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Central extensions of groups and adjoint groups of
quandles

By

Takefumi Nosaka *

Abstract

This paper develops an approach for describing centrally extended roups, as determining
the adjoint roups associated with quandles. Furthermore, we explicitly describe such roups
of some quandles. As a corollary, we determine some second quandle homology groups.

§1. Introduction

A quandle is a set with a binary operation  \triangleleft:  X^{2}arrow X such that

1. The identity  a\triangleleft a=a holds for any  a\in X.

2. The map  (\bullet \triangleleft a) :  Xarrow X defined by  x\mapsto x\triangleleft a is bijective for any  a\in X.

3. The identity  (a\triangleleft b)\triangleleft c=(a\triangleleft c)
\triangleleft(b\triangleleft c) holds for any  a,  b,  c\in X.

The axioms are partially motivated by knot theory and braidings. For example, any

group is a quandle by the operation  a\triangleleft b  :=b^{-1} ab; see §4 for other examples. Conversely,
for a quandle  X , we can define the adjoint group as the following group presentation:

As(X)  =  \langle  e_{x}  (x\in X)  e_{x\triangleleft y}^{-1}\cdot e_{y}^{-1}\cdot e_{x}\cdot e  (x, y\in X)  \rangle.

It is known that the correspondence  X\mapsto As(X) yields a functor from the category  0

quandles to that of groups with left‐adjointness.
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Let us briefly explain some significance to determine As(X). First, when the adjoint
functor  F :  C\vec{=}C' :  G is given, the difference between  id_{C} and  G\circ F is important in some

areas (see [Ger, N3] for the quantum representations, or see [AG, CJKLS, FRS, Kab,
Joy, N1] and references therein for knot‐invariants and pointed Hopf algebras), with
a relation to centrally extended groups. Furthermore, as a result of Eisermann [Eis2]
(see also Theorem 4.1), the second quandle homology  H_{2}^{Q}(X) can be computed from
concrete expressions of As(X). Moreover, the main theorem in [N2] shows that certain
universal knot‐invariants from quandles turn out to be characterized by the third group

homology  H_{3}^{gr} (As(X)). However, as we see the definition of As(X) or some explicit
computation [Cla2], it has been considered to be hard to deal with As(X) concretely.

In this paper, we develop a method for formulating practically As(X) in a purely
algebraic way. This method is roughly summarized to ‘universal central extensions  0

groups modulo type‐torsion’ (see §2‐3); the main theorem 2.1 emphasizes importance
of the concept of types. Furthermore, Section 4 demonstrates practical applications  0

the method. Actually, we succeed in determining As(X) and the associated homology
 H_{2}^{Q}(X) of some quandles  X (up to torsion). As a special case, Subsection 4.5 compares
the main theorem with Howlett’s theorem [How] concerning the Schur multipliers  0

Coxeter groups. Furthermore, in Section 5, we will see that the method is applicable to

coverings in quandle theory.

Notation and convention. For a group  G , we denote by  H_{n}^{gr}(G) the usual group

homology in trivial integral coefficients. Moreover, a homomorphism  f :  Aarrow B between

abelian groups is said to be  a  [1/N] ‐isomorphism and is denoted by  f :  A\cong[1/N]  B,  i

the localization of  f at  \ell is an isomorphism for any prime  \ell that does not divide  N.

This paper does not need any basic knowledge in quandle theory, but assumes basic

facts of group cohomology as in [Bro, Sections I, II and VII].

§2. Preliminaries and the main theorem

This section aims to state Theorem 2.1. We start by reviewing properties of quan‐

dles. A quandle  X is said to be of type  t_{X} , if  t_{X}  >  0 is the minimal  N such that
 x  =  x\triangleleft^{N}y for any  x,  y  \in  X , where we denote by  \bullet\triangleleft^{N}y the  N‐times on the right

operation with  y . Note that, if  X is of finite order, it is of type  t_{X} for some  t_{X}  \in \mathbb{Z}.

Next, let us study the adjoint group As(X) in some details. Define a right action
As (X) on  X by  x\cdot e_{y}  :=x\triangleleft y for  x,  y\in X . Notice the equality

(2.1)  e_{x\cdot g}=g^{-1}e_{x}g\in As(X) (x\in X, g\in As(X)) ,

by definitions. The orbits of this action of As(X) on  X are called connected components
of  X , denoted by  O(X) . For  i  \in  O(X) , we let  X_{i}  \subset  X be the orbit with respect to
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 i . If the action is transitive (i.e.,  O(X) is a singleton),  X is said to be connected.
Furthermore, with respect to  i\in O(X) , define a homomorphism

(2.2)  \epsilon_{i} : As(X)  arrow \mathbb{Z} by  \{\begin{array}{l}
\epsilon_{i}(e_{x})=1\in \mathbb{Z}, if x\in X_{i},
\epsilon_{i}(e_{x})=0\in \mathbb{Z}, if x\in X\backslash X_{i}.
\end{array}
Note that the direct sum  \oplus_{i\in O(X)}\epsilon_{i} yields the abelianization As  (X)_{ab}  \cong  \mathbb{Z}^{\oplus O(X)} by

(2.1), which means that the group As(X) is of infinite order. Furthermore, if  O(X) is
a singleton, we often omit writing the index  i.

In addition, we briefly review the inner automorphism group, Inn(X), of a quandle
X. Regard the action of As(X) as a group homomorphism  \psi_{X} from As(X) to the
symmetric group Bij  (X, X) . The group Inn(X) is defined as the image  {\rm Im}(\psi_{X})  \subset

Bij  (X, X) . Hence, we have a group extension

(2.3)  0arrow Ker(\psi_{X})  arrow As(X)  arrow^{\psi_{X}} Inn(X)  arrow 0 (exact).

By the equality (2.1), this kernel  Ker(\psi_{X}) is contained in the center. Therefore, it is
natural to focus on their second group homology; we show a theorem on  H_{2}^{gr} (As(X))
as a useful estimate:

Theorem 2.1. For any connected quandle  X of type  t_{X} (possibly,  X could be of
infinite order), the second group homology  H_{2}^{gr}(As(X)) is annihilated by  t_{X} . Further‐
more, the abelian kernel  Ker(\psi_{X}) in (2.3) is  [1/t_{X}] ‐isomorphic to  \mathbb{Z}\oplus H_{2}^{gr} (Inn(X)).

The proof will appear in §6. In conclusion, metaphorically speaking, As(X) turns
out to be the ‘universal central extension’ of Inn(X) up to  t_{X} ‐torsion; hence, this
theorem emphasizes importance of the concept of types; so as to investigate As(X),
we shall study Inn(X) and  H_{2}^{gr}(Inn(X)) .

§3. Methods on inner automorphism groups.

Following the preceding theorem to study the group As(X), we shall develop a
method for describing the inner automorphism group Inn(X):

Theorem 3.1. Let a group  G act on a quandle X. Let a map  \kappa :  Xarrow G satisfy

the followings:

1. The identity  x\triangleleft y=x\cdot\kappa(y)  \in X holds for any  x,  y\in X.

2. The image  \kappa(X)  \subset G generates the group  G , and the action  X\cap G is effective.

Then, there is an isomorphism Inn(X)  \cong  G , and the action  X  \cap  G agrees with the
natural action of Inn(X).
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Proof. Identify the action  X\cap G with a group homomorphism  f :  Garrow Bij(X, X) .

It follows from the first assumption that  f(\kappa(X))  \subset  Inn(X) and  f(\kappa(X)) generates

Inn(X); thus,  f gives rise to an epimorphism  F :  \langle\kappa(X)\rangle  arrow  Inn(X) , where  \langle\kappa(X)\rangle is
the subgroup of  G generated by  \kappa(X) . Then, the seccond assumption enssures that

 \langle\kappa(X)\rangle  =G , and the bijectivity of  F , i.e., Inn(X)  \cong G . Moreover, the agreement of the
two actions follows by construction.  \square 

This theorem is applicable to many quandles, in practice. Actually, as seen in

Section 4, we can determine Inn(X) of many quandles  X . However, we here explain
that this theorem is inspired by the Cartan embeddings in symmetric space theory as
follows:

Example 3.2. Let  X be a symmetric space in differential geometry. Consider

the group Inn(X)  \subset  Diff(X) generated by the symmetries  \bullet\triangleleft y with compact‐open
topology. As is well known, Inn(X) has a Lie group structure, and the map  Xarrow Inn(X)
that sends  y to  \bullet\triangleleft y is commonly called the Cartan embedding. As seen in textbooks

on symmetric spaces, Theorem 3.1 had been used to determine Inn(X) concretely.

Furthermore, we suggest another computation when Inn(X) is perfect.

Proposition 3.3. Let  X be a quandle, and  O(X) be the set of orbits of the

action  X  \cap  As(X) . Set the epimorphism  \epsilon_{i} : As(X)  arrow  \mathbb{Z} associated with  i  \in  O(X)
defined in (2.2). If the group Inn(X) is perfect,  i.e.,  H_{1}^{gr} (Inn(X))  =0 , then we have a
isomorphis

(3.1) As(  X )  \cong Ker(\oplus_{i\in O(X)}\epsilon_{i})  \cross \mathbb{Z}^{\oplus O(X)},

and this  Ker(\oplus_{i\in O(X)}\epsilon_{i}) is a central extension of Inn(X) and is perfect. In particular, if
 X is connected and the group homology  H_{2}^{gr} (Inn(X)) vanishes, then As(X)  \cong Inn(X)\cross
Z.

Proof. We will show the isomorphism (3.1). By the assumption  H_{1}^{gr} (Inn(X))  =0,

the composite  Ker(\psi_{X})  \mapsto  As(X)  \underline{P^{ro}i},\cdot  H_{1}^{gr}(As(X))  =  \mathbb{Z}^{\oplus O(X)} obtained from (2.3) is
surjective. Since  \mathbb{Z}^{\oplus O(X)} is free, we can choose a section  \mathfrak{s} :  \mathbb{Z}^{\oplus O(X)}  arrow  Ker(\psi_{X})  0

the composite. Hence, by the equality (2.1) and the inclusion  Ker(\psi_{X})  \subset  As(X) , the
semi‐direct product As(X)  \cong  Ker(\oplus_{i\in O(X)}\epsilon_{i})  \rangle\triangleleft  \mathbb{Z}^{\oplus O(X)} is trivial, leading to (3.1) as
desired. Furthermore the kernel  Ker(\oplus_{i\in O(X)}\epsilon_{i}) is a central extension of Inn(X) by
construction, and is perfect by the Kunneth theorem and As  (X)_{ab}  \cong  \mathbb{Z}^{\oplus O(X)} . Hence
we complete the proof.  \square 

Remark. In general, the kernel  Ker(\oplus_{i\in O(X)}\epsilon_{i}) is not always the universal central

extension of the perfect group Inn(X); see [N3, Theorem 4] with  =3 as a counterex‐
ample such that the extension  Ker(\oplus_{i\in O(X)}\epsilon_{i})arrow Inn(X) is not universal.
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Finally, we conclude this section by giving two lemmas on As(X), which are used
later.

Lemma 3.4. Let  X be a connected quandle of type  t  <  1 . Then, for any
 x,  y\in X , we have the identity  (e_{x})^{t}=(e_{y})^{t} in the center of As(X).

Proof. For every  b  \in  X , note the equalities  (e_{x})^{-t}e_{b}e_{x}^{t}  =

 e_{(\cdots(b\triangleleft x)\cdots)\triangleleft x}
 =  e_{b} in

As(X). Namely  (e_{x})^{t} lies in the center. Furthermore the connectivity admits  g\in As(X)
such that  x\cdot g=y . Hence, it follows from (2.1) that  (e_{x})^{t}  =g^{-1}(e_{x})^{t}g=  (e_{x\cdot g})^{t}  =  (e_{y})^{t}
as desired.  \square 

Lemma 3.5. Let  X be a connected quandle of nite order. Then  |Inn(X)|/|X|
is divisible by its type  t_{X} .

Proof. For  x,  y  \in  X , we define  m_{x,y} as the minimal  n satisfying  x\triangleleft^{n}y  =  x.

Note that  (\bullet \triangleleft^{m_{x,y}}y) lies in the stabilizer Stab  (x) . Since  |Stab(x)|  =  |Inn(X)|/|X| by

connectivity, any  m_{x,y} divides  |Inn(X)|/|X| ; hence so does the type  t_{X}.  \square 

Furthermore, in some cases, we can calculate some torsion parts of their group

homology:

Lemma 3.6. Let  X be a connected quandle of type  t_{X} . If  H_{2}^{gr} (Inn(X)) is anni‐
hilated by  t_{X}  <1 , then there is a  [1/t_{X}] ‐isomorphism  H_{3}^{gr} (Adj (X))  \cong H_{3}^{gr} (Inn(X)).

Proof. Consider the Lyndon‐Hochschild spectral sequence of (2.3). It is sufficient
for the proof to show that the differential

 d_{2} :  E_{3,0}^{2}=H_{3} (Inn(X);  H_{0}(Ker(\psi_{X})) )  arrow E_{1,1}^{2}  =H_{1}^{gr} (Inn(X);  H_{1}^{gr}(Ker(\psi_{X})) )

is trivial modulo  t_{X} . To show this, the inflation‐restriction sequence of (2.3)

 Ker(\psi_{X})  arrow H_{1}^{gr} (As (X); Z)  arrow H_{1}^{gr} (Inn (X); Z)  arrow 0

and Lemma 3.4 imply that  H_{1}^{gr} (Inn(X); Z) is annihilated by  t_{X} . Furthermore, we obtain
the  [1/t_{X}] ‐isomorphism  Ker(\psi_{X})  \cong[1/t_{X}]  \mathbb{Z} from Theorem 2.1. Hence, the image of  d_{2}

is trivial as required.  \square 

§4. Six examples of As(X) and second quandle homology

Based on the preceding results on As(X), this section calculates Inn(X) and As(X)
for six kinds of connected quandles  X : Alexander, symplectic, spherical, Dehn, Coxeter
and core quandles. These quandles are dealt with in six subsections in turn.
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Furthermore, to determine the second quandle homology  H_{2}^{Q}(X) in trivial  \mathbb{Z}-

coefficients (see §6 for the definition), we will employ the following computation  0

Eisermann:

Theorem 4.1 ([Eis2, Theorem 1.15]). Let  X be a connected quandle. Fix a
element  x_{0}  \in X. Let Stab  (x_{0})  \subset  As(X) be the stabilizer of  x_{0} , and  \epsilon : As(X)  arrow \mathbb{Z} be
the abelianization mentioned in (2.2). Then,  H_{2}^{Q}(X) is isomorphic to the abelianizatio
of Stab  (x_{0})\cap Ker(\epsilon) .

§4.1. Alexander quandles

We start by discussing the class of Alexander quandles. Every  \mathbb{Z}[T^{\pm 1}] ‐module  X

has a quandle structure with the operation  x\triangleleft y  =y+T(x-y) for  x,  y  \in  X , and is

called the Alexander quandle. This operation  \bullet\triangleleft y can be geometrically compared to

the  T‐multiple with center  y . The type is the minimal  N such that  T^{N}  =  id_{X} since

 x\triangleleft^{n}y=y+T^{n}(x-y) . Furthermore, it can be easily verified that an Alexander quandle
 X is connected if and only if  (1-T)X=X.

Let us review the concrete presentation of As (X), which is due to Clauwens [Cla2].
When  X is connected, set up the homomorphism  \mu_{X} :  X\otimes X  arrow  X\otimes X defined by

 \mu_{X}(x\otimes y)  =x\otimes y-Ty\otimes x . Further, he defined a group operation on  \mathbb{Z}\cross X\cross Coker(\mu_{X})
by setting

 (n, x, \alpha) (m, y, \beta)=(n+m, T^{m}x+y, \alpha+\beta+[T^{m}x\otimes y]) ,

and constructed a group isomorphism As(X)  arrow \mathbb{Z}\cross X\cross Coker(\mu_{X}) , which takes  e_{x} to
 (1, x, 0) . As a result, the kernel of  \psi_{X} : As(X)  arrow Inn(X) equals  t_{X}\mathbb{Z}\cross Coker(\mu_{X}) .

Thanks to his presentation of As(X), we can easily show a result of Clauwens that
determines the homology  H_{2}^{Q}(X) of a connected Alexander quandle  X . To be precise,

Proposition 4.2 (Clauwens [Cla2]). Let  X be a connected Alexander quandle.
The homology  H_{2}^{Q}(X) is isomorphic to the quotient module  Coker(\mu_{X})  =X\otimes_{\mathbb{Z}}X/(x\otimes
 y-- Ty\otimes x)_{x,y\in X}.

Proof. By definition we can see that the  Ker(\epsilon)\cap Stab (  0) is the cokernel  Coker(\mu_{X}) .

§4.2. Symplectic quandles

Let  K be a commutative field, and let  \Sigma_{g} be the closed surface of genus  g . Con‐

sider the multiplicative group  K^{\cross} , and the quotient  K^{\cross}/(K^{\cross})^{2} modulo 2. For  [r]  \in

 K^{\cross}/(K^{\cross})^{2} , we fix a representative  r\in K^{\cross} , and consider the copy of  H^{1}(\Sigma ; K)\backslash \{0\}=
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 K^{2g}\backslash \{0\} , denoted by  X_{r} . Let  X be the union   \bigcup_{r\in K^{\cross}/(K^{\cross})^{2}}X_{r} (here, we should notice
that  X=X_{r} if  K is an algebraically closed field.). Using the standard symplectic 2‐form

 \langle,  \rangle :  H^{1}(\Sigma_{g};K)  \cross H^{1}(\Sigma_{g};K)  arrow K , the set  X is made into a quandle by the operation

 x\triangleleft y  :=  r\langle x,  y\rangle y+x  \in  X for  x  \in  X_{r} and  y  \in  X , and is called a symplectic quandle

(over  K). The operation  \bullet\triangleleft y :  Xarrow X is commonly called the transvection of  y . Note
that the type of the quandle  X is the characteristic of  K since  x\triangleleft^{N}y=Nr\langle x,  y\rangle y+x.

We will determine Inn(X) and As(X) associated with the symplectic quandle  X

over  K.

Lemma 4.3. Inn(X) is isomorphic to the symplectic group  Sp(2g;K) .

Proof. Recall from the Cartan‐Dieudoné theorem that the classical group  Sp(2g;K)
is generated by transvections  (\bullet \triangleleft y) .

We will show the desired isomorphism. For any  y\in X , the map  (\bullet \triangleleft y) :  Xarrow X

is a restriction of a linear map  K^{2g}  arrow K^{2g} . It thus yields a map  \kappa :  Xarrow GL  ( 2 ;  K) ,

which factors through  Sp  ( 2 ;  K) and satisfies the conditions in Theorem 3.1. Indeed,

the condition (2) follows from the classical theorem and the effectivity of the standard
action  K^{2g}\cap Sp(2g;K) . Therefore Inn(X)  \cong Sp(2g;K) as desired.  \square 

Proposition 4.4. Take a field  K of positive characteristic ppand with  |K|  >  10.

Assume the connectivity, that is, every  x  \in  K adm ts a square  \sqrt{x} in K. Let  X  =

 K^{2}\backslash \{0, 0\} be the symplectic quandle over  K , and  \overline{Sp}(2g;K) be the universal centra

extension of  Sp(2g;K) . Then As  (X)\cong \mathbb{Z}\cross\overline{Sp}(2g;K) .

Proof. Since  X is connected and Inn(X)  \cong Sp(2g;K) by Lemma 4.3, Proposition
3.3 implies As(X)  \cong Ker(\epsilon)\cross \mathbb{Z} . Further, it follows from Theorem 2.1 that  H_{2}^{gr} (As(X))
is annihilated by  p . Hence, following the fact [Sus] that  H_{2}^{gr}(Sp(2g;K)) has no  p‐torsion,
the kernel  Ker(\epsilon) must be the universal central extension of  Sp(2 ; K) , which completes

the proof.  \square 

Remark. This proposition holds even if the characteristic of  K is zero and  X

is not connected; see [N2] for the proof. Furthermore, the paper [N2] also determines
 H_{2}^{Q}(X) in the case where  K is of infinite order.

Accordingly, hereafter, we will focus on finite fields  K=\mathbb{F}_{q} with  q>  10 :

Proposition 4.5. Let  X be the symplectic quandle over  \mathbb{F}_{q} . If  q  >  10 , the

As  (X)\cong \mathbb{Z}^{O(X)}  \cross Sp(2g;\mathbb{F}_{q}) . Furthermore,  H_{3}^{gr}(As(X))  \cong \mathbb{Z}/(q^{2}-1) .

Proof. Since  (\mathbb{F}_{q})^{\cross} is cyclic, we first should notice that, if  q is even  |O(X)|  =  1,

and that, if  q is odd,  |O(X)|  =2 or 1 according to  q=4r+1 or  q=4r+3 for some
 r\in \mathbb{Z}.
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Since  q  >  10 , the first and second homology groups of Inn(X)  \cong  Sp(2g;\mathbb{F}_{q}) are
known to be zero (see [FP, Fri]). Thus,  \overline{Sp}(2g;\mathbb{F}_{q})  =  Sp(2g;\mathbb{F}_{q}) , leading to As(X)  \cong

 \mathbb{Z}^{O(X)}  \cross  Sp(2g;\mathbb{F}_{q}) as stated. Furthermore, the latter part follows from the result

 H_{3}^{gr}(Sp(2g;\mathbb{F}_{q}))\cong \mathbb{Z}/(q^{2}-1) in [FP, Fri].  \square 

As a result, we will determine the second homology  H_{2}^{Q}(X) .

Proposition 4.6. Let  q  >  10 , and  X be as above. If  \geq  2 , the homology

 H_{2}^{Q}(X) vanishes. If  g=1 , then  H_{2}^{Q}(X)  \cong(\mathbb{Z}/p)^{d|O(X)|} , where  q=p^{d}.

Proof. Recall As(X)  \cong \mathbb{Z}^{O(X)}\cross Sp(2g;\mathbb{F}_{q}) . Considering the standard action   X\cap

 Sp(2g;\mathbb{F}_{q}) , denote by  G_{X} the stabilizer of  (1, 0, \ldots, 0)  \in  (\mathbb{F}_{q})^{2g} . Since Theorem 4.1

immediately means  H_{2}^{Q}(X)  \cong  H_{1}^{gr}(G_{X})^{|O(X)|} , we will calculate  H_{1}^{gr}(G_{X}) as follows.

First, for  g=  1 , it can be verified that the stabilizer  G_{X} is exactly the product  (\mathbb{Z}/p)^{d}
as an abelian group; hence  H_{2}^{Q}(X)  \cong  (\mathbb{Z}/p)^{d|O(X)|} in the sequel. Next, for  \geq  2 , the

vanishing  H_{2}^{Q}(X)=H_{1}^{gr}(G_{X})=0 immediately follows from Lemma 4.7 below.  \square 

Lemma 4.7. Let   g\geq  2 and  q>  10 . Let  G_{X} denote the stabilizer of the actio
  X\cap  Sp(2g;\mathbb{F}_{q}) mentioned above. Then the homology groups  H_{1}^{gr}(G_{X}) and  H_{2}^{gr}(G_{X})
vanish.

Proof. Since  q>  10 , recall from [FP, II. §6.3] the order of  Sp(2g;\mathbb{F}_{q}) as

 |Sp(2g;\mathbb{F}_{q})|  =q^{g^{2}}(q^{2g}-1)(q^{2g-2}-1) . . .  (q^{2}-1) .

Since  |X|  =q^{2g}-1 , the order of  G_{X} is equal to  q^{g^{2}}\cdot|Sp(2g-2;\mathbb{F}_{q})| . Thereby  H_{1}^{gr}(G_{X})
and  H_{2}^{gr}(G_{X}) are zero up to  p‐torsion, because of the inclusion  Sp(2g-2;\mathbb{F}_{q})  \subset G_{X} by

definitions and the vanishing  H_{1}^{gr}\oplus H_{2}^{gr}(Sp(2g-2;\mathbb{F}_{q}))\cong 0 up to  p torsion.

Finally, we may focus on the  p‐torsion of  H_{1}^{gr}\oplus H_{2}^{gr}(G_{X}) . Following the proof of [Fri,
Proposition 4.4], there is a certain subgroup  \backslash \backslash \triangle (  Sp (  2g ; Fq))” of  G_{X} which contains a p‐
sylow group of  Sp(2g;\mathbb{F}_{q}) and this  \mathbb{Z}/p‐homology vanishes. Hence,  H_{1}^{gr}\oplus H_{2}^{gr}(G_{X})=0
as required.  \square 

§4.3. Spherical quandles

Let  K be a field of characteristic not equal to 2, and fix   n\geq  2 in this subsection.

Take the standard symmetric bilinear form  \langle,  \rangle :  K^{n+1}\otimes K^{n+1}  arrow K . Consider a set  0

the form

 S_{K}^{n} :=\{x\in K^{n+1} | \langle x, x\rangle =1 \} :

We define the operation  x\triangleleft y to be  2\langle x,  y\rangle y-x\in S_{K}^{n} . The pair  (S_{K}^{n}, \triangleleft) is a quandle

of type 2, and is referred to as a spherical quandle (over  K). This operation  \bullet\triangleleft y can
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be interpreted as a linear transformation which identically acts on  y and −Id on the the

subspace orthogonal tof  y.

Then, similar to the proof of Lemma 4.3, one can readily determine Inn(X) as
follows:

Lemma 4.8. If  n is odd, then Inn  (S_{K}^{n}) is isomorphic to the orthogonal group

 O(n+1;K) . If  n is even, Inn  (S_{K}^{n}) is isomorphic to  SO(n+1;K) .

Next, we will focus on second homology group and  H_{3}^{gr} (As(X)) of spherical quan‐
dles over  \mathbb{F}_{q} . Here, the results are up to 2‐torsion, whereas the 2‐torsion part is the

future problem.

Proposition 4.9. Let  X be a spherical quandle over  \mathbb{F}_{q} . Let  q  >  10 . Fo
 n  \geq  3 , the second homology  H_{2}^{Q}(X) is annihilated by 2. If  n  =  1 , then the homology
 H_{2}^{Q}(X) is [1/2] ‐isomorphic to the cyclic group  \mathbb{Z}/(q-\delta_{q}) , where  \delta_{q}  =\pm 1 is accordin
to  q\equiv\pm 1(mod 4) .

Proof. Assume  n is odd. Under the standard action  X  \cap  O  (n+ 1;\mathbb{F}_{q}) , the

stabilizer of  (1, 0, \ldots, 0)  \in X is  O(n;\mathbb{F}_{q}) . By a similar discussion to the proof of Propo‐

sition 4.6,  H_{2}^{Q}(X)  \cong H_{1}^{gr}(O(n;\mathbb{F}_{q})) modulo 2‐torsion. For  n\geq 3 , the abelianization  0

 O(n;\mathbb{F}_{q}) is  (\mathbb{Z}/2)^{2} ; see [FP, II. §3]; hence the  H_{2}^{Q}(X) is annihilated by 2 as required.
The same discussion in the even case of  n works well, since the inclusion  SO(n)  arrow O(n)
induces  H_{*}(SO(n;\mathbb{F}_{q}))\cong[1/2]  H_{*}(O(n;\mathbb{F}_{q})) modulo 2‐torsion.

Finally, when  n  =  1 , the group  O(2;\mathbb{F}_{q}) is cyclic and of order  q-  \delta_{q} . Hence

 H_{2}^{Q}(X)\cong H_{1}^{gr}(O(2;\mathbb{F}_{q}))\cong[1/2]  \mathbb{Z}/(q-\delta_{q}) .  \square 

Proposition 4.10. Let  q>  10 . Then  H_{3}^{gr}(As(X))  \cong[1/2]  H_{3}^{gr}(O(n+1;\mathbb{F}_{q})) up
to 2‐torsion.

Proof. Since  q>  10,  H_{1}^{gr}\oplus H_{2}^{gr}(O(n+1;\mathbb{F}_{q})) is known to be annihilated by 2; see

[Fri, FP]. Hence, the conclusion readily results from Lemma 3.6.  \square 

§4.4. Dehn quandle

Changing the subject, we now review Dehn quandle [Yet]. Denote by  \mathcal{M} the
mapping class group of  \Sigma , and consider the set,  \mathcal{D} , defined by

 \mathcal{D}  := { isotopy classes of (unoriented) non‐separating simple closed curves  \gamma in  \Sigma }:

For  \alpha,  \beta\in \mathcal{D}_{g} , we define  \alpha\triangleleft\beta\in \mathcal{D}_{g} by  \tau_{\beta}(\alpha) , where  \tau_{\beta}  \in \mathcal{M}_{g} is the positive Dehn twist

along  \beta . The pair  (\mathcal{D} , \triangleleft) is a quandle, and called (non‐separating) Dehn quandle. As is
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well‐known, any two non‐separating simple closed curves are conjugate by the product

of some Dehn twists. Hence, the quandle  \mathcal{D}_{g} is connected, and is not of any type  t.

The Dehn quandle  \mathcal{D}_{g} is applicable to study 4‐dimensional Lefschetz fibrations (see,
e.g., [Yet, Zab, N3]). The natural inclusion  \kappa :  \mathcal{D}_{g}  arrow  \mathcal{M}_{g} implies Inn  (\mathcal{D}_{g})  \cong  \mathcal{M}_{g} by
Theorem 3.1. Furthermore, if  g\geq 4 , there is an isomorphism As  (\mathcal{D}_{g})\cong \mathbb{Z}\cross\tau_{g} shown by

[Ger], where  T_{g} is the universal central extension of  \mathcal{M}_{g} associated with  H_{2}^{gr}(\mathcal{M}_{g})  \cong \mathbb{Z}.

The result of this subsection is the following:

Proposition 4.11. If  g\geq 5 , then  H_{2}^{Q}(\mathcal{D}_{g})\cong \mathbb{Z}/2.

Proof. We will use the facts that an epimorphism  Garrow H between groups induces

an epimorphism  G_{ab}arrow H_{ab} , and that  \mathcal{M}_{g,r} is perfect.

Fixing  \alpha\in \mathcal{D}_{g} , we begin by observing the stabilizer Stab  (\alpha)  \subset As(\mathcal{D}_{g}) . Note that

the map  \mathcal{D}_{g}  arrow  \mathcal{M}_{g} sending  \beta to  \tau_{\beta} yields a group epimorphism  \pi : As  (\mathcal{D}_{g})  arrow  \mathcal{M}_{g}.
Furthermore, by Proposition 3.3, the restriction of  \pi to  Ker(\epsilon)  \cong\tau_{g} coincides with the

projection  T_{g}  arrow \mathcal{M}_{g} . In particular, we thus have  \pi(Stab(\alpha))  =\pi(Stab(\alpha)\cap Ker(\epsilon))  \subset

 \mathcal{M}_{g}.
We will construct a surjection  H_{2}^{Q}(\mathcal{D}_{g})  arrow  \mathbb{Z}/2 . By the virtue of Theorem 4.1, it

is enough to construct a surjection from the preceding  \pi(Stab(\alpha)\cap Ker(\epsilon)) to  \mathbb{Z}/2 for
 \geq 2 . As is shown [PR, Proposition 7.4], we have the following exact sequence:

(4.1)  0arrow \mathbb{Z}arrow \mathcal{M}_{g-1,2}  arrow^{\xi}\pi(Stab(\alpha))  arrow^{\lambda}\mathbb{Z}/2 (exact).

Here  \xi is the homomorphism induced from the gluing  (\Sigma_{g-1,2}, \partial(\Sigma_{g-1,2}))  arrow  (\Sigma_{g}, \alpha) ,

and  \lambda is defined by the transposition of the connected components of boundaries  0

 \Sigma_{g}\backslash \alpha . By considering a hyper‐elliptic involution preserving the above  \alpha , the map  \lambda is

surjective. Hence  \pi(Stab(\alpha)\cap Ker(\epsilon)) surjects onto  \mathbb{Z}/2 as desired.

Finally, we will complete the proof. By Theorem 4.1 again, recall that (Stab  (\alpha)\cap

 Ker(\epsilon))_{ab}  \cong  H_{2}^{Q}(\mathcal{D}_{g}) . To compute this, put the inclusion  \iota :  \pi( Stab (  \alpha))  arrow  \mathcal{M}_{g} . By
the Harer‐Ivanov stability theorem (see [Iva]), the composition  \iota\circ\xi :  \mathcal{M}_{g-1,2}  arrow  \mathcal{M}_{g}
induces an epimorphism

(4.2)  (\iota\circ\xi)_{*} :  H_{2}^{gr}(\mathcal{M}_{g-1,2};\mathbb{Z})  arrow H_{2}^{gr}(\mathcal{M}_{g};\mathbb{Z}) for  g\geq 5.

Since  H_{2}^{gr}(\mathcal{M}_{g-1,2};\mathbb{Z})  \cong H_{2}^{gr}(\mathcal{M}_{g};\mathbb{Z})  \cong \mathbb{Z} is known (see, e.g., [FM]), the epimorphism
(4.2) is isomorphic. Let  (\iota\circ\xi)^{*}(T_{g}) denote the central extension of  \mathcal{M}_{g-1,2} obtained
by  \iota\circ\xi . Since  \mathcal{M}_{g} and  \mathcal{M}_{g-1,2} are perfect, the group  (\iota\circ\xi)^{*}(T_{g}) is also perfect by

the isomorphism (4.2). Note that the group Stab  (\alpha)\cap Ker(\epsilon) is isomorphic to  \iota^{*}(T_{g}) .
Hence the abelianization  ( Stab  (\alpha)\cap Ker(\epsilon))_{ab} never be bigger than  \mathbb{Z}/2 . In conclusion,
we arrive at the conclusion.  \square 
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§4.5. Coxeter quandles

We will focus on Coxeter quandles, and study the associated groups, and show
Theorem 4.12.

This subsection assumes basic knowledge of Coxeter groups, as explained in [Aki1,
How]. Given a Coxeter graph  \Gamma , we can set the Coxeter group  W . Let  X_{\Gamma} be the set
of the reflections in  W , that is, the set of elements conjugate to the generators of  W.

Equipping  X_{\Gamma} with conjugacy operation,  X_{\Gamma} is made into a quandle of type 2. Denote

the inclusion  X_{\Gamma}\mapsto W by  \kappa . Since  W subject to the center  Z_{W} effectivity acts on  X_{\Gamma},

we have Inn  (X_{\Gamma})  \cong W/Z_{W} . Moreover,  W is, by definition, isomorphic to the quotient

of As  (X_{\Gamma}) subject to the squared relations  (e_{x})^{2}=1 for any  x\in X_{\Gamma}.

In this situation, we now give another easy proof of a part of the theorem shown

by Howlett:

Theorem 4.12 (A connected result in [How, §2‐4]). Assume that the Coxete
quandle  X_{\Gamma} is connected. Then, the second group homology  H_{2}^{gr}(W) is annihilated by
2.

Proof. Recall from Theorem 2.1 that  H_{1}^{gr}(As(X_{\Gamma}))  \cong \mathbb{Z} and  H_{2}^{gr}(As(X_{\Gamma})) is an‐

nihilated by 2. Therefore, the inflation‐restriction exact sequence from the central ex‐

tension As  (X_{\Gamma})arrow W implies the desired 2‐vanishing of  H_{2}^{gr}(W) .  \square 

Finally, we will end this subsection by giving some comments. Recently, Akita

[Aki2] determined the associated group As  (X_{\Gamma}) as a  \mathbb{Z}^{N} ‐central extended group  0

 W . Furthermore, concerning the third homology  H_{3}(As(X_{\Gamma})) in the case where  X_{\Gamma} is

connected, we obtain  H_{3}(As(X_{\Gamma}))  \cong H_{3}(W) up to 2‐torsion from Lemma 3.6. The odd

torsion of  H_{3}^{gr}(W) in a certain stable range is studied by Akita [Akil].

§4.6. Core quandles

Given a group  G , we let  X=G equipped with a quandle operation  \triangleleft h  :=h  -1h.

This quandle is called core quandle [Joy] and is of type 2. This last subsection will deal
with core quandles, and show Proposition 4.13.

Let us give some terminologies to state the proposition. Let  \mathbb{Z}/2 be  \{\pm 1\} . Take

the wreath product  (G\cross G)\rangle\triangleleft \mathbb{Z}/2 , and the commutator subgroup  [G, G] . Consider the

epimorphism  (G\cross G)  \rangle\triangleleft \mathbb{Z}/2arrow G/[G, G] which sends  (g, h, \sigma) to [gh]. Then, the kernel
is formed as

 \mathcal{G}_{1} := \{ (g, h, \sigma) \in (G\cross G) \rangle\triangleleft 
\mathbb{Z}/2 | gh\in [G, G] \} :

Further, with respect to  x  \in  X and  (g, h, \sigma)  \in  \mathcal{G}_{1} , we define  x  (g, h, \sigma)  :=  h^{-1}x^{\sigma} ,

which ensures an action of  \mathcal{G}_{1} on  X . Further, consider a subgroup of the form

 \mathcal{G}_{2}  := {  (z, z, \sigma)  \in  (G\cross G)  \rangle\triangleleft \mathbb{Z}/2  |  z^{2}  \in  [G,  G],  k^{-1}zk=z^{\sigma} for any  k\in G },
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which is contained in the center of  \mathcal{G}_{1} . Then, the quotient action subject to  \mathcal{G}_{2} is
effective.

Proposition 4.13. There is a group isomorphism Inn(X)  \cong \mathcal{G}_{1}/\mathcal{G}_{2}.

Proof. Consider the map  \kappa :  X  arrow  \mathcal{G}_{1}/\mathcal{G}_{2} which sends  g to  [(g, g^{-1}, -1)] . We

claim that this  \mathcal{G}_{1}/\mathcal{G}_{2} is generated by the image  \Im(\kappa) . Actually, we can easily verify

that any element  (g, h, \sigma) in  \mathcal{G}_{1} with  g_{i},  h_{i}  \in G and  gh=g_{1}h_{1}g_{1}^{-1}h_{1}^{-1}\cdots g_{m}h_{m}g_{m}^{-1}h_{m}^{-1}
is decomposed as

 \kappa(1_{G})^{\frac{\sigma+1}{2}}\cdot\kappa( h^{-1})\cdot((\kappa(g_{1}h_{1})
\cdot\kappa(1_{G})\cdot\kappa(g_{1}^{-1})\cdot\kappa(h_{1})) . . . (\kappa(g_{m}
h_{m})\cdot\kappa(1_{G})\cdot\kappa(g_{m}^{-1})\cdot\kappa(h_{m}))) .

Then, the routine discussion from Lemma 3.1 completes the proof.  \square 

This proposition implies the difficulty to determine Inn(X), in general. Thus, it
also seems hard to determine As(X). Actually, even if  X is a connected core quandle,
Proposition 4.13 implies that the kernel  Ker(\psi) is complicated by the reason of the

second homology  H_{2}^{gr}(G) and  H_{2}^{gr} (Inn(X)). For example, if  X is the product of  h‐copies
of the cyclic group  \mathbb{Z}/m , i.e.,  X is the Alexander quandle of the form  (\mathbb{Z}/m)^{h}[T]/(T+1) ,
then the kernel  Ker(\psi) stated in Proposition 4.2 is not so simple.

§5. On quandle coverings

This section suggests that the results in Section 2 are applicable to quandle cover‐

ings.

Let us review coverings in the sense of Eisermann [Eis2, Eisl]. A map  f :  Yarrow Z

between quandles is  a (quandle) homomorphism, if  f(a\triangleleft b)  =  f(a)  \triangleleft  f(b) for any
 a,  b  \in  Y . Furthermore, a quandle epimorphism  p :  Y  arrow  Z is  a (quandle) coverin ,  i

the equality  p(X)=p(\overline{y})  \in Z implies  a\triangleleft X=a\triangleleft y\in Y for any  a,  X,  y\in Y.

Let us mention a typical example. Given a connected quandle  X with  a\in X , recall

the abelianization  \epsilon_{0} : As(X)  arrow  \mathbb{Z} in (2.2). Then, the kernel  Ker(\epsilon_{0}) has a quandle
operation defined by setting

 g\triangleleft h:=e_{a}^{-1}gh^{-1}e_{a}h for  g,  h\in Ker(\epsilon_{0}) .

We can easile see the independence of the choice of  a\in X up to quandle isomorphisms.

Ones write  X for the quandle  (Ker(e_{0}), \triangleleft) , which is considered in [Joy, §7]. When  X is
of type  t_{X} , so is the extended one  X by Lemma 3.4. Furehermore, using the restricted

action  X\cap Ker(\epsilon_{0})  \subset  As(X) , we see that the map  p :  \overline{X}  arrow X sending  g to  a\cdot g is a

covering. This  p is called the universal (quandle) covering of  X , according to [Eis2, §5].
As a preliminary, we will explore some properties of quandle coverings.
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Proposition 5.1. For any quandle covering  p :  Y  arrow  Z , the induced group

surjection  p_{*} : As (Y)  arrow  As(Z) is a central extension. Furthermore, if  Y and  Z are
connected and  Z is of type  t_{Z} , then the abelian kernel  Ker(p_{*}) is annihilated by  t_{Z}.

Proof. Fix a section  \mathfrak{s} :  Yarrow Z . For any  y\in Z , put arbitrary  y_{i}  \in p^{-1}(y) . Then,

 e_{\mathfrak{s}(y)}^{-1}e_{b}e_{\mathfrak{s}(y)} =e_{b\triangleleft 
\mathfrak{s}(y)} =e_{b\triangleleft y_{i}} =e_{y_{i}}^{-1}e_{b}e_{y_{i}} \in 
As(Y)
for any  b  \in  Y . Here the second equality is due to the covering  p . Denoting  e_{\mathfrak{s}(y)}e_{y_{i}}^{-1}
by  z_{i} , the equalities imply that  z_{i} is central in As (Y) . Since  e_{\mathfrak{s}(y)}

 =  z_{i}e_{y_{i}} , As (Y) is
generated by  e_{\mathfrak{s}(y)} with  y\in Y and the central elements  z_{i} associated with  y_{i}  \in p^{-1}(y) ;

consequently, the surjection  p_{*} is a central extension.

We will show the latter part. Take the inflation‐restriction exact sequence, i.e.,

 H_{2}^{gr} (As (Z))  arrow Ker(p_{*})  arrow H_{1}^{gr} (As (Y))  arrow H_{1}^{gr} (As (Z))  arrow 0 (exact).

By connectivities the third map from  H_{1}^{gr}(As(Y))=\mathbb{Z} is an isomorphism. Since Theo‐

rem 2.1 says that  H_{2}^{gr}(As(Z)) is annihilated by  t_{Z} , so es the kernel  Ker(p_{*}) as desired.  \square 

Next, we will compute the second homology of  \overline{X} (Theorem 5.4) by showeng propo‐
sitions:

Proposition 5.2. For any connected quandle  X , the extended one  \overline{X} above is
also connected.

Proof. It is eeough to show thae the identity  1_{\overline{X}}  \in  \overline{X}  =  Ker(\epsilon_{0}) is transitive to

any element  h in  \overline{X} . Expand  h  \in  \overline{X}  \subset  As(X) as  h  =  e_{x_{1}}^{\epsilon_{1}}\cdots e_{x_{n}}^{\epsilon_{n}} for some  x_{i}  \in  X

and  \epsilon_{i}  \in Z. Since  h  \in  Ker(\epsilon_{0}) , note   \sum\epsilon_{i}  =  0 . The connectivity of  X ensures some

 g_{i}  \in  As(X) so that  a\cdot g_{i}^{\epsilon_{i}}  =  x_{i} . Therefore  g_{i}^{-\epsilon_{i}}e_{a}g_{i}^{\epsilon_{i}}  =

 e_{a\cdot g_{i}^{\in}}i
 =  e_{x_{i}}^{\epsilon_{i}} by (2.1). In the

sequel, we have

 (. . . (1_{\overline{X}}\triangleleft^{\epsilon_{1}}g_{1}) . . .  \triangleleft^{\epsilon_{n}}g_{n})  =e_{a}^{\Sigma\epsilon_{i}}1_{\overline{X}}(g_{1}^{-\epsilon_{1}}e_{a}g_{1}
^{\epsilon_{1}}) . . .  (g_{n}^{-\epsilon_{n}}e_{a}g_{n}^{\epsilon_{n}})=e_{x_{1}}^{\epsilon_{1}} . . .  e_{x_{n}}^{\epsilon_{n}}  =h.

These equalities in  \overline{X} imply the transitivity of  \overline{X}  \square 

Proposition 5.3. Let  X be a connected qeandle. Let  p_{*} : As  (\overline{X})  arrow  As(X) be

the epimorphiem indeced from the covering  p :  X  arrow X. Then, under the canoniea

action of As  (\overline{X}) on  \overline{X} , the stabilizer Stab  (1_{\overline{X}}) of  1_{\overline{X}} is equal to  \mathbb{Z}\cross Ker(p_{*}) in As(X‐).
Furthermore, the summand  \mathbb{Z} is generated by  1_{\overline{X}}.

Proof. We can easily see that the stabilizer of  1_{\overline{X}} via the action  Ker(\epsilon_{0})  =\overline{X}\cap

 As(X) is Stab  (1_{\overline{X}})  =\{e_{a}^{n}\}_{n\in \mathbb{Z}}\subset As(X) exactly. Notice that any central extension of  \mathbb{Z}

is trivial; therefore, since  p_{*} is a central extension (Proposition 5.1), the restriction  p_{*} :
Stab  (1_{\overline{X}})  arrow\underline{Stab}(1_{\overline{X}})  =\mathbb{Z} implies the required identity Stab  (1_{\overline{X}})=\mathbb{Z}\cross Ker(p_{*}) .  \square 
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Theorem 5.4. The secone quandle homology of the eetended quandle  \overline{X} is iso‐

morphic to the kernel of  p_{*} : As  (\overline{X})  arrow As(X) . Namely,  H_{2}^{Q}(\overline{X})\cong Ker(p_{*}) . In particu‐

lar, it follows from Proposition 5.1 that, if  t_{X}  <  1 , then  H_{2}^{Q}(\overline{X}) is annihilated by the

type  t_{X}.

Proof. Note that  \overline{X} is connected (Proposition 5.2) and the kernel  Ker(p_{*}) is
abelian (Proposition 5.1). Accordingly, the desired isomorphism  H_{2}^{Q}(\overline{X})  \cong  (Ker(\epsilon_{\overline{X}})\cap
Stab  (1_{\overline{X}}))_{ab}=Ker(p_{*}) follows immediately from Proposition 5.3 and Theorem 4.1.  \square 

Finally, we now discuss the third group homology.

Proposi ion 5.5. The universal covering  p:\overline{X}arrow X induces a  [1/t_{X}] ‐isomorphis

 p_{*} :  H_{3}^{gr}(As(\overline{X}))\cong H_{3}^{gr}(As(X)) .

Proof. By connectivity of  \overline{X} and Theorem 2.1,  H_{2}^{gr} (As(X‐)) and  H_{2}^{gr} (As(X)) are
annihilated by  t_{X} . Furthermore, since the epimorphism  p_{*} : As  (\overline{X})  arrow  As(X) is a

central extension whose kernel is annieilated by  t_{X} (Proposition 5.1), we readily obtain
the  [1/t_{X}] ‐isomorphism  p_{*} :  H_{3}^{gr}(As(\overline{X}))  \cong  H_{3}^{gr}(As(X)) from the Lyndon‐Hochschild

sequence of  p_{*}.  \square 

These properties played a key role to prove the main theorem in [N1].

§6. Proof of Theorem 2.1.

The purpose of this section is to prove The∪rem 2.1. Let us begin by reviewing

the rack space introduced by Fenn‐Rourke‐Sanderson [FRS]. Let  X be a quandle with
discrete topology. We set up a disjoint union   \bigcup_{n\geq 0}  ([0,1] \cross X)^{n} , and consider the

relations given by

 (t_{1}, x_{1}, : : : , x_{j-1},0, x_{j}, t_{j+1}, : : : , t_{n}, x_{n})
\sim(t_{1}, x_{1}, : : : t_{j-1}, x_{j-1}, t_{j+1}, x_{j+1}, : : : , t_{n}, 
x_{n}) .

 (t_{1}, x_{1}, : : : , x_{j-1},1, x_{j}, t_{j+1}, : : : , t_{n}, x_{n})\sim

 (t_{1}, x_{1}\triangleleft x_{j}, : : : , t_{j-1}, x_{j-1}\triangleleft x_{j}, 
t_{j+1}, x_{j+1}, : : : , t_{n}, x_{n}) ,

Then, the rack space  BX is defined to be the quotient space. By construction, we

have a cell decomposition of  BX by regarding the projection   \bigcup_{n\geq 0}  ([0,1] \cross X)^{n}  arrow

 BX as characteristic maps. From the 2‐skeleton of  BX , we have  \pi_{1}(BX)  \cong  As(X) .

Considering the Eilenberg‐MacLane space  K(\pi_{1}(BX), 1) ), we have the classifying map
 c :  BX  \mapsto  K(\pi_{1}(BX), 1) , i.e., an inclusion obtained by killing the higher homotopy

groups of  BX.
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Theorem 6.1. Let  X be a connected quandle of type  t , and let  t  <  1 . Fo
 n=2 and 3, the induced map  c_{*} :  H_{n}(BX)  arrow H_{n}^{gr} (As(X)) is annihilated by  t.

Remark. This is still more powerful and general than a result of Clauwens [Cla1,
Proposition 4.4], which stated that, if a quandle  X of finite order satisfies a certain
condition, then the composite  (\psi_{X})_{*}  \circ c_{*} :  H_{n}(BX)  arrow  H_{n}^{gr}(As(X))  arrow  H_{n}^{gr}(Inn(X))
is annihilated by  |Inn(X)|/|X| for any  n  \in N. Here note from Lemma 3.5 that  t is a
divisor of the order  |Inn(X)|/|X|.

Since the induced map  c_{*} :  H_{2}(BX)  arrow  H_{2}^{gr}(As(X)) with  n  =  2 is known to be

surjective (cf. Hopf’s theorem [Bro, II.5]), Theorem 2.1 is immediately obtained from
Theorem 6.1 and the inflation‐restriction exact sequence of (2.3). Hence, we may turn
into proving Theorem 6.1.

To this end, we give a brief review of the rack and quandle homology. Let  C_{n}^{R}(X) be

the free right  \mathbb{Z}‐module generated by  X^{n} . Define a boundary  \partial_{n}^{R} :  C_{n}^{R}(X)  arrow C_{n-1}^{R}(X)
by

  \partial_{n}^{R}(x_{1}, \ldots, x_{n})=\sum_{1\leq i\leq n}(-1)^{i}((x_{1}
\triangleleft x_{i}, \ldots, x_{i-1}\triangleleft x_{i}, x_{i+1}, \ldots, x_{n})
 -(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n})) .

The composite  \partial_{n-1}^{R}  \circ\partial_{n}^{R} is known to be zero. The homology is denoted by  H_{n}^{R}(X)
and is called the rack homology. As is known, the cellular complex of the rack space
 BX is isomorphic to the complex  (C^{R}(X), \partial^{R}) . In particular, we have the isomorphism

 H_{*}(BX)  \cong  H_{*}^{R}(X) . Furthermore, following [CJKLS, let  C_{n}^{D}(X) be a submodule  0

 C_{n}^{R}(X) generated by  n‐tuples  (x1, :::, x_{n}) with  x_{i}  =x_{i+1} for some  i  \in  \{1, :::, n-1\}.
It can be easily seen that the submodule  C_{n}^{D}(X) is a subcomplex of  C_{n}^{R}(X) . Then

the quandle homology,  H_{n}^{Q}(X) , is defined to be the homology of the quotient complex

 C_{n}^{R}(X)/C_{n}^{D}(X) .

Furthermore, we now observe concretely the map  c_{*} :  H_{n}(BX)  arrow H_{n}^{gr} (As(X)) for
 n  \leq  3 . Let us recall the (non‐homogenous) standard complex  C_{n}^{gr}(As(X)) of As(X);
see e.g. [Bro, §I.5]. The map  c_{*} can be described in terms of their complexes. In fact,
Kabaya [Kab, §8.4] considered homomorphisms  c_{n} :  C_{n}^{R}(X)  arrow C_{n}^{gr}(As(X)) , where the
map  c_{n} for  n\leq 3 are defined by setting

 c_{1}(x)=e_{x},
 c_{2}(x, y)=(e_{x}, e_{y})-(e_{y}, e_{x\triangleleft y}) ,

 c_{3}(x, y, z)=(e_{x}, e_{y}, e_{z})-(e_{x}, e_{z}, e_{y\triangleleft z})+
(e_{y}, e_{z}, e_{A})-(e_{y}, e_{x\triangleleft y}, e_{z})+(e_{z}, 
e_{x\triangleleft z}, e_{y\triangleleft z})
 -(e_{z}, e_{y\triangleleft z}, e_{A}) ,

where we denote  (x\triangleleft y)  \triangleleft z  \in  X by  A for short. As is shown (see [Kab, §8.4]), the
induced map on homology coincides with the map above  c_{*} up to homotopy.
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We will construct a chain homotopy between  t\cdot c_{n} and zero, when  X is connected

and of type  t . Define a homomorphism  h_{i} :  C_{i}^{R}(X)arrow C_{i+1}^{gr} (As(X)) by setting

 h_{1}(x)= \sum(e_{x}, e_{x}^{j})1\leq j\leq t-1 ’

 h_{2}(x, y)= \sum(e_{x}, e_{y}, e_{x\triangleleft y}^{j})-(e_{x}, e_{x}^{j}, e_
{y})-(e_{y}, e_{x\triangleleft y}, e_{x\triangleleft y}^{j})+(e_{y}, e_{y}^{j}, 
e_{y})1\leq j\leq t-1 ’

 h_{3}(x, y, z)= \sum_{1\leq\leq t-1}((e_{x}, e_{y}, e_{z}, e_{A}^{j})-(e_{x}, 
e_{z}, e_{y\triangleleft z}, e_{A}^{j})-(e_{x}, e_{y}, e_{x\triangleleft}^{j} e_
{z})-(e_{y}, e_{x\triangleleft y}, e_{z}, e_{A}^{j})
 +(e_{x}, e_{z}, e_{x\triangleleft z}^{j}, e_{y\triangleleft z})+(e_{z}, 
e_{x\triangleleft z}, e_{y\triangleleft z}, e_{A}^{j})+(e_{x}, e_{x}^{j}, e_{y},
e_{z})-(e_{x}, e_{x}^{j}, e_{z}, e_{y\triangleleft z})

 + (e , e_{z}, e_{A}, e_{A}^{j})-(e_{z}, e_{y\triangleleft z}, e_{A}, e_{A}^{j})
-(e_{z}, e_{x\triangleleft z}, e_{x\triangleleft z}^{j}, e_{y\triangleleft z})+
(e_{y}, e_{x\triangleleft y}, e_{x\triangleleft y}^{j}, ez)) :

Lemma 6.2. Let  X be as above. Then we have the equality  h_{1}\circ\partial_{2}^{R}-\partial_{3}^{gr}oh_{2}  =

 t\cdot c_{2}.

Proof. Compute the both terms  h_{1}\circ\partial_{2}^{R} and  \partial_{3}^{gr}\circ h_{2} in the left hand side as

 h_{1} \circ\partial_{2}^{R}(x, y)=\sum(e_{x}, e_{x}^{j})-(e_{x\triangleleft y},
e_{x\triangleleft y}^{j}) .

  \partial_{3}^{gr}\circ h_{2}(x, y)=\partial_{3}^{gr}\sum( (e_{x}, e_{y}, 
e_{x\triangleleft}^{j} )-(e_{x}, e_{x}^{j}, e_{y})-(e_{y}, e_{x\triangleleft y},
e_{x\triangleleft}^{j} )+(e_{y}, e_{y}^{j}, e_{y}))
 =  ( \sum(e_{y}, e_{x\triangleleft y}^{j})-(e_{x}e_{y}, e_{x\triangleleft y}^{j})+
(e_{x}, e_{x}^{j}e_{y})-(e_{x}, e_{y})-(e_{x}^{j}, e_{y})+(e_{x}^{j+1}, e_{y})-
(e_{x}, e_{x}^{j}e_{y})

 +(e_{x}, e_{x}^{j})-(e_{x\triangleleft y}, e_{x\triangleleft}^{j} )+(e_{x}e_{y}
, e_{x\triangleleft}^{j} )-(e_{y}, e_{x\triangleleft}^{j+1})+(e_{y}, 
e_{x\triangleleft y}))+(e_{y}, e_{y}^{t})-(e_{y}^{t}, e_{y})
 =t((e_{y}, e_{x\triangleleft y})-(e_{x}, e_{y}))+(e_{x}^{t}, e_{y})-(e_{y}, 
e_{x\triangleleft y}^{t})-(e_{y}^{t}, e_{y})+(e_{y}, e_{y}^{t})+h_{1}
\circ\partial_{2}^{R}(x, y)

 =-t\cdot c_{2}(x, y)+h_{1}\circ\partial_{2}^{R}(x, y) .

Here we use Lemma 3.4 for the last equality. Hence, the equalities complete the proof.

Lemma 6.3. Let  X be as above. The difference  h_{2}  \circ\partial_{3}^{R}  -  \partial_{4}^{gr}  \circ h3 is chai
homotopic to  t\cdot c_{3}.

Proof. This is similarly proved by a direct calculation. To this end, recalling the

notation  A=(x\triangleleft y)\triangleleft z , we remark two identities

 e_{z}e_{A}=e_{x\triangleleft y}e_{z}, e_{y\triangleleft z}e_{A}=
e_{x\triangleleft z}e_{y\triangleleft z} \in As(X) .

Using them, a tedious calculation can show that the difference  (t\cdot c_{3}-h_{2}\circ\partial_{3}^{R}-\partial_{4}^{gr}\circ
 h_{3})(x, y, z) is equal to

 (e , e_{z}, e_{A}^{t})-(e_{x}^{t}, e_{y}, e_{z})+(e_{x}^{t}, e_{z}, 
e_{e\triangleleft z})-(e_{y}, e_{x\triangleleft y}^{t})
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 +(e_{z}, e_{x\triangleleft z}^{t}, e_{y\triangleleft z})-(e_{z}, 
e_{y\triangleleft z}, e_{A}^{t})+ \sum_{1\leq j\leq t-1}(e_{y}, e_{y}^{j}, e_{y}
)-(e_{y\triangleleft z}, e_{y\triangleleft z}^{j}, e_{y\triangleleft z}) .

Note that this formula is independent of any  x  \in  X since the identity  (e_{a})^{t}  =  (e_{b})^{t}
holds for any  a,  b\in X by Lemma 3.4. However, the map c3  (x, y, z) with  x=y is zero

by definition. Hence, the map  t . c3 is null‐homotopic as desired.  \square 

Proof of Theorem 6.1. The map  t  c_{*} are obviously null‐homotopic by Lemmas
6.2 and 6.3.  \square 

The proof was an ad hoc computation in an algebraic way; however the theorem should

be easily shown by a topological method:

Problem Does the  t‐vanishing of the map  c_{*} .:  H_{n}(BX)  arrow  H_{n}^{gr} (As(X)) hold for any
 n\in \mathbb{N} ? Provide its topological proof. Further, how about non‐connected quandles?
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