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Fixed‐point property for affine actions on a Hilbert
space

By

SHIN NAYATANI*

Abstract

Gromov [7] showed that for fixed, arbitrarily large  C , any uniformly  C‐Lipschitz affine
action of a random group in his graph model on a Hilbert space has a fixed point. We announce
a theorem stating that more general affine actions of the same random group on a Hilbert space
have a fixed point. We discuss some aspects of the proof.

Introduction

In [10], Izeki, Kondo and the present author proved that a random group in the
Gromov graph model had fixed‐point property, meaning that any isometric action had

a fixed point, for a large class of CAT(0) spaces, by using the method which concerns
the  n‐step energy of maps. Naor and Silberman [17] proved a similar result for a class  0

 p‐uniformly convex geodesic metric spaces. (Note that CAT(0) spaces are 2‐uniformly
convex.) In these studies it seemed that the condition that actions are isometric was
essential and without the condition the argument should break dwon. Gromov [7],
however, had shown that any uniformly  C‐Lipschitz affine action of the same random

group on a Hilbert space has a fixed point, where  C may be arbitrarily large but

should be specified in advance. The purpose of this article is to announce a fixed‐

point theorem for more general affine actions of the same random group, allowing the

Lipschitz constants of the affine maps to have mild growth with respect to a certain

length function on the group [11]. It is worth while to mention the following: if the
Lipschitz constants of the affine maps are uniformly bounded, then the action reduces to

an isometric one on a Banach space by replacing the Hilbert norm by an equivalent one.
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On the other hand, our case treats really non‐isometric actions which cannot reduce to
isometric ones.

A key of the proof is to verify the existence of a discrete harmonic map from the

group into the Hilbert space which is equivariant with respect to the given action. In

the case of isometric actions, the method of energy minimization coupled with scaling

ultralimit argument was effective. In the general affine case, this method fails because a

map minimizing local energy does not necessarily satisfy the condition of harmonicity.

We therefore employ the method of discrete tension‐contracting flow due to Gromov [7].
Indeed, we refine Gromov’s method and derive the existence of a harmonic map still by

coupling it with scaling ultralimit argument.

This article is organized as follows. In §1, we define affine action, discuss the

rigidity of isometric actions and state Shalom’s theorem on the rigidity and existence  0

uniformly Lipschitz affine actions. In §2, after discussing Nowak’s fixed‐point theorem

for uniformly Lipschitz affine actions of a random group in the Gromov density model,

we state our main fixed‐point theorem. In §3, we discuss discrete harmonic maps and

state an existence theorem for such maps. We also discuss the failure of the method

of energy minimization. In §4, we introduce Gromov’s discrete tension‐contracting flow

and outline the proof of the existence of harmonic maps. In §5, we outline the proo

of the main theorem. In Appendix, we prove the existence of maps minimizing local

energy which are equivariant with respect to a given affine action.

§1. Affine actions on a Hilbert space

Let  \mathcal{H} be a Hilbert space, and denote the algebra of all bounded linear operators  0

 \mathcal{H} by  \mathbb{B}(\mathcal{H}) . Let  \Gamma be a finitely generated infinite group, and let  \rho :  \Gamma c\sim \mathcal{H} be an affine

action. Thus, for  \gamma\in\Gamma,  \rho(\gamma) :  \mathcal{H}arrow \mathcal{H} has the form

 \rho(\gamma) (v)  =A(\gamma)(v)+b(\gamma) ,  v\in \mathcal{H},

where  A(\gamma)  \in \mathbb{B}(\mathcal{H}) and  b(\gamma)  \in \mathcal{H} . Since  \gamma\mapsto\rho(\gamma) is a homomorphism, we have

 A(\gamma\gamma')=A(\gamma)A(\gamma') , b(\gamma\gamma')=b(\gamma)+A(\gamma)
b(\gamma') , \gamma, \gamma'\in\Gamma.

Definition 1.1. An affine action  \rho :  \Gamma cr  \mathcal{H} is called uniformly  C ‐Lipschitz  i

 \rho(\gamma) :  \mathcal{H}arrow \mathcal{H} is a  C‐Lipschitz map, or equivalently  \Vert A(\gamma)\Vert  \leq C , for all  \gamma\in\Gamma.

Note that   C\geq  1 necessarily.

Most basic example of a uniformly Lipschitz affine action is an isometric action.

Recall that a  \sigma‐compact, locally compact topological group  G is said to have property
 F\mathcal{H} if any continuous isometric action  \rho :  Gc\sim \mathcal{H} has a fixed point, that is, there exists
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 v  \in  \mathcal{H} such that  \rho(g)(v)  =  v for all  g  \in  G . It is a celebrated result of Delorme [4]
and Guichardet [8] that property  F\mathcal{H} is equivalent to Kazhdan’s property (T). Kazhdan
[13] defined this property for locally compact groups in terms of unitary representations,
and proved that if  \Gamma is a lattice in a Lie group  G , then  \Gamma has property (T) if and only
if  G has property (T). As examples, simple real Lie groups of real rank at least two
have property (T). For   n\geq  2,  Sp(n, 1) is a simple Lie group of real rank one that has
property (T). Thus these Lie groups and their lattices have property  F\mathcal{H}.

In his unpublished work, Shalom proved the following theorem which exhibits that

higher‐rank groups have stronger rigidity than  Sp(n, 1) (cf. [2, 19]).

Theorem 1.2 (Shalom . (i) Any uniformly Lipschitz a ne action of a simple
real Lie roup of real rank at least two (or its lattices) on  \mathcal{H} has a xed point.
(ii)  Sp(n, 1) admits a uniformly Lipschitz a ne action on  \mathcal{H} without xed point.

Mimura [16] observes that the action in the statement (ii) is indeed metrically
proper. Hence, any infinite discrete subgroup of  Sp(n, 1) also admits a uniformly Lip‐

schitz affine action on  \mathcal{H} without fixed point. This exhibits many infinite hyperbolic

groups which admit such affine actions.

Shalom proposed the following (cf. [19])

Conjecture 1 (Shalom). Any non‐elementary hyperbolic group admits a uniformly
Lipschitz affine action on  \mathcal{H} without fixed point.

§2. Fixed‐point property of random groups w.r.  t . uniformly Lipschitz
affine actions

In this section, we review two fixed‐point theorems regarding uniformly Lipschitz

affine actions of certain ramdom groups on a Hilbert space. Recall that in the Gromov

density model  \mathcal{G}(m, l, d) of random groups, generators  s_{1}^{\pm 1} , :::,  s_{m}^{\pm 1} and a density  0  <

 d  <  1 are fixed, and choose  (2m- 1)^{dl} words, each of them chosen uniformly and

independently from the set of all reduced words of lenght  l in  s_{1}^{\pm 1} , :::,  s_{m}^{\pm 1} . The group
 \Gamma generated by  s_{1}^{\pm 1} , :::,  s_{m}^{\pm 1} and having those reduced words as relations is a constituent

of the model  \mathcal{G}(m, l, d) . Given a group property  P (e.g. Kazhdan’s property (T)), we
say that a random group in the Gromov density model has property  P if the probability

of  \Gamma having property  P tends to one as  larrow 1.

Theorem 2.1 (Nowak [18]). Fix  1  \leq C< 2. Let  \Gamma be a random group in the
Gromov density model with density  1/3  <  d  <  1/2 . Then any uniformly  C ‐Lipschit

a ne action  \rho :  \Gamma c\sim \mathcal{H} has a xed point.
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Note that the random group  \Gamma of the theorem is non‐elementary hyperbolic (hence
infinite) [6, 20] and has property (T) [23, 15].

The proof of Theorem 2.1 is based on a fixed‐point theorem for an isometric action

of a deterministic group on a Banach space, which we shall review. Let  \Gamma be a finitely

generated group equipped with a finite, symmetric generating set  S not containing the

identity element. Modifying the construction as in [23], one constructs the link graph
 \mathcal{L}(S) ; its vertices are the elements of  S , generators  s and  t span an edge (written  s\sim t )
if  s^{-1}t is a generator, and the edges are suitably weighted. (For the account of the
choice of weight, see [18, p. 703], [9, Proof of Lemma 3.1].)

Let  \mathcal{B} be a Banach space with norm  \Vert\cdot\Vert and denote by  \kappa_{p}(S, \mathcal{B}) the optimal constant

in the  p‐Poincaré i   \sumequality for maps  f :  Sarrow \mathcal{B} :

  \sum_{s\in S}\Vert f(s)-\overline{f}\Vert^{p}m(s) \leq\kappa^{p}\sum_{s\sim t}
\Vert f(s)-f(t)\Vert^{p}m(s, t) ,

where  m(s, t) is the weight of the edge  (s, t) ,  m(s)  = \sum_{t\sim s}m(s, t) ,

and   \overline{f}=\sum_{s\in S}m(s)f(s)/\sum_{s\in S}m(s) , the mean value of  f.

Theorem 2.2 (Nowak [18]). Let  \mathcal{B} be a reflexive Banach space and let  \Gamma and
be as above. If the link raph  \mathcal{L}(S) is connected and for some  1  <p<1 and its ad

 \cdot

oint

index  p^{*} , satisfying  1/p+1/p^{*}  =1 , the corresponding Poincaré constants satisfy

  \max\{2^{-1/p}\kappa_{p}(S, \mathcal{B}), 2^{-1/p^{*}}\kappa_{p}*(S, 
\mathcal{B}^{*})\}< 1,

then any affine isometric action  \rho :  \Gamma c\sim \mathcal{B} has a fixed point.

Let  \rho :  \Gamma cr  \mathcal{H} be a uniformly  C‐Lipschitz affine action, where  \mathcal{H} is a Hilbert

space, and introduce a new norm on  \mathcal{H} by  |||v|||  = \sup_{\gamma\in\Gamma}\Vert A(\gamma)(v)\Vert for  v\in \mathcal{H} . Then
 \mathcal{B}=  (\mathcal{H}, ||| . |||) is a Banach space isomorphic to  \mathcal{H} , thus reflexive, and  \rho :  \Gamma c\sim \mathcal{B} is an

affine isometric action. Since the norms of  \mathcal{B} and  \mathcal{B}^{*}  (\cong \mathcal{H}) satisfy  \Vert\cdot\Vert  \leq  |||\cdot|||  \leq C\Vert\cdot\Vert
and   C^{-1}\Vert  \Vert  \leq  |||  |||^{*}  \leq  \Vert .  \Vert , respectively, it follows that

 \kappa_{2}(S, \mathcal{B}) , \kappa_{2}(S, \mathcal{B}^{*}) \leq C\kappa_{2}(S,
\mathcal{H})=C\kappa_{2}(S, \mathbb{R}) .

Therefore, we obtain the following

Corollary 2.3. Let  \Gamma and  S be as above, and suppose that the link raph  \mathcal{L}(S) is

ponnected. Then any uniformly  C ‐Lipschitz affine action  \rho :  \Gamma c\sim \mathcal{H} with  C\kappa_{2}(S, \mathbb{R})  <

 2 has a fixed point.

Now let  \Gamma be a random group in the Gromov density model with density  1/3  <

 d  <  1/2 . By the argument due to  \dot{Z} uk [23], Kotowski and Kotowski [15], there is a
random group  \Gamma' in a different model so that  \Gamma contains a quotient of  \Gamma' as a finite



Fixed‐Point property for affine actions 119

index subgroup and the link graph  \mathcal{L}  ( /  ) of  \Gamma' has  \kappa_{2}( /, \mathbb{R}) arbitrarily close to one.
Therefore, we may apply Corollary 2.3 to  \Gamma' and the conclusion of Theorem 2.1 holds
for  \Gamma' and hence for  \Gamma.

Gromov [7] claimed a result similar to Theorem 2.1 for a random group in the
graph model which was also invented by him. To state Gromov’s result, we first review

the construction of this model. Let  F_{m} denote the free group on  m generators, and
let  S be the collection of these  m elements and their inverses. Let  G  =  (V, E) be a

finite connected graph, where  V and  E are the sets  0! vertices and undirected edges,

respectively. We denote the set of directed edges by . A map  \alpha :  arrow  S satisfying

 \alpha((v, u))  =  \alpha((u, v))^{-1} for all  (u, v)  \in is called an  S ‐labelling of  G . Let  \mathcal{A}(m, G)
denote the set of all  S‐labellings of  G , consisting of  (2m)^{\# E} eleme nts , an! equip it with

the uniform pro!ability measure. Fo!  \alpha  \in  \mathcal{A}  (m, !) and a path  arrow p  =  (^{arrow_{e_{1}}},  \ldots,  arrow_{e_{l})} in
 G , where  arrow_{e_{i}}  \in , define  \alpha(parrow)  =\alpha(^{arrow_{e_{1}}} ) . . . .  \alpha(^{arrow_{e_{l}}} )  \in F_{m} . Then set

 R_{\alpha}= {  \alpha(c)  |  c are cycles in  G},

 \Gamma_{\alpha}=F_{m}/ normal closure of  R_{\alpha}.

Let  \lambda_{1}(G, \mathbb{R}) denote the second eigenvalue of the discrete Laplacian of  G , acting on

real‐valued functions on  V . The irth of  G , denoted by girth (G) , is the minimal length
of a cycle (i.e. a closed path) in  G.

A sequence  \{G\cdot\}\cdot\in \mathbb{N} of finite graphs is called a sequence of (bounded‐degree) ex‐
panders if it satisfies

(i)  \# V_{j}  arrow 1 as  jarrow 1,

(ii)  \exists d,  \forall j,  \forall u\in V_{j},  2\leq\deg(u)  \leq d (sparce),

(iii)  \exists\lambda>0,  \forall j,  \lambda_{1}(G_{j}, \mathbb{R})  \geq\lambda (highly‐connected .

Such a  \{G_{j}\}_{j\in \mathbb{N}} is said to have diverging girth if it further satisfies

(iv) girth  (G_{j})arrow 1 as  jarrow 1.

Now suppose that a sequence of expanders  \{G_{j}\}_{j\in \mathbb{N}} with diverging girth is given. Then

the collection of groups  \mathcal{G}(m, G\cdot)=\{\Gamma_{\alpha} |\alpha\in \mathcal{A}(m, G\cdot)\} is the graph model of random

groups. Given a group property  P , we say that a random roup in the raph model has

property  P if the probability of  \Gamma_{\alpha} having property  P tends to one as  jarrow 1 . Gromov

[7] and Silberman [21] proved that a random group in the graph model had fixed‐point
property for Hilbert spaces with respect to isometric actions, that is, it had property

(T). This result was generalized to fixed‐point property for CAT(0) spaces [10] (see also
[7]) and for  p‐uniformly convex geodesic metric spaces [17]. In both generalizations the
degrees of singularity of the relevant geodesic metric spaces should be suitably bounded.

We now state
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Theorem 2.4 (Gromov [7]). Fix  C>0 . Let  \Gamma be a random group in the graph
model associated with a sequence of expanders with diverging girth. Then any uniformly
 C ‐Lipschitz a ne action  \rho :  \Gamma c\sim \mathcal{H} has a xed point.

We can relax the condition that the Lipschitz constants of the relevant affine maps

should be uniformly bounded. To state our result precisely, we introduce the following

Definition 2.5. Let  \Gamma be a finitely generated group equipped with a finite, sym‐

metric generating set  S , and let  l :  \Gamma  arrow  \mathbb{Z}_{\geq 0} denote the word‐length function with

respect to  S . For each conjugacy class  c of  \Gamma , we define

 l_{conj}(c)=inl(\gamma)\gamma\in c
and call  l_{conj} : {conjugacy classes of  \Gamma }  arrow \mathbb{Z}_{\geq 0} the conjugacy‐length function of  \Gamma  [3].

We now state

Theorem 2.6. Fix  C  >  0 and  0  \leq  \sigma  <  1/10 . Let  \Gamma be a random group in the

graph model associated with a sequence of expanders with diverging girth and diamete

rowing at most linearly in girth. Then any  a ne action  \rho :  \Gamma c\sim \mathcal{H} satisfyin

(2.1)  \forall\gamma\in\Gamma, \Vert A(\gamma)\Vert \leq Cl_{conj}([\gamma])^{\sigma},

where  [\gamma] denotes the conjugacy class containing  \gamma , has a fixed point.

Remark 1. In order for a random group in the graph model to be non‐elementary

hyperbolic (hence infinite), the relevant sequence of expanders should satisfy some fur‐
ther conditions (cf. [7, 5, 1]). One of these conditions implies the diameter growth
condition in Theorem 2.6, which is therefore essentially superficial.

§3. Discrete harmonic maps

Let  \Gamma be a finitely generated group and fix a finite, symmetric generating set  S.

Let  \mu be the standard random walk of  \Gamma associated with  S , that is,

 \mu(xarrow x')^{d}=^{e}  \{\begin{array}{l}
1/\# S if \exists s\in S, x'=xs,
0 otherwise:
\end{array}
The barycenter map of  \mathcal{H} , bar: {finite‐support probability measures on  \mathcal{H} }  arrow  \mathcal{H} , is
given by

(3. 1) bar (   \sum_{i=1}^{m}t_{i} Dirac  (v_{i}) )  = \sum_{i=1}^{m}t_{i}v_{i}.
Let  \rho :  \Gamma c\sim \mathcal{H} be an affine action.
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Definition 3.1. A  \rho‐equivariant map  f :  \Gammaarrow \mathcal{H} is called harmonic if it satisfies

(3.2) bar  (f_{*}\mu (xarrow ))  =f(x)

for all   x\in\Gamma . Notice that

bar  (f_{*}\mu (xarrow .))  =   \frac{1}{\#}\sum_{s\in S}f (xs):

Remark 2. Since the action  \rho is affine, we may conclude that a  \rho‐equivariant  f

is harmonic if it satisfies (3.2) for some   x\in\Gamma . To see this, suppose that (3.2) holds for
 x , and write any   x'\in\Gamma as  x'=\gamma x . Then

bar  (f_{*} \mu (x'arrow .))=\frac{1}{\#}\sum_{s\in S}f(x's)=   \frac{1}{\#}\sum_{s\in S}\rho(\gamma) (  f (xs))

 = \rho(\gamma) (\frac{1}{\#}\sum_{s\in S}f(xs)) =\rho(\gamma)f(x)
 =f(x') ,

and (3.2) holds for  x' , too.

The action  \rho has a fixed point if and only if a  \rho‐equivariant constant map, which

are trivially harmonic, exists. In contrast, we have the following existence result for

nonconstant harmonic maps when  \rho has no fixed point.

Theorem 3.2. Let  \Gamma be a finitely generated group equipped with a finite, sym‐

metric generating set  S , and let  \rho :  \Gamma cr  \mathcal{H} be an a ne action, where  \mathcal{H} is a Hilbert

space, satisfying (2.1) for some  C>0 and  \sigma\geq 0 . Suppose that  \rho(\Gamma) has no xed point.
Then there exist  a (possibly new) a ne action  \rho' :  \Gamma c\sim \mathcal{H}' , where  \mathcal{H}' is  a (possibly new)
Hilbert space, satisfying (2.1) for the same  C,  \sigma as above and a nonconstant harmonic
 \rho' ‐equivariant map  f :  \Gammaarrow \mathcal{H}'

Before discussing the actual proof, we observe that the standard approach via

energy minimization coupled with scaling ultralimit argument would fail.

Definition 3.3. For a  \rho‐equivariant map  f :  \Gammaarrow \mathcal{H} and   x\in\Gamma , define the loca

energy  E(f)(x) of  f at  x by

(3.3)  E(f)(x)^{d}=^{e}  \frac{1}{2}\sum_{x\in\Gamma}\Vert f(x)-f(x')\Vert^{2}
\mu(xarrow x') .

As will be verified in the appendix, under the assumption that  \rho(\Gamma) has no fixed

point, one can always find a nonconstant  \rho‐equivariant map  f :  \Gammaarrow \mathcal{H} minimizing the
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local energy at  x , though the Hilbert space  \mathcal{H} and the affine action  \rho :  \Gamma  cr\mathcal{H} should

possibly be renewed. We now focus on the question whether the map  f satisfies (3.2)
for  x . For  v  \in  \mathcal{H} and  t  \in  \mathbb{R} , let  f_{t} :  \Gamma  arrow  \mathcal{H} be the  \rho‐equivariant map such that

 f_{t}(e)  =f(e)+tv . Then we have, taking  x=e for simplicity,

 E(f_{t})(e)= \frac{1}{2\#}\sum_{s\in S}\Vert f_{t}(e)-f_{t}(s)\Vert^{2}
 = \frac{1}{2\#}\sum_{s\in S}\Vert f(e)+tv-\rho(s)(f(e)+tv)\Vert^{2}
 = \frac{1}{2\#}\sum_{s\in S}\Vert(f(e)-f(s))+t(v-A(s)(v))\Vert^{2}
 = \frac{1}{2\#}\sum_{s\in S}(\Vert(f(e)-f(s))\Vert^{2}+2t\langle f(e)-f(s), v-A
(s)(v)\rangle+O(t^{2})) ,

and therefore

 0=  \frac{d}{dt}E(f_{t})(e)|_{t=0}= \frac{1}{\#}\sum_{s\in S}\langle f(e)-f(s) 
, v-A(s)(v)\rangle.
If the action  \rho is isometric, which means that  A(s) is orthogonal, then

R.H.S.  = \frac{1}{\#}\sum_{s\in S}\langle f(e)-f(s) ,   v\rangle-\frac{1}{\#}\sum_{s\in S}\langle A(s^{-1})(f(e)-f(s)) ,  v\rangle

 = \frac{1}{\#}\sum_{s\in S}\langle f(e)-f(s) , v\rangle-\frac{1}{\#}\sum_{s\in 
S}\langle f(s^{-1})-f(e) , v\rangle
 = \frac{2}{\#}\sum_{s\in S}\langle f(e)-f(s) , v\rangle.

Since this vanishes for all  v\in \mathcal{H} , we conclude (3.2). However, if  \rho is not isometric, the
above computation fails and we would not be able to conclude (3.2), that is, that  f is
harmonic.

Instead, we use Gromov’s discrete tension‐contracting flow developed in [7, §3.6]
and produce a harmonic  f . Postponing the details to [11], we shall outline the argument
for the proof of Theorem 3.2. In the remainder of this section, let  \Gamma be a finitely

generated group equipped with a finite, symmetric generating set  S , and let  \rho :  \Gamma c\sim \mathcal{H}

be an affine action, where  \mathcal{H} is a Hilbert space.

For a  \rho‐equivariant map  f :  \Gammaarrow \mathcal{H} , define new maps Hf :  \Gammaarrow \mathcal{H} and  \triangle f :  \Gammaarrow \mathcal{H}

by

 Hf (  x )  de=   \frac{1}{2}  ( \sum_{x\in\Gamma}f(x')\mu(xarrow x')+f(x))
 =  \frac{1}{2} (\frac{1}{\#}\sum_{s\in S}f(xs)+f(x)) ,
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 \triangle f(x)^{d}=^{ef}(1-H)f(x)

 =  \frac{1}{2}\sum_{x\in\Gamma}(f(x)-f(x'))\mu(xarrow x')
 =  \frac{1}{2\#}\sum_{s\in S} (f(x)-f(xs)) :

The maps Hf and  \triangle f are  \rho‐equivariant and  A‐equivariant, respectively. We call  H

(resp.  \triangle ) the averaging operator (resp. Laplacian). Note that  f is harmonic if and only
if  \triangle f=0 , or  Hf=f.

Proposition 3.4 (cf. Gromov [7]). We have

  \Vert\triangle Hf(x)\Vert \leq \max \Vert\triangle f(x')\Vert
 x'\in x(S\cup\{e\})

for all   x\in\Gamma , and if the equality sign holds for some  x then  \triangle f(x) is a constant vecto

independent of  x\in\Gamma.

Motivated by this proposition, we introduce the following

Definition 3.5 (cf. Gromov [7]). Let  f :  \Gamma  arrow  \mathcal{H} be a  \rho‐equivariant map, and
define  f_{0}  :=f and  f_{i+1}  :=Hf_{i} inductively. We say that  f is (harmonically) stable  i

 0<\exists\lambda<  1,  \exists i_{0}\in \mathbb{N},  \forall i\geq i_{0},  \forall x\in\Gamma,  \Vert\triangle f_{i+1}(x)\Vert  \leq\lambda   \max  \Vert\triangle f_{i}(x')\Vert.
 x'\in x(S\cup\{e\})

It should be mentioned that the above definition of harmonic stability is slightly

modified from Gromov’s original one and it is more suitable for our purpose.

Remark 3. Suppose  f_{i_{0}} is harmonic, that is,  \triangle f_{i_{0}}  =f_{i_{0}}  -f_{i_{0}+1}  =0 for some  i_{0}.

Then  f_{i}=f_{i_{0}} and thus  \triangle f_{i}=0 for all  i\geq i_{0} . Therefore,  f is stable.

Proposition 3.6. Suppose that  \rho satisfies (2.1) for some  C>0 and  \sigma\geq 0.

(i) If a  \rho ‐equivariant map  f :  \Gamma  arrow  \mathcal{H} is stable, then  \{f_{i}\}_{i\in \mathbb{N}} converges pointwise to
map  f_{\infty} :  \Gammaarrow \mathcal{H} , and  f_{\infty} is harmonic.

(ii) If a  \rho ‐equivariant map  f :  \Gamma  arrow  \mathcal{H} is not stable, then there exist a Hilbert space
 \mathcal{H}' and a nonconstant harmonic map  f' :  \Gammaarrow \mathcal{H}' , equivariant with respect to an a ne

action  \rho' :  \Gamma c\sim \mathcal{H}' satisfying (2.1) for the same  C,  \sigma as above.

This proposition implies Theorem 3.2. The proofs of the two propositions above

will be given in [11].

§4. Proof of Theorem 2.6

In this section, we prove Theorem 2.6. Let  \Gamma be a finitely generated group equipped

with a finite, symmetric generating set  S . Let  \rho :  \Gamma c\sim \mathcal{H} be an affine action, where  \mathcal{H}
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is a Hilbert space, and suppose that  \rho satisfies

(4.1)  \forall\gamma\in\Gamma, \Vert A(\gamma)\Vert \leq Cl(\gamma)^{\sigma}

for some  C  >  0 and  \sigma  \geq  0 . (Note that this condition is weaker than (2.1).) For a
 \rho‐equivariant map  f :  \Gammaarrow \mathcal{H} and   x\in\Gamma , define the local  n ‐step energy of  f at  x by

 E^{(n)}(f)(x)^{d}=^{e}  \frac{1}{2}\sum_{x\in\Gamma}\Vert f(x)-f(x')\Vert^{2}
\mu^{n}(xarrow x') ,

where  \mu^{n} is the n‐th convolution of  \mu.

Lemma 4.1. Suppose that  \sigma<  1/2 . Let  f :  \Gammaarrow \mathcal{H} be a harmonic  \rho ‐equivariant

map. Then we have

 E^{(n)}(f)(x)\sim^{c_{\sigma,x}}>,n^{1-2\sigma}E(f)(x)

for all  x\in\Gamma.

The proof of this lemma will be given in [11].
So far, the group  \Gamma has been any finitely generated group. The following lemma,

essentially due to Gromov and Silberman [7, 21], concerns a random  \Gamma.

Lemma 4.2. Let  \Gamma be a random roup in the raph model associated with

sequence of expanders with diverging irth and diameter growing at most linearly  i

girth, and let  \rho :  \Gamma c\sim \mathcal{H} be an affine action as above. Then for any  \rho ‐equivariant map

 f :  \Gammaarrow \mathcal{H} and any   x\in\Gamma , we have

(4.2)  E^{(n)}(f)(x)\sim^{c_{\sigma,x,\lambda}}<,n^{8\sigma}E(f)(x) .

Here,  n is a positive integer depending on  f and  x , and we may assume that  n is
arbitrarily large, and  \lambda is the positive constant as in the definition of a sequence of

expanders.

Proof. The proof of Proposition 2.14 in [21], which treats the case that the action
is isometric, mostly works for the non‐isometric case. For the readers’ convenience we

outline Silberman’s argument, and explain how the term  n^{8\sigma} comes in.

The lemma is a consequence of the following statement. With probability tending

to one as  jarrow 1 , the group  \Gamma corresponding to  \alpha\in \mathcal{A}(m, G_{j}) has the following property:

for any affine action  \rho :  \Gamma c\sim \mathcal{H} satisfyinp (4.1), any  n<   \frac{girth(G_{j})}{2} , any  \rho‐equivariant map
 f :  \Gammaarrow \mathcal{H} and any   x\in\Gamma , there exists  n<l\leq n such that

(4.3)  E^{(l)}(f)(x)<\sim^{C,\sigma,x,\lambda} diam  (G\cdot)^{4\sigma}E(f)(x) .
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Indeed, choosing  n  \simeq   \frac{girth(G_{j})}{2} , we have diam  (G_{j})  \sim<  n  \leq  l^{2} by the assumption on

diam(Gj), and therefore

 E^{(l)}(f)(x)\sim^{C,\sigma,x,\lambda}<l^{8\sigma}E(f)(x) .

Note that  l>  \sqrt{girth(G)} ; thus  l diverges as  jarrow 1.

For the time being, fix a member  G_{j} of the expander sequence defining the graph

model, and denote it by  G=(V, E) . Let  \mu_{G} and  v_{G} denote the standard random walk

on  G and the standard probability measure on  V given by

 \mu_{G}(u, v)=  \{\begin{array}{l}
\frac{1}{de(u)} if (u, v) \in
 0 otherwise,
\end{array} , and  v_{G}(u)=   \frac{\deg(u)}{2\# E},
respectively. For a map  \varphi :  Varrow \mathcal{H} and  n\in \mathbb{N} , the  n ‐step energy of  \varphi is defined by

 E_{\mu_{G}^{n}}( \varphi)= \frac{1}{2}\sum_{u\in}v_{G}(u)\sum_{v\in}
\Vert\varphi(u)-\varphi(v)\Vert^{2}\mu_{G}^{n}(uarrow v) .

Recall [21, Lemma 2.11] that we have

(4.4)  E_{\mu_{G}^{n}}( \varphi) \leq \frac{2}{\lambda_{1}(G,\mathbb{R})}E_{\mu_{G}}
(\varphi)
for all maps  \varphi :  Varrow \mathcal{H} and all  n\in \mathbb{N}.

Let  \alpha : Ê  arrow S be an  S‐labelling of  G , and  \Gamma the corresponding group. Let  \rho :  \Gamma c\sim

 \mathcal{H} be an affine action, and  \overline{\rho} :  F_{m} cr  \mathcal{H} its lift. The strategy in proving (4.3) is to
transplant (4.4) onto  \Gamma . In fact, we may work on  F_{m} instead of  \Gamma , and so we shall
transplant (4.4) onto  F_{m} . In order to do this, we ‘push‐forward’, using  \alpha , the random
walks  \mu_{G} and  \mu_{G}^{n} on  G to those on  F_{m} as follows.

If   u\in  V and  x  \in  F_{m} are fixed,  \alpha induces a corresponding graph morphism  \beta_{uarrow x}

from  G to  X=Cay(F_{m}, S) , the Cayley graph of  F_{m} with respect to  S , as follows: For
 v\in V , choose a path  arrow p=(e_{1},  \ldots,  arrow_{e_{l})} from  u to  v in  G , and set

 \beta_{uarrow x} (  v )  def=x\alpha(p)=x\alpha(e_{1}) . . . .  \alpha(e_{l}) .

To be precise,  \beta_{uarrow x} is well‐defined only on the set of vertices whose graph distance from
 u is less than  g/2 , where  g  = girth (G) . We now define, for  n  <  g/2 , a random walk

 \mu_{G,\alpha}^{n} on  X by

  \mu_{G,\alpha}^{n}(xarrow\cdot)^{d}=^{e} \sum_{u\in}v_{G}(u)(\beta_{uarrow x})
_{*}\mu_{G}^{n}(uarrow\cdot) .

Note that the average over  V is taken in order to produce a random walk independent
of the individual vertices of  G.
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We can now transplant (4.4) onto  F_{m} , and it is here that something different
occurs when the action  \rho is non‐isometric. Suppose  n<g/2 and let  f :  F_{m}  arrow \mathcal{H} be a

 \overline{\rho}‐equivariant map. 1 When  \rho is isometric,

(4.5)  E nG,\alpha(f)(x)=E nG(f\circ\beta_{u_{0}arrow x})(x)

holds for a fixed  u_{0}  \in V .   \sumIndeed,

 E_{\mu_{G,\alpha}^{n}}(f)(x)= \frac{1}{2}\sum_{u\in}v_{G}(u) \sum_{x'\in F_{m}}
\Vert f(x)-f(x')\Vert^{2}[(\beta_{uarrow x})_{*}\mu_{G}^{n}(uarrow\cdot)](x')
 = \frac{1}{2}\sum_{u\in}v_{G}(u) \sum_{v\in}\Vert f\circ\beta_{uarrow x}(u)-
f\circ\beta_{uarrow x}(v)\Vert^{2}\mu_{G}^{n}(uarrow v) .

If  \rho is isometric, then we can replace  \beta_{uarrow x} by  \beta_{u_{0}arrow x} in the last expression and get

the right‐hand side of (4.5). Now consider the general case that  \rho is not necessarily
isometric. Let  arrow p an!  arrow_{r} be a path from  u_{0} to  v and a shortest path from  u to  u_{0},

respectively, and let denote the path from  u to  v traveling along and in this
order. Then

 f\circ\beta_{uarrow x}(v)=f(x\alpha ( ))

 =\overline{\rho}(x\alpha(r)x^{-1})f(x\alpha(p))

 =\overline{\rho}(x\alpha(r)x^{-1})f\circ\beta_{u_{0}arrow x}(v) ,

and therefore

 \Vert f\circ\beta_{uarrow x}(u)-f\circ\beta_{uarrow x}(v)\Vert  \leq  \Vert\overline{A}(x\alpha(r)x^{-1})\Vert\Vert f\circ\beta_{u_{0}arrow x}(u)-
f\circ\beta_{u_{0}arrow x}(v)\Vert,

where  \overline{A} is the linear part of  \overline{\rho}. Since

 \Vert\overline{A}(x\alpha(r)x^{-1})\Vert\leq\Vert\overline{A}(x)
\Vert\Vert\overline{A}(\alpha(r))\Vert\Vert\overline{A}(x^{-1})\Vert
 \leq C^{3}l(x)^{\sigma}l(\alpha(r))^{\sigma}l(x^{-1})^{\sigma}

 \leq C^{3}D^{\sigma}l(x)^{2\sigma},

where  D=diam(G) , we obtain

 E_{\mu_{G,\alpha}^{n}}(f)(x) \leq C^{6}D^{2\sigma}l(x)^{4\sigma}E_{\mu_{G}^{n}}
(f\circ\beta_{u_{0}arrow x})(x) ,

and likewise,

 E_{\mu_{G}}(f\circ\beta_{u_{0}arrow x})(x) \leq C^{6}D^{2\sigma}l(x)^{4\sigma}
E_{\mu_{G,\alpha}}(f)(x) .

1Equivalently,  f :  F_{m}  arrow \mathcal{H} is the lift of a  \rho‐equivariant map  \Gammaarrow \mathcal{H} . In particular, the map  fo\beta_{uarrow x}
is well‐defined on the whole vertex set  V.
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Together with (4.4), these imply

(4.6)  E_{\mu_{G,\alpha}^{n}}(f)(x)  \leq \frac{2C^{12}D^{4\sigma}l(x)^{8\sigma}}
{\lambda_{1}(G,\mathbb{R})}E_{\mu_{G,\alpha}}(f)(x) .

In order to conclude (4.3) (provisionally on  F_{m} instead of  \Gamma ), we must show that
with high probability the random walks  \mu_{G,\alpha} and  \mu_{G,\alpha}^{n} in (4.6) can be replaced by  \mu_{X}

and  \mu_{X}^{l},  n<  l  \leq n , respectively, where  \mu_{X} is the standard random walk of  X . This

will be done by verifying that with high probability the random variables  \alpha\mapsto\mu_{G,\alpha} and

 \alpha\mapsto\mu_{G,\alpha}^{n} concentrate on their expectations and that these expectations are computed
in terms of  \mu_{X} and its convolutions.

We begin with the second issue. For  n<g/2 , the expectation  \overline{\mu}_{G,X}^{n} of the random

variable  \alpha  \mapsto  \mu_{G,\alpha}^{n} can be computed and expressed as a convex combination of  \mu_{X}^{l},
 0\leq l\leq n :

(4.7)   \overline{\mu}_{G,X}^{n} =\sum_{l=0}^{n}w_{l}^{(n)}\mu_{X}^{l},
where the weights  w_{l}^{(n)} satisfy

(4.8)   \sum_{n<l\leq n}w_{l}^{(n)} \geq C'
for a certain absolute constant  C'>0.

For the first issue, let  j get large and observe that the random variables  \mu_{G_{j}},\cdot and

 \mu_{G_{j}}^{n} where  n<g_{j}/2 , concentrate on their expectations  \overline{\mu}_{G_{j},X} and  \overline{\mu}_{G_{j},X}^{n} , respectively.

Indeed, one can verify that the map  \alpha\mapsto\mu_{G_{j},\alpha}^{n} is Lipschitz with respect to the Ham‐

ming distance on  \mathcal{A}(m, G\cdot) with the Lipschitz constant depending only on the fixed

parameters  d,  m . Using this fact, one deduces that with probability tending to one as

 arrow 1,

 \mu_{G_{j},\alpha}(xarrow x')  \leq 2\overline{\mu}_{G_{j},X}(xarrow x') and  \mu_{G_{j},\alpha}^{n}(xarrow x')  \geq   \frac{1}{2}\overline{\mu}_{G_{j},X}^{n}(xarrow x')
hold for all  x,  x'\in X.

Now for any  \overline{\rho}‐equivariant map  f :  F_{m}arrow \mathcal{H} , we obtain

 E_{\mu_{G_{j},\alpha}}(f)(x) \leq 2E_{\overline{\mu}_{G_{j},X}}(f)(x)=2E_{\mu 
x}(f)(x)
and

 E_{\mu_{G_{j},\alpha}^{n}}(f)(x) \geq\frac{1}{2}E_{\overline{\mu}_{G_{j},X}^{n}
}(f)(x) \geq \frac{1}{2} \sum_{n<l\leq n}w_{l}^{(n)}E_{\mu_{X}^{l}}(f)(x)
  \geq\frac{C'}{2} \min_{n<l\leq n}E_{\mu_{X}^{l}}(f)(x) .
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Together with (4.6), these imply that there exists  n<l\leq n (which depends on  f and
x) such that

 E_{\mu_{X}^{l}}(f)(x)  \leq \frac{8C^{12}D_{j}^{4\sigma}l(x)^{8\sigma}}
{C'\lambda}E_{\mu x}(f)(x) .

Now let  f :  \Gammaarrow \mathcal{H} be a  \rho‐equivariant map and set  \overline{f}=f\circ\pi . Let   x\in\Gamma and choose

 X\in\pi^{-1}(x)  \subset F_{m} so that  l(X)  =l(x) . Since the ball of radius less than  g_{j}/2 with center

X in  X is isometrically isoeoephic to that of the same radius with center  x in  Cay(\Gamma, S) ,

the above inequality (for  \overline{f}, X) implies

 E^{(l)}(f)(x)  \leq \frac{8C^{12}D_{j}^{4\sigma}l(x)^{8\sigma}}{C'\lambda}E(f)
(x) ,

that is, (4.3).  \square 

Theorem 2.6 now follows by combining Theorem 3.2, Lemma 4.1 and Lemma 4.2.

Appendix

Let  \Gamma be a finitely generated group equipped with a finite, symmetric generating set
 S , and let  \rho :  \Gamma c\sim \mathcal{H} be an affine action, where  \mathcal{H} is a Hilbert space. In §3, we referred

to the following fact: if  \rho(\Gamma) has no fixed point, then energy minimization coupled with

scaling ultralimit argument produces a nonconstant map from  \Gamma to  a (possibly new)
Hilbert space  \mathcal{H}' which is equivariant with respect to  a (possibly new) affine action
 \rho' :  \Gamma  cr\mathcal{H}' and minimizes the local energy at a point. While this fact would not be

useful for our purpose of proving Theorem 3.2 as we observed that we would not be

able to conclude the resulting map is harmonic, it might be so in other circumstances.

Therefore, we shall verify the above fact by proving the following

Proposition 4.3. Let  \Gamma be a nitely generated roup equipped with a nite, sym‐

metric generating set  S , and let  \rho :  \Gamma cr  \mathcal{H} be an affine action, where  \mathcal{H} is a Hilbert

space. Suppose that  \rho(\Gamma) has no fixed point. Fix  x  \in  \Gamma . Then there exist  a (possibly
new) affine action  \rho' :  \Gamma c\sim \mathcal{H}' , where  \mathcal{H}' is  a (possibly new) Hilbert space, and a non‐
constant  \rho' ‐equivariant map  f :  \Gammaarrow \mathcal{H}' minimizing the local energy at  x . If  \rho satisfies

(4.1) for some  C>0 and  \sigma\geq 0 , then  \rho' also satis es (4.1) for the same  C,  \sigma.

Before proceeding to the proof, we review the definitions of ultrafilter and the

ultralimit of a sequence of metric spaces.

A nonempty subset  \omega  \subset  2^{\mathbb{N}} is called an ultrafilter on  \mathbb{N} if it satisfies the following
conditions:

(i)  \emptyset\not\in\omega.

(ii)  A\in\omega,  A\subset B  \Rightarrow  B\in\omega.
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(iii)  A,   B\in\omega  \Rightarrow  A\cap B\in\omega.

(iv) For any subset  A\subset \mathbb{N},   A\in\omega or  \mathbb{N}\backslash A\in\omega.

An ultrafilter  \omega on  \mathbb{N} is called non‐principal if it satisfies also

(v) For any finite subset  F\subset \mathbb{N},   F\not\in\omega (hence,  \mathbb{N}\backslash F\in\omega ).

Let  \omega be a non‐principal ultrafilter on N. Let  (a_{j})_{j=1}^{\infty}  \subset  \mathbb{R} be a sequence of real
numbers. We call  \alpha\in \mathbb{R} an  \omega ‐limit of  (a_{j}) and write   \omega-\lim_{j}a_{j}  =\alpha if  \{j  \in \mathbb{N}|  |a_{j}-\alpha|  <

 \epsilon\}  \in  \omega holds for any  \epsilon  >  0 . Let  (Y_{j}, d_{j}, 0_{j}) be a sequence of metric spaces with base

point. On the set of sequences (yj), where  y_{j}  \in Y_{j} and  d_{j}(0_{j}, y_{j}) is bounded independent
of  j , consider the equivalence relation  [(y_{j}) \sim(z_{j}) \Leftrightarrow \omega-\lim_{j}d_{j}(y_{j}, z_{j})=0] , and denote

the equivalence class of  (y_{j}) by  y_{\infty}  = \omega-\lim_{j}y_{j} . Let  Y_{\infty} denote the set of equivalence

classes, and endow it with the metric  d_{\infty}(y_{\infty}, z_{\infty})  =   \omega-\lim_{j}d_{j}(y_{j}, z_{j}) . One writes

 (Y_{\infty}, d_{\infty}, 0_{\infty})= \omega-\lim_{j}(Y_{j}, d_{j}, 0_{j}) , called the  \omega ‐limit of  (Y_{j}, d_{j}, 0_{j}) . It is known that the

metric space  (Y_{\infty}, d_{\infty}) is necessarily complete.

Proof of Proposition 4.3 We shall follow [22] and [14] which treat the case that the
action is isometric.

Fix a non‐principal ultrafilter  \omega on N. We divide the proof into two cases, according

to whether  E_{0}  := \inf E(f)(x) is strictly positive or not, where the infimum is taken over

all  \rho‐equivariant maps  f :  \Gammaarrow \mathcal{H}.

Case 1. The case that  E_{0}  >0.

This is a simpler case, and we only outline the argument. Let  \{f_{j}\}_{j=1}^{\infty} be a sequence

of  \rho‐equivariant maps  \Gamma  arrow  \mathcal{H} such that  E(f_{j})(x)  \searrow  E_{0} . Set  v_{j}  =  f_{j}(x) and define

 ( \mathcal{H}_{\infty}, \Vert \Vert_{\infty}, v_{\infty})=\omega-\lim_{j}
(\mathcal{H}, \Vert \Vert, v_{j}) . Then an affine action  \rho_{\infty} :  \Gamma c\sim \mathcal{H}_{\infty} is induced

and satisfies (4.1). Define a map  f_{\infty} :  \Gamma  arrow  \mathcal{H}_{\infty} by  f_{\infty}(y)  =   \omega-\lim_{j}f_{j}(y) for  y  \in  \Gamma.

Then  f_{\infty} is  \rho_{\infty} ‐equivariant, and

 E(f_{\infty})(x)= \omega-\lim_{j}E(f_{j})(x)=E_{0} ;

in particular,  f_{\infty} is nonconstant. On the other hand, one can verify that  E(g)(x)  \geq E_{0}

for all  \rho_{\infty} ‐equivariant maps :  \Gammaarrow \mathcal{H}_{\infty} . Thus,  f_{\infty} minimizes the local energy at  x.

Case 2. The case that  E_{0}=0.

Define  \delta :  \mathcal{H}arrow \mathbb{R}_{\geq 0} by  \delta(v)  = \max_{s\in S}\Vert\rho(s)(v)-v\Vert . While  \delta>  0 since  \rho(\Gamma) has

no fixed‐point, we have   \inf_{v\in \mathcal{H}}\delta(v)  =0 ; indeed,

 E(f)(x)= \frac{1}{2\#}\sum_{s\in S}\Vert f(xs)-f(x)\Vert^{2}
 = \frac{1}{2\#}\sum_{s\in S}\Vert\rho(x)\{\rho(sx^{-1})(f(x))-\rho(x^{-1})(f(x)
)\}\Vert^{2},
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which is clearly comparable to  \delta(\rho(x^{-1})(f(x)))^{2}.
In order to proceed, we need the following elementary fact: let  Y be a complete

metric space and  \varphi :  Yarrow \mathbb{R} a strictly positive continuous function. Then there exists

 y  \in  Y such that  d_{Y}(z, y)  \leq  \varphi(y)  \Rightarrow  \varphi(z)  \geq   \frac{1}{2}\varphi(y) . Let  j  \in  \mathbb{N} and apply this fact to

the function   j\delta:\mathcal{H}arrow R. Then we get  v_{j}  \in \mathcal{H} such that  \Vert w-v\cdot\Vert  \leq j\delta(v\cdot)  \Rightarrow  \delta(w)  \geq

  \frac{1}{2}\delta(v_{j}) . Now let  ( \mathcal{H}_{\infty}, \Vert\cdot\Vert_{\infty}, v_{\infty})=\omega-\lim_{j}  ( \mathcal{H}, \frac{1}{\delta(v_{j})}\Vert . \Vert, v_{j}) .

We shall define an affine action  \rho_{\infty} :  \Gamma  cr\mathcal{H}_{\infty} . Let  w_{\infty}  \in  \mathcal{H}_{\infty} and write  w_{\infty}  =

  \omega-\lim_{j}w_{j} . By definition, there exists  M  >  0 such that  \Vert w_{j}  -v_{j}\Vert  \leq  M\delta(v_{j}) for all
 \in \mathbb{N} . Then

 \Vert\rho(s)(w_{j})-v_{j}\Vert\leq\Vert\rho(s)(w_{j})-\rho(s)(v_{j})\Vert+\Vert
\rho(s)(v_{j})-(v_{j})\Vert

 \leq C\Vert w_{j}-v_{j}\Vert+\delta(v_{j})

 \leq(CM+1)\delta(v_{j}) ,

where  C  =  \Vert A(s)\Vert . It follows that   \omega-\lim_{j}\rho(s)(w_{j}) exists, and it is easy to verify

that this limit is independent of the choice of  w_{j} . Hence, by defining  \rho_{\infty}(s)(w_{\infty})  =

  \omega-\lim_{j}\rho(s)(w_{j}) , we obtain a well‐defined map  \rho_{\infty}(s) :  \mathcal{H}_{\infty}  arrow \mathcal{H}_{\infty} , which is clearly C‐

Lipschitz. It is also easy to see that the affineness, that is, the property of preserving

internally dividing points, of  \rho(s) is inherited by  \rho_{\infty}(s) . Let  \gamma  \in  \Gamma and write  \gamma  =

s1:::  s_{l} , where  s_{1} , :::,  s_{l}  \in  S . Let  w_{\infty}  =   \omega-\lim\cdot w.  \in  \mathcal{H}_{\infty} . Then the ultralimit

of  \rho(\gamma)(w_{j})  =  \rho(s_{1})\ldots\rho(s_{l})(w_{j}) exists and equals to  \rho_{\infty}(s_{1})\ldots\rho_{\infty}(s_{l})(w_{\infty}) . Thus,

defining  \rho_{\infty}(\gamma)(w_{\infty})  = \omega-\lim_{j}\rho(\gamma)(w_{j}) , we have  \rho_{\infty}(\gamma)=\rho_{\infty} (s1):::  \rho_{\infty}(s_{l}) and obtain
an affine action  \rho_{\infty} :  \Gamma c\sim \mathcal{H}_{\infty} . It is clear that if  \rho satisfies (4.1), then  \rho_{\infty} also satisfies
(4.1) with the same constants.

We now verify that  \delta_{\infty}  \geq   \frac{1}{2} , where  \delta_{\infty} is the function  \delta with respect to  \rho_{\infty} . To do so,

take any  w_{\infty}  = \omega-\lim_{j}w_{j}  \in \mathcal{H}_{\infty} , so that  \Vert w_{j}-v_{j}\Vert  \leq M\delta(v_{j}) for some  M>0 , and set
 A_{s}  := \{j\in \mathbb{N}| \Vert\rho(s)(w_{j})-w_{j}\Vert \geq \frac{1}{2}
\delta(v_{j})\} for  s\in S . For  j>M,  \Vert w_{j}-v_{j}\Vert  \leq j\delta(v_{j}) ,

and therefore  \delta(w_{j})  \geq   \frac{1}{2}\delta(v_{j}) , that is,  j   \in\bigcup_{s\in S}A_{s} . Thus   \bigcup_{s\in S}A_{s}  \in\omega . But this means

 A_{s}  \in\omega for some  s  \in  S . Therefore,  \Vert\rho_{\infty}(s)(w_{\infty})-w_{\infty}\Vert_{\infty}  \geq   \frac{1}{2} , and  \delta_{\infty}  \geq   \frac{1}{2} . We thus
recover the situation of Case 1.  \square 
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