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The geodesic growth series for pure Artin groups of
dihedral type

By

Michihiko FUJII* and Takao SATOH**

Abstract

We consider the pure Artin roup of dihedral type, which is the kernel of the natural
projection from the Artin group of dihedral type  I_{2}(k) to the associated Coxeter group. We
present a rational function expression for the geodesic growth series of the pure Artin group
of dihedral type with respect to a natural generating set, and we explicitly determine the
denominator of this rational function expression. Moreover, we show that the growth rate of
the series is a Pisot‐Vijayaraghavan number.

§1. Introduction

For a finitely generated group  G with a given generating set  \Gamma , the corresponding

spherical growth series is defined as

 S_{(G,\Gamma)}(t) := \sum_{n=0}^{\infty}\alpha_{n}t^{n},
where  \alpha_{n} for  n\in N\cup\{0\} is the number of elements in  G whose lengths with respect to
 \Gamma are equal to  n . The spherical growth series  S_{(G,\Gamma)}(t) is a commonly employed measure
of the rate of growth of  G with respect to  \Gamma , and has been explored for a number  0
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interesting families of pairs  (G, \Gamma) . In particular,  S_{(G,\Gamma)}(t) is known to be rational (i.e.,
it can be expressed as the quotient of two polynomials with integer‐valued coefficients

in the ring of formal power series  Z[[t]] ) in a number of important cases (see, e.g., [3],
[4], [5], [6], [7], [9], [10], [11], [12], [16], [18], [20], [22], [26], [27], [28] and [29]).

In the present paper, we are interested in the following series, defined analogously
to  S_{(G,\Gamma)}(t) :

  \mathcal{G}_{(G,\Gamma)}(t) :=\sum_{n=0}^{\infty}\overline{\alpha}_{n}t^{n},
where  \overline{\alpha}_{n} for  n\in N\cup\{0\} is the number of geodesic words with respect to  \Gamma whose lengths

are equal to  n . Recall that a word in the free monoid  \Gamma^{*} generated by  \Gamma is geodesic  i

the corresponding path in the Cayley graph of  G with respect to  \Gamma is a minimal length

edge path joining its endpoints. The series  \mathcal{G}_{(G,\Gamma)}(t) is called the geodesic growth series

for the pair  (G, \Gamma) . The growth rate for  \mathcal{G}_{(G,\Gamma)}(t) is defined as

  \tau :=\lim_{narrow}\sup n \overline{\alpha}_{n}.
We also call  \tau the eodesic rowth rate for the pair  (G, \Gamma) . By the Cauchy‐Hadamard

theorem, the radius of convergence  R_{\mathcal{G}} of the series  \mathcal{G}_{(G,\Gamma)}(t) is the reciprocal of  \tau_{\mathcal{G}}.

Although the geodesic growth series  \mathcal{G}_{(G,\Gamma)}(t) is not as well understood as the

spherical growth series  S_{(G,\Gamma)}(t) , there are nonetheless many known pairs  (G, \Gamma) for

which the geodesic growth series is rational. The following are some examples: (1) any
word‐hyperbolic group with respect to an arbitrary generating set (see [5] and [10]); (2)
any geometrically finite hyperbolic group with respect to a particular generating set (see
[23]); (3) any irreducible affine Coxeter group with respect to the standard generating
set (see [24]); (4) any right‐angled Artin group with respect to the standard generating
set (see [21] and [1]); (5) any Artin group of dihedral type,  G_{I_{2}(k)} , with respect to the
standard generating set (the so‐called ‘set of Artin generators’) (see [26] and [22]); (6)
any Artin group of large type with respect to the standard generating set (see [17]);
(7) any Garside group with respect to a particular generating set (the so‐called ‘set  0

Garside generators’) (see [8]). For each of the above examples, it has been shown that
the set of all geodesic words of the group  G with respect to the generating set  \Gamma is

a regular language over  \Gamma , which implies the rationality of the geodesic growth series

 \mathcal{G}_{(G,\Gamma)}(t) . The pair  (G, \Gamma) is said to be strongly geodesic regular or to form a Canno

pair if the set of all geodesic words of  G with respect to  \Gamma forms a regular language over
 \Gamma . In general, the regularity of a language consisting of geodesic words depends on the

generating set  \Gamma (see the example due to Cannon discussed in §4 of [23]).
In this paper, for each integer  k  \geq  3 , we consider the pure Artin group  P_{I_{2}(k)},

which is the kernel of the projection from the Artin group of dihedral type,  G_{I_{2}(k)},
to the associated Coxeter group,  \overline{G}_{I_{2}(k)} . The group  P_{I_{2}(k)} is geometrically realized as
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the fundamental group of the complement of a torus link in the 3‐dimensional sphere,

which has a natural generating set  A (cf. [25]). In particular, in the case  k=3,  P_{I_{2}(3)}
is the pure braid group with three strands, and  A is the standard generating set (cf.
[2]). In [13], for any element  g of  P_{I_{2}(k)} , a particular geodesic representative of  g is
determined. Then, through analysis of the regularity of the language consisting of such

geodesic representatives, a rational function expression for the spherical growth series

 S_{(P_{I_{2}(k)},A)}(t) of  P_{I_{2}(k)} is derived with respect to the generating set  A . Moreover, in [13],
all the geodesic representatives of any element of  P_{I_{2}(k)} are determined. From this, it is

seen that all geodesic words of a particular type (Type 3 defined in [13]) form a regular
language. In the present paper, by using arguments similar to those given in [13], we
derive a rational function expression for the geodesic growth series  \mathcal{G}_{(P_{I_{2}(k)},A)}(t) of  P_{I_{2}(k)}
with respect to the generating set  A (see Theorem 3.2). Moreover, by using an algebraic
argument, we explicitly determine the denominator of this rational function expression

(see Theorem 3.3). From this theorem, we can detect a number‐theoretic property
concerning the geodesic growth rate  \tau_{\mathcal{G}}(k) for the pair  (P_{I_{2}(k)}, A) : The geodesic growth

rate  \tau (k) is a Pisot‐Vijayaraghavan number, i.e., a real algebraic integer  \tau>  1 whose
algebraic conjugates other than  \tau itself lie in the unit disk (see Corollary 3.5).

§2. Geodesic words of pure Artin groups of dihedral type

In this section, we present definitions and basic facts concerning pure Artin groups

of dihedral type (see [13] and [15] for details). We inherit all of the notation used in
[13].

Let  k be an integer greater than 2,  G_{I_{2}(k)} be the Artin group of dihedral type  I_{2}(k)
and  \overline{G}_{I_{2}(k)} be the Coxeter group of dihedral type  I_{2}(k) . Then there is a natural surjective

homomorphism

 p:G_{I_{2}(k)} arrow\overline{G}_{I_{2}(k)}.
We call the kernel of  p the pure Artin group of dihedral type and write it  P_{I_{2}(k)} . The

group  P_{I_{2}(k)} has the following presentation:

 P_{I_{2}(k)}  =  \langle a_{1} , : : : ,  a_{k}  |  a_{1} . . .  a_{k}=a_{2} . . .  a_{k}a_{1}  =a_{3} . . .  a_{k}a_{1}a_{2}=. . .  =a_{k}a_{1} . . .  a_{k-1}  \rangle.

In this paper, we consider the generating set

 A=\{a_{1}, . . . , a_{k}, a_{1}^{-1}, . . . , a_{k}^{-1}\},

as in [13], and investigate the so‐called ‘geodesic growth series’ of  P_{I_{2}(k)} with respect to
 A , whose definition is given in §3.
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Let  A^{*} and  \{a_{1}, :::, a_{k}\}^{*} denote the free monoids generated by  A and  \{a_{1}, :::, a_{k}\},
respectively. We refer to the finite set  A as an alphabet, its elements as letters, and the

elements of  A^{*} (resp., {a1, :::,  a_{k}\}^{*} ) as words (resp., positive words). Let  \epsilon denote the
null word. A subset  L of  A^{*} is called a language over  A . A language  L is regular if  L is

recognized by some deterministic, finite‐state automaton over  A (see [10] or [19] for the
definition of automata). The length of a word  w is the number of letters it contains,
which is denoted by  |w| . The length of  \epsilon is zero. Since  A generates the group  P_{I_{2}(k)},
there exists a natural surjective monoid homomorphism  \pi :  A^{*}  arrow P_{I_{2}(k)} . If  u and  v are

words, then  u=v means that  \pi(u)=\pi(v) and  u\equiv v means that  u and  v are identical

letter by letter. A word  w  \in  \pi^{-1}(g) is called a representative of  g . The length of a

group element is regarded as the quantity

  \Vert \Vert =\min\{|w| | w\in\pi^{-1} ( )\}.

A word  w  \in  A^{*} for which the relation  |w|  =  \Vert\pi(w)\Vert holds is termed geodesic. A word
  w_{1}\cdots  w_{m}  \in  A^{*} is called a reduced word if  w_{i}  \neq  w_{i+1}^{-1} for all  i  \in  \{1, :::, m- 1\}.  A

geodesic representative is a reduced word. Below, we consider some other alphabet,  T,

which is a subset of  A^{*} (denoted by FB  +\leq  \cup FB_{\overline{\leq}N} ), and we investigate the regularity
of a language over  T.

Let us first recall the notation and definitions concerning’fundamental blocks’ given

in [13]. We begin by introducing the word

 \nabla\equiv a_{1}\cdots a_{k}.

It satisfies the following relation:

(2.1)  \nabla\equiv a_{1}\cdots a_{k}=a_{2}\cdots a_{k}a_{1} =a_{3}\cdots a_{k}a_{1}a_
{2}=\cdots=a_{k}a_{1}\cdots a_{k-1}.

A fundamental block is a word with length smaller than  k that appears as a subword

in the terms of (2.1). There are  k(k- 1) fundamental blocks. All of them are listed
in [13]. Let  FB^{+}  (\subset A^{*}) (resp.,  FB^{-}(\subset  A^{*} )) denote the set consisting of all the fun‐
damental blocks (resp., all the inverses of fundamental blocks); for   I\in  \{0, :::, k-1\},
 FB_{I}^{\pm} (resp.,  FB_{\leq I}^{\pm} ) denotes the set consisting of all the elements of  FB^{\pm} with length
equal to  I (resp., smaller than or equal to  I); for  \mu  \equiv   a_{i}\cdots  a_{k}a_{1}\cdots a_{j}  \in  FB^{+} (resp.,
 \mu^{-1}  \equiv  a_{j}^{-1}\cdots a_{1}^{-1}a_{k}^{-1}\cdots a_{i}^{-1}  \in FB‐  ) , we define  \mathcal{L}(\mu)  :=  a_{i} and  \mathcal{R}(\mu)  :=  a_{j} (resp.,
 \mathcal{L}(\mu^{-1})  :=  a_{j} and  \mathcal{R}(\mu^{-1})  :=  a_{i} ). For  \mu  \equiv  a_{i}\cdots a_{k}a_{1}\cdots a_{j}  \in  FB^{+} , we call  a_{j+1} the
letter subsequent to  \mu . When  \mu\equiv a_{i}\cdots  a_{k} , we call  a_{1} the letter subsequent to  \mu . The

letter subsequent to  \mu is denoted by  \mathcal{N}(\mu) . For  \mu^{-1}  \equiv a_{j}^{-1}\cdots a_{1}^{-1}a_{k}^{-1}\cdots a_{i}^{-1}  \in FB^{-} , we

call  a_{i-1} the letter subsequent to  \mu^{-1} , which is denoted by  \mathcal{N}(\mu^{-1}) . When  a_{i}^{-1}  \equiv a_{1}^{-1},
we call  a_{k} the letter subsequent to  \mu^{-1}.
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In [13], we introduced the set

 \overline{\Gamma}:=\{\xi\in A^{*} | |\xi| = \Vert\pi(\xi)\Vert\},

i.e., the set consisting of all of the geodesic words, and for each  (P, N) satisfying  0  \leq

 P\leq k and  0\leq N\leq k , the sets

 \overline{\Gamma}_{P,N} :=\{\xi\in WT ||\xi| = \Vert\pi(\xi)\Vert, (Pos(\xi), 
Neg(\xi))=(P, N)\},
 G_{P,N} :=\{g\in P_{I_{2}(k)} | (Pos(g), Neg(g))=(P, N)\},

where  WT_{i}= {  w\in A^{*}  |  w is a word of Type  i } for each  i\in\{1 , 2, 3  \} (see §3 in [13] for
the definition of Type  i ), WT  =WT_{1}\cup WT_{2}\cup WT_{3} , and Pos (  \xi ) , Neg (  \xi ) ,  Pos(g) and
 Neg(g) are specific integers between  0 and  k (defined in §§2 and 3 of [13]).

By Propositins 3.3, 3.4 and 3.7 and Corollary 3.8 of [13], we have

(2.2)  \{\begin{array}{ll}
P+N\geq k+1   \Rightarrow \overline{\Gamma}_{P,N}=\emptyset, G_{P,N}=\emptyset-,
P+N\leq k   \Rightarrow \pi^{-1}(G_{P,N}) \cap \Gamma = \overline{\Gamma}_{P,N},
\end{array}

(2.3)  \{\begin{array}{ll}
\overline{\Gamma}= \bigcup_{P+N\leq k}\overline{\Gamma}_{P},   (disjoint union),
P_{I_{2}(k)} = \bigcup_{P+N\leq k}G_{P},   (disjoint union),
\end{array}
and

 P,N \neq k,00,k\bigcup_{P+N\leq k},  \overline{\Gamma}_{P,N}= {  \xi\in WT_{3}  | Pos  (\xi)+ Neg (  \xi )  \leq k}.

We remark that an element  g\in P_{I_{2}(k)} has more than one∪eodesic representative if and

only if  Pos(g)+Neg(g)=k.
Now, choose any  P,  N\in N\cup\{0\} satisfying the conditions  P+N\leq k and  (P, N)  \not\in

 \{(k, 0), (0, k)\} , and fix them. Then, any element   w\in   \bigcup_{p\leq P,n\leq}  \overline{\Gamma}_{p,n} can be expressed as

  w\equiv v_{1}\cdots  v_{m}  \in  (FB  +\leq UFB  \overline{\leq}N)^{*},

where  (FB_{\leq P}^{+}\cup FB_{\overline{\leq}N})^{*} is the free monoid generated by the finite set FB  +\leq  \cup FB_{\overline{\leq}N},
and for each  j\in\{1, . ::, m-1\} , we have

 v_{j}, v_{j+1} \in FB^{\pm}\Rightarrow \mathcal{N}(v_{j})\neq \mathcal{L}(v_{j+
1}) ,

 v_{j} \in FB^{\pm}, v_{j+1} \in FB^{\mp}\Rightarrow \mathcal{R}(v_{j})\neq 
\mathcal{L}(v_{j+1}) .
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Thus, it is seen that the set   \bigcup_{p\leq P,n\leq}  \overline{\Gamma}_{p,n} is a regular language over  FB_{\leq}^{+}  \cup FB_{\overline{\leq}N} . In

fact, it is recognized by the deterministic, finite‐state automaton  A_{\leq P,\leq N} over FB  +\leq  \cup

 FB_{\overline{\leq}N} defined as follows:

(i)Set of states:  \{\epsilon\}\cup FB_{\leq}^{+}  \cup FB_{\overline{\leq}}  \cup\{fail\} ;
(ii)Initial state:  \{\epsilon\} ;
(iii)Set of accept states:  \{\epsilon\}\cup FB_{\leq}^{+}  \cup FB_{\overline{\leq}N} ;
(iv)Alphabet:  FB_{\leq}^{+}  \cup FB_{\overline{\leq}N} ;
(v)Transitions:

(v‐1)  \forall_{v}\in FB_{\leq P}^{+}\cup FB_{\overline{\leq}N},  \epsilonarrow^{v}v ;
(v‐2)  \forall_{u},  v\in FB_{\leq P}^{+},

if  \mathcal{N}(u)\neq \mathcal{L}(v) , then  uarrow^{v}v , and if  \mathcal{N}(u)=\mathcal{L}(v) , then  uarrow^{v} fail;

(v‐3)  \forall_{u},  v\in FB_{\overline{\leq}N},
if  \mathcal{N}(u)\neq \mathcal{L}(v) , then  uarrow^{v}v , and if  \mathcal{N}(u)=\mathcal{L}(v) , then  uarrow^{v} fail;

(v‐4)  \forall_{u}\in FB_{\leq P}^{+},  \forall_{v}\in FB_{\overline{\leq}N},
if  \mathcal{R}(u)\neq \mathcal{L}(v) , then  uarrow^{v}v , and if  \mathcal{R}(u)=\mathcal{L}(v) , then  uarrow^{v} fail;

(v‐5)  \forall_{u}\in FB_{\overline{\leq}N},  \forall_{v}\in FB_{\leq P}^{+},
if  \mathcal{R}(u)\neq \mathcal{L}(v) , then  uarrow^{v}v , and if  \mathcal{R}(u)=\mathcal{L}(v) , then  uarrow^{v} fail.

§3. Geodesic growth series for  P_{I_{2}(k)}

In this section, by considering the structure of the automaton  A_{\leq P,\leq N} given in §2,

we determine a rational function expression for the geodesic growth series of the group

 P_{I_{2}(k)} with respect to the generating set  A.

The geodesic growth series of the group  P_{I_{2}(k)} with respect to the generating set  A

is defined by the following formal power series:

(3.1)   \mathcal{G}_{(P_{I_{2}(k)},A)}(t) :=\sum_{q=0}^{\infty}\overline{\alpha}_{q}t^
{q},
where for each  q\in N\cup\{0\} , we define

(3.2)  \overline{\alpha}_{q}:=♯ \{\xi\in A^{*} | |\xi| = \Vert\pi(\xi)\Vert =q\}.

Note that the radius of convergence of the growth series  \mathcal{G}_{(P_{I_{2}(k)},A)}(t) is greater than or

equal to that of the growth series of the free group of rank  k , which is equal to   \frac{1}{2k-1}
(cf. Chapter VI of [9]). Thus,  \mathcal{G}_{(P_{I_{2}(k)},A)}(t) is a holomorphic function near the origin,
 0\in C.
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For each pair  (P, N) , we define

 \mathcal{G}_{P,N}(t)  := \sum_{q=0}^{\infty} ♯  \{\xi\in\overline{\Gamma}_{P,N} | |\xi| =q\}t^{q}.
Then, from the partition (2.3), we have

(3.3)   \mathcal{G}_{(P_{I_{2}(k)},A)}(t)=\mathcal{G}_{k,0}(t)+\mathcal{G}_{0,k}(t)+ 
P,N\neq k,00,k\sum_{P+N\leq k}, \mathcal{G}_{P,N}(t) ,

and from Proposition 3.7 of [13], we obtain

(3.4)  \mathcal{G}_{P,N}(t)=S_{P,N}(t) , if  P+N\leq k-1,

where  S_{P,N}(t) is the spherical growth series for the set  \Gamma_{P,N} (see §§4 and 5 of [13] for
their definitions).

In order to simplify the presentation of the growth series, for each  q\in N\cup\{0\} , we

introduce the following:

 T_{q}:=t+t^{2}+\cdots+t^{q} , for   q\geq  1,

 T_{0}:=0.

First, let us consider the case in which  P+N\leq k and  (P, N)  \not\in\{(k, 0), (0, k)\} . In

this case, we have the following proposition.

Proposition 3.1. For each  P,  N satisfying  P+N  \leq  k and  (P, N)  \not\in  \{(k, 0) ,
 (0, k)\} , we have

  \sum_{0\leq p\leq P,0\underline{<}n\leq} \mathcal{G}_{p,n}(t)= \frac{1+T_{P}+
T_{N}}{1-(k-1)(T_{P}+T_{N})}.
Proof. From (3.4), if  P+N  \leq  k-1 , the assertion is identical to that of Proposition
5.1 in [13]. Hence, we need only consider the case in which  P+N  =  k and  (P, N)  \not\in
 \{(k, 0), (0, k)\} , that is,  (P, N)  \in  \{(1, k-1), (∪, k-2), :::, (k-1,1)\} . For  q\in N\cup\{0\},
we define

  \overline{B}_{q}(P;N) :=\{\xi\in\bigcup_{0\leq p\leq P,0\leq n\leq N}\overline
{\Gamma}_{p,n} ||\xi| =q\}
and

 \overline{\beta}_{q}(P;N) :=♯ \overline{B}_{q}(P;N) .

Then, we have

  \sum_{0\leq p\leq P,0\underline{<}n\leq} \mathcal{G}_{p,n}(t)=\sum_{q=0}
^{\infty}\overline{\beta}_{q}(P;N)t^{q}.
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Further, note that for  q=0 , we have

 \overline{\beta}_{0}(P;N)=1.

Then, by considering the structure of the automaton  A_{\leq P,\leq N} , we obtain the same

recursive formula for  \overline{\beta}_{q}(P, N) as eor  \beta_{q}(P, N) given in Lemma 5.2 of [13]. Moreover,
we obtain the same equalities for  \overline{\beta}_{q}(P, N) as for  \beta_{q}(P, N) appearing in Lemma 5.3  0

[13]. Therefore, we obtain the desired result.  \square 

Next, consider the case  i∪ which  (P, N)  \in\{(k, 0), (0, k)\} . Because all positive words

are geodesic with respect to  A (see Lemma 3.1 of [13]), the set of all positive words, i.e.,

 \{a_{1}, . . . , a_{k}\}^{*} , is equal to   \bigcup_{0\leq p\underline{<}k}\overline{\Gamma}_{p,0} . Hence, with ♯  \{a_{1}, :::, a_{k}\}=k , we obtain

(3.5)   \sum_{p=0}^{k}\mathcal{G}_{p,0}(t)= \frac{1}{1-kt}.
Thus, from (2.3), (3.5) and Proposition 3.1, we have

  \mathcal{G}_{k,0}(t)=\sum_{p=0}^{k}\mathcal{G}_{p,0}(t)-\sum_{p=0}^{k-1}
\mathcal{G}_{p,0}(t)
(3.6)  =\underline{1}-\underline{1+T_{k-1}}

 1-kt 1-(k-1)T_{k-1}
 =\underline{kt^{k}}

 (1-kt)\{1-(k-1)T_{k-1}\}

Then, by considering the inverses of positive words, we obtain

(3.7)  \mathcal{G}_{0,k}(t)=\mathcal{G}_{k,0}(t) .

We are now ready to state the first main result of this paper. From (3.3), (3.6),
(3.7) and Proposition 3.1, and employing the trick in Lemma 5.3 of [22], we obtain the
following:

Theorem 3.2. The geodesic growth series for the pure Artin group  P_{I_{2}(k)} of di‐

hedral type with respect to the generating set A possesses the rational function expressio

  \mathcal{G}_{(P_{I_{2}(k)},A)}(t)=\frac{2kt^{k}}{(1-kt)\{1-(k-1)T_{k-1}\}}
(3.8)

 + \sum_{p=1}^{k-1}\frac{1+T_{p}+T_{k-p}}{1-(k-1)(T_{p}+T_{k-p})}-\sum_{p=1}^{k-
2}\frac{1+T_{p}+T_{k-1-p}}{1-(k-1)(T_{p}+T_{k-1-p})}.
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It is easy to verify that for each term on the right‐hand side, the numerator and
denominator have no common zero.

Next, we rewrite the right‐hand side of (3.8) using the common denominator

 G(t)  :=(1-kt) \prod_{1}\{1-(k-1)(T_{a}+T_{b})\}\prod_{aa_{b}+b=k+b=k-1}\{1-(k-1)
(T_{a}+T_{b})\},
and sum the terms. Then we obtain a single fraction expression for  \mathcal{G}_{(P_{I_{2}(k)},A)}(t) . Let

 H(t) be its numerator. Then we have  \mathcal{G}_{(P_{I_{2}(k)},A)}(t)  =   \frac{H(t)}{G(t)} . Now, we state the second

main result of this paper:

Theorem 3.3. The two polynomials  G(t) and  H(t) do not have a common zero.

This theorem is proved in the next section.

Example 3.4.

  \mathcal{G}_{(P_{I_{2}(3)},A)}(t)=\frac{(1+2t)(1-9t+28t^{2}-36t^{3}+16t^{4}+
12t^{5})}{(1-3t)(1-4t)(1-2t-2t^{2})(1-4t-2t^{2})},
 \mathcal{G}_{(P_{I_{2}(4)},A)}(t)  =   \frac{(1-17t+87t^{2}-60t^{3}-432t^{4}-153t^{5}+2007t^{6}+1512t^{7}-297t^{8}-
1026t^{9}-702t^{10}-216t^{11})}{(1-4t)(1-6t-3t^{2})(1-6t-6t^{2})(1-3t-3t^{2}-3t^
{3})(1-6t-3t^{2}-3t^{3})}.

From Theorem 3.3, the radius of convergence of the series  \mathcal{G}_{(P_{I_{2}(k)},A)}(t) is realized

as the absolute value of a zero of the polynomial  G(t) . Hence, only from Lemma 3.1(i)
and (ii) of [14], we obtain the following:

Corollary 3.5. The geodesic growth rate  \tau_{\mathcal{G}}(k) for the pair  (P_{I_{2}(k)}, A) is a Pisot‐

Vijayaraghavan number.

See Theorem 3.2 of [14]. Another demonstration of this corollary derived from
Lemma 3.1(i)  -(iv) of [14] is given there.

§4. Denominator of the geodesic growth series

In this section, we consider the denominators of the terms in the formula for

 \mathcal{G}_{(P_{I_{2}(k)},A)}(t) given in Theorem 3.2, and through this consideration we demonstrate
Theorem 3.3.
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Let  k\geq 3 be an integer. Define

 f_{i}(t)  :=1-(k-1)(T_{i-1}+T_{k-i}) for  i\in\{1, \cdots , k\},

and

 g_{0}(t) :=1-kt,
 g_{i}(t)  :=1-(k-1)(T_{i}+T_{k-i}) for  i\in\{1, \cdots , k-1\}.

Then, the formula in Theorem 3.2 can be written as

 (4.1)  \mathcal{G}_{(P_{I_{2}(k)},A)}(t)  =   \frac{2kt^{k}}{g_{0}(t)f_{1}(t)}  +   \sum   \frac{1+T_{p}+T_{k-p}}{g_{p}(t)}  -   \sum   \frac{1+T_{p}+T_{k-1-p}}{f_{p+1}(t)}.
 k-1 k-2

 p=1 p=1

Next, we prove the following lemma, from which Theorem 3.3 follows immediately.

Lemma 4.1.

1. No two mutually different polynomials  f_{i}(t) and  f\cdot(t) have a common zero.

2. No two mutually different polynomials  g_{i}(t) and  g\cdot(t) have a common zero.

3. No two polynomials  f_{i}(t) and  g_{j}(t) have a common zero.

Proof. First note that we have

 f_{\frac{k+1}{2}-j}(t)=f_{\frac{k+1}{2}+j}(t) for  j \in\{1, \cdots , \frac{k-1}{2}\} , if  k is odd,
(4.2)

 f_{\frac{k}{2}+1-j}(t)  =f_{\frac{k}{2}+j}(t) for  j   \in\{1, \cdots , \frac{k}{2}\} , if  k is even,

and

  \frac{k+1}{2}-j(t)=g_{\frac{k-1}{2}+j}(t) for   \in\{1, \cdots , \frac{k-1}{2}\} , if  k is odd,
(4.3)

  \frac{k}{2}-j(t)  =g_{\frac{k}{2}+j}(t) for   \in\{1, \cdots , \frac{k}{2}-1\} , if  k is even:

Also, we know that

 f_{i}(1)\neq 0, f_{i}(0)\neq 0,
(4.4)

 g_{i}(1)\neq 0, g_{i}(0)\neq 0,

for all  i\in\{1, :::, k-1\}.
1. From (4.2), it is sufficient to consider the polynomials  f_{1}(t) , :::,  f_{\frac{k+1}{2}}(t) (resp.,  f_{1}(t) ,
:::,  f_{\frac{k}{2}}(t)) if  k is odd (resp.,  k is even).

Suppose that  f_{i}(t) and  f\cdot(t)  (1\leq i<j) have a common zero  \rho . Then we have

 f_{i}(\rho)=f\cdot(\rho) .
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From this equality, we obtain

(4.5)  (\rho^{i}-\rho^{k-j+1})(\rho^{j-i-1}+\rho^{j-i-2}+ \cdot \cdot \cdot +\rho+1)=
0.

Also, from (4.4), we have  \rho\neq 0 . Hence, (4.5) implies that  \rho is an algebraic integer over
Q. Next, note that from  f_{i}(\rho)=0 , we also have

(4.6)   \rho+\cdots+\rho^{i-1}+\rho+\cdots+\rho^{k-i}= \frac{1}{k-1}.
The left‐hand side of (4.6) is an algebraic integer over Q. However,   \frac{1}{k-1} is not an
algebraic integer for  k\geq 3 . Thus, we obtain a contradiction. Hence,  f_{i}(t) and  f_{j}(t) do
not have a common zero.

2. From (4.3), it is sufficient to consider the polynomials  g_{0}(t) ,  g_{1}(t) , :::,  g_{\frac{k-1}{2}}(t) (resp.,
 g_{0}(t) ,  g_{1}(t) , :::,  g_{\frac{k}{2}}(t)) if  k is odd (resp.,  k is even).

Let   i\in  \{1, :::, k-1\} . Then,  g_{i}(t) and  g_{0}(t) do not have a common zero, because

 g_{i}( \frac{1}{k})\neq 0 . The result for  g_{i}(t) and  g_{j}(t)  (1 \leq i<j) is obtained by an argument similar

to that given in Part 1.

3. From (4.2) and (4.3), we can assume that  i  \leq   \frac{k+1}{2} and  j  \leq   \frac{k-1}{2} (resp.,  i  \leq   \frac{k}{2} and
 \leq   \frac{k}{2}) if  k is odd (resp.,  k is even).

The fact that  f_{i}( \frac{1}{k})\neq 0 implies that no  f_{i}(t) has a common zero with  g_{0}(t) . Next,

suppose that  f_{i}(t) and  g_{j}(t)  (j \geq 1) have a common zero  \rho . Then we have

(4.7)  f_{i}(\rho)=g\cdot(\rho) .

Also, from (4.4), we know that  \rho\neq 0 . Thus, from (4.7), we obtain

(4.8)  \rho^{i-1}+\rho^{k-i}=\rho^{j}+\rho^{k-j}.

We now show that  \rho is an algebraic integer over Q. This is done by considering the

following four cases.

Case 1:  i=j . Here, from (4.8), we have

 \rho^{i}-\rho^{i-1} =0.

Case 2:  i<j . Here, from (4.8), we have

 \rho^{k-i}-\rho^{k-j}-\rho^{j}+\rho^{i-1} =0.

If  k is odd, then  \leq   \frac{k-1}{2} . Hence, we have

 k-i>k- > >i-1.
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If  k is even, then   j\leq   \frac{k}{2} . Hence, we have

 k-i>k- \geq >i-1.

Case 3:  i> and  <   \frac{k}{2} . Here, from (4.8), we have

 \rho^{k-j}+\rho^{j}-\rho^{k-i}-\rho^{i-1} =0.

From  <   \frac{k}{2} , we have

 k- >

Because   i\leq   \frac{k+1}{2} (resp.,   i\leq   \frac{k}{2} ) if  k is odd (resp., even), we have

 k- >k-i\geq i-1.

Case 4:  i> and  =   \frac{k}{2} . Here, from (4.8), we have

 2\rho^{j}-\rho^{i-1}-\rho^{2j-i}=0.

If  =i-1 , we have

 \rho^{i-1}-\rho^{i-2}=0.

If  j  <i-1 , we have

 \rho^{i-1}-2\rho^{j}+\rho^{2j-i}=0

and

 i-1 >j, i-1 >2j-i.

Therefore, because  \rho is not equal to zero, in each case,  \rho is an algebraic integer over Q.

This implies a contradiction for the same reason as in Part 1. Hence,  f_{i}(t) and  g_{j}(t) do
not have a common zero.  \square 
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