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Microlocal analysis on PDE :
Some contributions by Yoshinori Morimoto
around kinetic equations

By

Chao-Jiang Xu *

Abstract

In this short paper, we give a brief presentation of some contribution to microlocal anal-
ysis on the partial differential equations by Yoshinori Morimoto. The first part concerns the
study of the degenerate elliptic equations, by using the microlocal analysis based on the theory
of pseudo-differential operators. The second part is about the analysis of non-cutoff Boltz-
mann equations where the microlocal analysis contribute lots of progress, in particular, us-
ing Fefferman-Phong’s uncertainty principle to prove the smoothing effect of solutions and
Littlewood-Paley theory to study the existence of classical solutions for non-cutoff Boltzmann
equations. So that we focus only on the contribution to the study of kinetic equations by
Yoshinori Morimoto.

§1. Hypoellipticity of infinite degenerate elliptic opertators

Microlocal analysis (Wikipedia Encyclopedia)

In mathematical analysis, microlocal analysis comprises techniques developed from
the 1950s onwards based on Fourier transforms related to the study of linear PDE.
This includes pseudo-differential operators and Fourier integral operators. The term
microlocal implies localisation not only with respect to location in the space, but also
with respect to cotangent space directions at a given point. The techniques of microlocal
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analysis were developed in the 1960s and 1970s.

Hypoellipticity : A partial differential operator P is called hypoelliptic, if u €
D', Pu € C* imply that u € C*°.

e Elliptic operator with C'* coefficients is hypoelliptic.

e The following Hérmander’s operators is hypoelliptic,

m
H=) X+ X,
j=1
where X = {Xg, X1, , X, } is a system of vector fields which satisfy the Hérmander’s
condition: X, X1, -+, X, and their repeated commutators of at most k£ times span the
tangent space .
A typic exemple of Hormander’s operators is

Py =09} + 02+ 30,

It is possible to take a system of pseudo-differential operators X.

The work of Y. Morimoto was motivated by the previous result of S. Kusuoka and
D. Stroock by means of the probabilistic method ( Malliavin calculus). Namely, they
gave a remarkable example:

P =D} + D} +g(x)D}, 0<g(x) € C*(R), g(z)>0if z#0
is hypoelliptic in R3, if and only if
mli)rgo |z|log g(z) = 0.

If g(x) = exp—|z|”,0 > 0 then the condition is interpreted to 0 < ¢ < 1. The term
D? is significant, in fact, A = D2 + g(m)Dg is hypoelliptic in R? without the degenerate
rate condition. This phenomena is quite similar to non-analytic hypoellipticity for
Baouendi-Goulaouic operator

Py=D?+ D2+ 2*"D? 'm=1,2---,

Y )

that is, the Gevrey singularity of order G™*! propagates along the ¢ direction. The
propagation of the singularity of Gevrey class can be roughly understood by the un-
certainty principle ( mathematically formalized by Fefferman-Phong) as follows: If we
denote the symbol of D2 + a:Qng by €2 4+ 22™n?, then

0 <&+ < 2> on the box {[a| < |n| =Y, J¢] < |n|*/ ™YY,
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and Py behaves like, on a tube {(t,z,y,&,7n);t € (—o00,00), x| < |n\_1/(m+1),|§| <
||t/ M+,

Py ~ D? 4 2| D, |¥/(m+1)

As for C'*° singularity, the log order is critical. Based on this idea, the characterization
of partial differential operators with the logarithmic regularity estimate has been studied
by means of the Fefferman-Phong uncertainty principle.

Infinite degenerate elliptic operators The following exemple is an infinite degen-
erate elliptic operators

Py =07 + 02 4 e 29792,
with 0 < 0 < 1. This operator is also hypoelliptic. More generally, for the operators
Py =D? + A(xz,D,), Ry xR
where A(x, D,) is a formally self-adjoint second order PDO such that
(A(z, Dp)u,u) > collul|3z, Yue C§.
There are a criterion for hypoellipticity.

Theorem 1.1 (Y. Morimoto, Osaka J. Math. 1987 ).  Pjs is hypoelliptic in Ry xR?
if and only if for any xyp € R there exists a neighborhood w of zy such that for any
€ > 0 the estimate

|log(Dy, Dy) 8|72 < €Re(P3o, ) + Cell¢l72, Vo € C5°(Ry x w)
holds with a constant C,.

The above results can be extended to more general cases.
Another necessary and sufficient condition for the hypoellipticity Let

Py =D} + f(x)Df + g(z)D;, R}, . f g>0.

Let f; denote the average of f in I C Iy an open fixed interval in R,, f7,g;7 > 0. We
say that f, g satisfy (M, f,g) condition in Iy if

(M, f,9) ;gg (sup{f;"*|I| |1og g,,|; I with 3T C Iy, g,, < 6}) = 0.

Theorem 1.2 (Y. Morimoto-T. Morioka, Bull. Sci. Math. 1997 ). Py is hypoellip-
tic in Iy x Ry x Ry, if and only if f, g satisfy (M, f,g) and (M, g, f) in Io.
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The above results is also true for more general cases. An example :
f=z*, g=e¢ " s<m+1, (byT.Hoshiro)
The uncertainty principle Consider a symbol of the form, for 0 < A <1,
a(z,§) = g +V(2), (x,6) €R™"

where V (z) is a non-negative function and depends on a large parameter M > 0. Let C
denote the set of boxes

n ) 51
B = {(z,8) e R*; |z; — 2] < BY € — &1 < 7}

Theorem 1.3 (Y. Morimoto, Publ. RIMS. Kyoto Univ. 1987).

inf m({(,¢) € B;a(x,€) > R}) > ¢ >0,

imply
1Dz ullfe + (V(@)u, w) > ¢ Rllulz., u e C5E(R™),

where ¢/ > 0 depends only on ¢, n, \.
As an application, we consider the operators
Ps =a(z,y,Dy) + g(2")b(x,y,Dy), inR" xR™,
where z = (2/,2"") € R™ and
Rea(z,y,£) > c1|¢]?,  for large |¢],
Reb(x,y,&) > calnf?,  for large n],

g(z') > 0 for all 2’ # 0 and vanish infinite order at 0. Then we have

lim |z'||logg(z")] =0 = Ps is hypoelliptic.

|z’ |—0

Let a(x,&) = |£]2 + cg(2)|n|?, then we can apply the uncertainty principle with R =
(klog |n|)? which deduce the logarithmic regularity estimates.

8§ 2. The non-cutoff Boltzmann equations

From 2005, Yoshinori Morimoto and his collaborators (Alexendre-Morimoto-Ukai-
Xu-Yang (AMUXY)) start to work on the Kinetic equations such as non-cutoff Boltz-
mann equations and Landau equation with more than 30 publications.

(21) ft+vvwf:Q(f7f)7 f’t:0:f07
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where the Boltzmann collisional operator is

Qo.0)= [, [ Bl 00 ohf = g.f)dods..
and the collision kernel is
B(v —vy,0) = |v — vi|"b(cosh), 0 <6< g,
with angular non-cutoff factor,
(2.2) b(cos) ~ 072725 0<h< g

Smoothing effect of non-cutoff Boltzmann equation
A first microlocal analysis results of Boltzmann equation is the following smoothing
effect work.

Theorem 2.1 (AMUXY, ARMA, 2010).  Assume (2.2) holds true, with 0 < s < 1,
v >max{—3,-3/2—2s}, 0 < T < +o0. QC RS, f>0,f=0,f€ L>(0,T]; HP (Q x
R3)) for any ¢ € N, be a solution of Cauchy problem (2.1). Then we have

f e C(0,T[xQ, S(RY)).
The main ingredient for the proof of the above Theorem are :
e The coercivity and upper bound estimates of Boltzmann operators.

e Uncertainty principle and regularity of the following transport equation:
(2.3) fi+v-V.f =geD(R.
The coercivity and upper bound estimates We have the following coercive estimate

Let g >0, g #0, g € L} Llog L(R3). Then for any function f € H
have

(R3), we

S
il
7 Ts

Cg_lan%]S%(R%) < (=Q(9, f): r2ws) + Cllgllz (Rg)||f||2L2%+S(Rg)-

Y+2s

We have also the upper bound estimate

1QUfs 9l zmrs)y < C|lfllp (R%)HQHH(”""QS L (R3) -

a++("/+23)+ a+~v+2s)

The results are due to : Alexendre-Desvillettes-Villani-Wennberg and also Alexendre-
Morimoto-Ukai-Xu-Yang (AMUXY).

The Littlewood-Paley theory
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e For the coercivity and upper bound estimate of non-cutoff Boltzmann operators, in
the Maxwellian case (v = 0), the proof is just by using the Fourier transformation
(Bobylov formula).

e But for general non Maxwellian case (v > —3), we need to use the following
Littlewood-Paley decomposition :

oo(v) + Z¢(2_kv) =1, veR3
k=1

with ¢g, ¢ € C§°(R3) and
supp ¢o C {[v| <2}, supp ¢ C {1 < v] < 3}.
Then we can study the Boltzmann operators with kinetic factors as

Bi(|v — vi],0) = ¢(27%(v — v,))|v — vy | 7b(cos ).

The Fefferman-Phong’s uncertainty principle and kinetic equations
The smoothing property of Boltzmann equation is like the following Hormander’s
type equation:
fetv-Vaof +(=L0)°f =g,

with Xo = 0 +v- Vg, X1 = (=A,)%. And it is in the form of transport equation as
(2.3).

Let a(r) = 772, Q is a cube in R™, ¢(Q) is the side length. Q* is any cube such
that Q C Q* with £(Q*) = 2/(Q). For a™,a~ >0,

E(Q,Q) ={ve Qs a*(v) > la”||lz=(q) — alt(@)} -
The main assumption on the functions a™,a™ is

(Ho) Jnf { % Q C Q* with 20(Q) = ¢(Q") } > k> 0.

Regularity for transport Equations

Theorem 2.2 ( Uncertainty Principle, JFA, AMUXY, 2008). If the condition (Hy)
holds, then

[ a@lse)Pa <o [ (10150 +a @),

for any f € S(R™).
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Theorem 2.3 (JFA, AMUXY, 2008).  Assume that g € H™ ¥ (R7),0 < s’ < 1,
f € L3(R") is a weak solution (2.3) such that |D,|°f € L?(R") for some 0 < s < 1.

Then L . . .
Ai( —s")/(s+ )f Af( —s")/(s+ )f

(1 + |,U|2)ss’/2(s—|—1)’ (1 + |v|2>s/2(s+1)

c L*(R").

The main idea in the proof of this regularity theorem is to define the corresponding
functions a4 (v) and show that they satisfy the condition (Hp) with the Fourier variables
7 and 7 as parameters.

B |T|2$(1—s')/(s+1) |n|28(1—s')/(s—|—1)
@ (v, 71) = o (4 [P /e T O o)/

and
[T+

at(v,7,n) =14+ —.
o r) = T e

Existence of the classical solutions
Consider the perturbation f = p+ ,/ig around a normalized Maxwellian distribu-
tion

[v]

plv) = (2m) " 2e” 27,

o

Since Q(u, 1) = 0, we have

QUf, f)=Qu, vrg) + Q(Vurg, 1) + Q(\Vig, Vitg).

Denote
(g, h) = = Qi g, Vi h).

Then the linearized Boltzmann operator takes the form

Ly =TV, 9) =T(g, Vir)-

We consider the Cauchy problem for the perturbation g

* Vg =TI ; 5 5
(2.4) {gﬁ-v V.q9+ Lyg (9,9), t>0

g’t:o = 4o-

We have the following existence of classical solutions for non-cutoff Boltzmann

equation.

Theorem 2.4 (JFA, AMUXY, 2012). Assume v+ 25 < 0,0 < s < 1 and v >
max{—3,—3 —2s}. Let N >4,¢ > N. There exists g9 > 0, such that if 9ol |3 ey <

€0, then the Cauchy problem (2.4) admits a global solution

g € L([0,400; H;' (R)).
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Here

ey = D I)PHEEDE8 £ g
lal+1BI<N

Theorem 2.5 (AA, AMUXY, 2011). Assume 0 < s < 1 and v+ 2s > 0. Let
go € HJ(RY) for some k > 6,¢ > 3/2 + 2s + . There exists g > 0, such that if
||90||H}; (re) < €0, the Cauchy problem (2.4) admits a global solution

g € L=([0, +o0[; HF(R?)).
By apply Theorem 2.1, then we have the regularity of solutions of Theorem 2.4-2.5,

f=p+ugeC=(0,T[xR? S(R?)).

8§3. The smoothing effect of the non-cutoff Boltzmann operators

Gelfand-Shilov regularizing effect

Another important work of Y. Morimoto on the microlocal analysis of kinetic equa-
tion is the regularizing effect of Cauchy problem in Gelfand-Shilov class.

The Gelfand-Shilov spaces S#(R?), with u,v > 0, u+ v > 1, are defined as the
spaces of smooth functions f € C*°(RY) satisfying the estimates

JA,C >0, [0y f(v)| < CA‘“'(a!)“e_%Ml/v, veRY aeN
or, equivalently

3A,C >0, sup [vP02f(v)| < CAlCHIBlaH (B, a, B e N
vERC

Also equivalently, f € S(R?) satisfying to the estimates
30 >0,e>0, |fw)|<Ce P fe) < cemelel”,

Remark that Gelfand-Shilov space is much strong than the Gevrey space(for which
v = +00) and the Schwartz space S(RY).
The Cauchy problem defined by the evolution equation associated to the harmonic

oscillator

8tf ‘|— Hf - 0,
fli=o = fo € L*(RY),

N[ o=

enjoys nice regularizing properties in S (R9) for any positive time, where
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is the d-dimensional harmonic oscillator.
Moreover, the smoothing effect for the solutions to the Cauchy problem defined by
the evolution equation associated to the fractional harmonic oscillator, 0 < s < 1,

Of+Hf=0
fli=o = fo € L*(R?),

1
occurs for any positive time in the symmetric Gelfand-Shilov space S2° (RY).
2s
The first result about kinetic equation is the regularizing effect of Cauchy problem
to the following Kolmogorov equation :

Of+v - -Viuf —AOf =0, (z,v) € R
fli=o = fo € L2(R2d)-

The solution of above equation satisfying f(t) € G 2 (R%4), for all ¢ > 0, in fact, we have
e MATEAI f (1, ) € LP(R™),

for some ¢ > 0 (Morimoto-Xu [26]).
For the solution of the spatial homogeneous radial symmetric non-cutoff Boltzmann
equation (Maxwellian molecule), we consider also a perturbation f = p+ /1g, then we

have

Theorem 3.1 (Lerner-Morimoto-Pravda-Starov-Xu, JDE, 2013).  Let go € L' (R3)N
L?(R32) radially symmetric and ||go||r2 << 1. Assume that g(¢) is the classical solution
of the Cauchy problem

0ig+Lg=T(g,9), gli=o0 = 9o -
Then, deg > 0,C > 0,Vt > 0,
e« g(t)| |12 < e goll L2,

this implies that )
vt >0, g(t)e S (R?).
2s

It is also true for the case s = 1, i. e. the homogeneous Landau equation.
Main ingredient of proofs of above results is the spectral decomposition of harmonic

oscillator on the Hermite basis, where the Hermite function is

1
d
v, = '—'A?l...Agd\yo, o= (041, ...,Oéd) e NY
aq:...04:
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with , 9
Wo(v) = (2m) " fe T, A= %] " O,

The family (¥,,)qene is an orthonormal basis of L?(R?) composed by the eigenfunctions
of the d-dimensional harmonic oscillator

2
H:—Av—l—%:Z(g—l—k)Pk, =Y P,
k>0 k>0

where P, is the orthogonal projection onto & =Span{V,;|a| =k} .
For the linearized radially symmetric Boltzmann operators, we have the following
spectral decomposition

L= MNP, A ~ K, (k— +00).
k>1

Then, we have
(£9.9) , ~ I gllss.

and the upper bounded estimate of Boltzmann operators,
(D(£.9), €"Suh) | < Cllet S afli2lles S ot 2gll1a ]|~ 1/ 2h) 1

with S,, = ZZ:O P.. This spectral decomposition permits to study also the smoothing
effect of the spatially inhomogeneous non-cutoff Kac equation,

atf"‘vaa:f = K(f?f)a
f|t:0 - f07

the Kac collision operator is defined as

K(g, ) :/e|g

BO) ~ |07, 0<s<l1.

B(0) (/R(gif' - g*f)dv*> de,

jus
4

where

The Kac equation for the fluctuation around the Maxwellian distribution reads

0rg + 00,9+ Kg=T(g,9),

(3.1)
gltzo = 9o,

Theorem 3.2.  There exist some positive constants ey > 0, cg > 1 such that for
all go € H*(R,; L?(R,)) satisfying

lgoll (R 22(R,)) < €0,
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the Cauchy problem (3.1) admits a unique weak solution g € L>([0, T]; H!(R.; L*(R,))).
Furthermore, this solution is smooth for all positive time 0 < ¢t < T', and satisfies the
Gelfand-Shilov-Gevrey type estimates:

Vo > 0,3C > 1,Y0 <t < T,Vk,{,pR,

Ck+l+p+1 2s+1 2s+1 2s+1

(k)55 (1) 5 (o) 5

[v* 05029 () || Lo (2 ,) < 190l 71 (R ;22 (R )) -

+ 255 (k+14p+3)+6

This result establishes a Gelfand-Shilov smoothing effect in the velocity variable
and a Gevrey smoothing effect in the position variable :

Vt>07 g(twr? )ES;_,—'_—E(RU)
2s

and
vVt > 0,9(t, -, v) € GH'i(Rx).

So that there are similar regularity properties as Kolomogrov equation with some loss.

The homogeneous Boltzmann equation with measure-valued initial datum
Recently, Y. Morimoto work for the homogeneous Boltzmann equation with measure-
valued initial datum.
For a € [0,2], P*(R3) denotes the probability density function f on R?® such that

l/%mafaodv<:ax
R3

and moreover when « > 1, it requires that

/vjf(v)dv =0, j=1,2,3.

R3
A characteristic function ¢(t,&) is the Fourier transform of f(t,v) € P°(R3):

P(t.6) = 1) = F(N1.O = [ st v)a
R3
For each « € [0, 2], set P*(R3) = F~1 (K*(R?)) with K(R?*) = F(P°(R?)) and
K2 (R?) = {p € K®?) : |l — 1l|p= < o0}.

Here the distance D% between (&) and ¢(£) with o > 0 is defined by

H(P_SEHDaE sup M.
oreers  [€]

It is easy to see that



148 C.-J. XU

e The set K%(R3) endowed with the distance D is a complete metric space;
e K*(R3) = {1} for all a > 2;
e the embeddings {1} C K%(R?) c KP(R?) C K(R3) hold for 2 > a > 8 > 0,

By taking the Fourier transform of the Boltzmann equation(Maxwellian case), we have
the Bobylev formula:

(3.2) Orp(t, &) = / B (%) (0 (£,€N) o (£,€7) — p(t,9)) do,
SZ

where we have used

o(t,0) = /f(t,v)dv =1,
R3

here,
4 lelo
2 )

-l

& &=

satisfying
EF+e=¢ TP HIEP =1
From now on, we consider the Cauchy problem for (3.2) with initial condition
(3-3) (0,€) = #o(&)-
Results available for the Cauchy problem (3.2)-(3.3):

e Global solvability: For a €]2s,2], this Cauchy problem admits a unique global
solution ¢(t, &) € C ([0, 00), K*(IR?)) for every po(§) € K*(R?)

e Regularity: If F=1(pg)(v) is not a single Dirac mass, f(t,-) € L'(R3)N H>(R3) for
any t > 0 (see [5] ).

When 2s < a < 2, the initial energy is infinite so that the solution will no longer tend

to an equilibrium, but to a self-similar solution: For any given constant K > 0

farx(t,v) = e 31l 4 (ve_“at) )

Ao B -0 |£—|a+|€+|a )
a = )‘a = B —11d ,
S S/ ( € ) ( €l 4
/\I/a’K(v)dv S, B (€) € KO(RY), Tim LT Yerk () g
ml=0  [n]*
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e Convergence to f, x(t,v): not well understood, even the convergence in distribution
sense is a problem.

For fo(v), go(v) € P*(R?), set

3
Pty =e M2 3 &aP0)X(€),

=1
P(0) = / (v = 10 ) (falo) = an(o)er
where
2o ()

X(€) = X(|¢]) is a smooth radially symmetric function satisfying 0 < X(¢) < 1 and
X&) =1for €] <1and X(£) =0 for || > 2.
The first result on the D219 —time asymptotic stability of the solutions is the fol-

lowing theorem.

Theorem 3.3 (Morimoto-Yang-Zhao, to appear JEMS).  Suppose fo(v), go(v) € P*(R?)
for v €] max{2s,1},2]. Let f(t,€) and §(¢,£) be the corresponding two global solutions
of the Cauchy problem (3.2) with initial data fo(£) and go(€) respectively. Assume for
some § €]0,a]N } 0, u%} , the initial data satisfy

(3.4) / w2(fo(v) — go(v))dv = 0,

R3

(3.5) R3

[0 folv) — go(v)ldv < +o0,
fo() = o) = P(0,)

< +00.
D2+6

Then there exists some positive constant C; > 0 independent of ¢t and £ such that

< Cie ™t t>0.

'D2+5

ft.) =gt ) = P, )|

Here, 7o = min{A — dpuq, B} and

o5 (-

SQ

245
0 +
COS =

2

.0
sin —
2

246 0_.5
) do, cos) = ——=.
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Note that for the D29 —convergence to the self-similar solution, one can simply
take go = ¥, x(v). Based on this, in order to obtain a convergence in strong topology,
such as in the Sobolev norms, we will give a uniform in time estimate on the solution

in H~-norm that is given in

Theorem 3.4 (Morimoto-Yang-Zhao, to appear JEMS).  For max{l,2s} < a <
2, assume that fo(v) € P*(R3) satisfies (3.4)-(3.5) and is not a single Dirac mass,
go(v) = ¥, ik (v). Then for any given positive constant ¢; > 0 and any N € N, there
exists a positive constant Cy(t1, V) such that

sup  { £tz | < Caltr, N).

tE[tr,+00)

Consequently, there exists a positive constant C3(¢1, N) such that
(36) [t = Farc(t, )] = [[#t0) = 0o (veret) | < Gy, Ny

holds for any ¢t > t;.

3
o
o

the convergence rate given in (3.6) is faster than the decay rate of the self-similar
solution itself. Hence in this case, the infinite energy solution f(t,v) converges to the
self-similar solution f, k(t,v) exponentially in time.
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