the definition of EFr and Lemma 2.15, we have

F € F(MZ (X, p;wo, v; rel @), ME(X, 3wy, v; rel ©)).

Thus
f S [mfoo(Xaﬂ;wo,U; rel w)amgf(XaM;th; rel w)]&

If we assume wy = w; = w and reexamine the above proof, we can prove (2.19) similarly.
Next, we move on to the proof of (2.20). Let f € M (X, u;w,v;rel w) be such
that (2.7) holds. By a similar argument as in the proof of the first equality in (2.18)

and also Lemma 2.15 and f € Mf(X,u; w,v), we have
f€ [Mvgoo (X, 5 wo, v;rel w),fvlvg; (X, 5wy, v;rel w)]g.

Observe that the second equality in (2.20) follows from /{/lvjfll (X, p;wy,v;rel w) C
MEH(X, p;wy,v).  Finally, by viE‘Eue of the second equality (2.17) and the second
equality in (2.18), we have f € M# (X, u;w,v;rel w) with (2.7) holds whenever f €
[MEO (X, p; wo, vy el @), MEH(X, p;wr,v)]p. Finally, if we assume wy = w; = w and

reexamine the above proof, we can prove (2.21) similarly.
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§4. Application to the boundedness of the Hardy-Littlewood maximal
operatoron weighted Morrey spaces

In this appendix, we aim to summarize the recent progress of weight theory on
Morrey spaces. To simplify the matters, we place ourselves in the setting of dyadic
cubes on R™ equipped with the Lebesgue measure dx. Let D denote the set of all
dyadic cubes of the form 277m + [0,279)" for some j € Z and m € Z". Observe first
that we can adopt the following equivalent norm when we consider the weighted Morrey
space Mb(w,1) = ME(R", dz;w,1):

sz = sup 1015 ([ 1@t )

Accodingly the Hardy-Littlewood maximal operator M can be replaced by the dyadic
maximal operator. From now on, we write Mgyadic for the dyadic maximal operator:

MMMWﬁWﬁLWMWW)

QeD

It is trivial that the Hardy-Littlewood maximal operator majorizes the dyadic maximal
operator. Although the converse is not true, using the notion of the dyadic grid, we
can justify that the dyadic maximal operator suffices when we consider Problem 1.3. In
this setting, for 1 < p < oo and a weight w, the constant [w]4, must be modified: the
constant [w]4, adapted to this setting is:

o (H@ (v @)
[w]AP‘Qe%(|Q|>< 0l ) ‘

In addition, we define A, to be the union of the class A, where 1 < p < oco. The

. I8 [wla, = supgep % exp (|712| Jo logw(z) dac) :

One of the crucial properties of the class A, is that

constant [w] 4

1

(4.1) <ﬁéw(az)l+s dx) < %/Qw(x) do (g - m)

A direct consequence of (4.1) is that for o < 1 there exists 8 = f(q, [w]a,) € (0,1)
such that

(4.2) |E] < a|Q = w(E) < fuw(Q)

for all measurable sets E and cubes @ with F C Q. In [28], we introduced the weight

class B, 4 in the context of the boundedness of the Hardy-Littlewood maximal operator
1

on weighted Morrey spaces. We define @, ;,,(Q) := |Q|% (%) " for Q € Q.
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Definition 4.1 ([28]). Let 1 < ¢ <p < oo and w be a weight. One says that a
weight w is in the class B, 4 if there exists C} , > 0 such that for any @y € Q,

(4.3) Sup Qp.gw Q) < Cp,qq)p,q,w(QO)a
QREQ:QCQo

or equivalently, |[xqo | rm2 (dz,w) ~ Pp.gw(Qo) hold.

We may state the following partial answer to Problem 1.3 based on the above setup.

Theorem 4.2 ([28]).
Let 1 < qg<p<ocandw € AyN By, Then Mayagic is bounded from M¥b(w) to
MP(w).

Although the above gives a sufficient condition, one can notice that the condition
is too strong. Indeed, Tanaka [35] gave the characterization of the boundedness of M
on MP(w) with power weight w(z) = [z|* as follows:

Theorem 4.3 ([35]).
Let 1 < ¢ < p < o0 and we(z) = |z|* with a > —n. Then M is bounded on
MP(wy) if and only if

1
—ngz—n+n(1—g)§a<n(q—1)—|—n<1—g):nq(l——>.
p p p p

Theorem 4.3 tells us that the condition A, in Theorem 4.2 is too strong. Meanwhile,
for the Hilbert transform defined by

Hf(z) :=p.v. /R %dy (x € R),

Samko [30] showed that H is bounded on Mf(wq) if and only if =1 < a <¢ (1 - %) :

From these points of view, it is natural to ask ourselves what is the necessary and
sufficient condition imposed on weight w for which M is bounded on M?(w). To tackle
this problem, we here give some necessary condition.

Recall that the weight w satisfies the doubling condition if there exists a constant
C > 0 such that for any Q € Q, w(2Q) < Cw(Q) holds.

Theorem 4.4. Let1l < q <p < oo and w be a weight. Assume that Mayadic 15
bounded on M¥(dx,w). Then we have the following:

1. we Bp,q N Aq_|_1.

1
2. w a1 € By 4 implies w € A,.
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3.

1.
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_ 1 . .
w71 € Ay s equivalent to w € A,.

Proof.

First, for the proof of the necessity of w € B, 4, we refer to [29].

1

Next, let us show w € A,y;. To this end, we write o* := w™ 7. We fix Qo € D and

1 .
calculate the norm of X, 0™ [[XQo "0 | A2 (dz,w) = X Qo [l M2 (dz,dz) = [Qol? . Since,

we have the pointwise estimate: XQO(@% < Mayadic[XQ, - 0*](x) for x € R,

the boundedness of Mgyagic implies that

o*(Qo)

1
|QO| HXQoHMg(dm,w) < ”MdyadicH./\/lg(dm,w)ﬁ./\/lg(da:,w)HXQOO-*”ME(d:L‘,w) ~ |Q0|p'

If we notice that

(4.4) X0l Az (d,w) Z Pp.gaw(Qo),

1
then <ui(Q%T)>q U\q(zcgf) < [[Mayadicll A2 (g2 w)—s M2 (), Which implies w € Agqq

1
with [w]Aq+1 < HMdyadiCHj\/lg(dm,w)—w\/lg(dac,w)'

. Let us show w € A,. To this end, we fix any @) € D and write o := w71, Since

o € B, 4 is a dual weight of w: 09w = o, we notice that

L (0(Q)
1X@ - Ol a2 () = IXQ M (2.0 ~ |QIF (ﬁT\)

On the other hand, since %XQ(I) < Mayadic[xq - o](x) for all z € R", the

boundedness of Mgyagic on M¥(dz,w) yields that

o(Q) 1 (0(Q)
o] xellaaew < IMayaielxe - olllag . S 1XQ - ollagias.) ~ Q17 (W

Moreover, since we know that

w(Q)s

Q7

IXQ Nl M2 (da,w) =

1
q

1 1
by dividing the both terms by [Q|?, it follows that 7% (%) T <O ("@)) .

oLy wey ) <o

which implies w € A,.

or equivalently,

)
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3. Let us show w € A,. Fix any ()9 € D and set g := |Q | fQ y)dy and take a large
constant aj,], > 2" so that 2" /aj,), < A < 1. Then we deﬁne Dy :={Qo} and
- o(Q)
Dy :=(Q € D(Qo) : ol >afy, ¢ (keEN).

We denote the maximal subset of Dy by Dj := {Q;f }jes, again. Notice that

QY N Qppa| <

(ot

0l Ao

From this, (4.2) and 2"/a,), < A, < 1, we see that {Q?}keNo,jeJk is a o-
sparse family. In particular, it follows that o(Qo \ 1) > Cls),_0(Qo), where
Q1 :=U,es, @ = Ugep, R- This implies that

U(QO) <
Qol ~

By taking the weighted Morrey norm of both sides and using the boundedness of

a(Qo \ Q1)

Qo (T) " XQO(SC)W < Mayadic[X@o\: - 0](2).

Mgyadic and 09 - w = o, we learn

(Qo)
(45) |Q | HXQOHM P(dx, w) 0] Aso HXQO\Q;L ' O-H./\/lg(dx,w) = ||XQO\Ql||Mg(dI,O')'

By recalling that

U R D= {RGD(QO):

ReD,

o(R) U(Qo)}
(R~ s T, S

we see that

1
: 1 (0(Qo) )
(4.6) HxQo\QlHM@W)ga[a]%wp(‘ O|>

Meanwhile, we know that

p . <@>)3
(4.7) 10ttty = Q0 (,Q‘

As a result, by inserting (4.6) and (4.7) into (4.5), we obtain that

Q) () . (2

which implies w € A,.
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O

Recall that w € A, is equivalent to w,o = wTT € A, under the boundedness
of the maximal operator. From this point of view, in the case of Lebesgue spaces,
the condition o € A,, was natural one. However, Theorem 4.4 shows that even the
condition o € A, is too strong.

Finally we end this paper with a result related to the complex interpolation. We
go back to the classical Hardy-Littlewood maximal operator from the dyadic maximal
operator Mgyadic-

Theorem 4.5.  Maintain the same conditions as Theorem 2.3. Assume in ad-
dition that qo,q1 > 1 and that (X,d,p) is the Euclidean space (R™,|- |, dz). If the
Hardy-Littlewood mazimal operator M is bounded on MZi(w;,v) for i = 0,1, then M
is bounded on MY (w,v).

Proof.  We linearlize M: Let N be a bounded measurable functions and {E;}%2,

be a partition of R". We define M*f = 3>, <m fB(x’N(.)) f(y) dy) Xk, for
f € Li,.. We have only to prove that M* is bounded on M#(w,v). We know that M*

loc*

is bounded on MYi(w;,v) by assumption. Thus, by virute of (2.11) we conclude that
M* is bounded on M (w,v). O
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