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Singularities and MZVs in Feynman Loop Integrals

By

Y. SUMINO*

Abstract

Feynman diagram is a theoretical tool for computing physical quantities in particle physics,
and each diagram is given as a multiple integral. Often Feynman diagrams can be expressed
by multiple zeta values (MZVs) and their generalizations. We discuss relations between singu‐
larities of diagrams and types of MZVs from a physicist’s viewpoint. This provides a hint to a
connection between topology of a diagram and its value in terms of MZVs. New technologies
for computing complicated diagrams and unsolved problems are also discussed.

§1. Introduction

Feynman diagram is a theoretical tool for computing physical quantities in quantum

field theory and elementary particle physics. There is a specific rule to associate a value

to a given Feynman diagram. Often the value of a diagram with non‐trivial topology

includes multiple zeta values (MZVs) and their generalizations.
For example, at present a fundamental physical constant the fine structure constant

 \alpha (related to the charge of electron) is determined most accurately from comparisons  0

experimentally measured values of the anomalous magnetic moment of electron  (g_{e}-2)
and its theoretical prediction. The current accuracy of  \alpha determined in this way is

better than ten digit accuracy!  (1/\alpha = 137.035999074(44)) The theoretical prediction
for  a_{e}\equiv g_{e}-2 is given as a function of  \alpha by the perturbative expansion1

(1.1)   a_{e}=a_{e}^{(2)}( \frac{\alpha}{\pi}) +a_{e}^{(4)}(\frac{\alpha}{\pi})^{2}+a_
{e}^{(6)}(\frac{\alpha}{\pi})^{3}+a_{e}^{(8)}(\frac{\alpha}{\pi})^{4}+a_{e}
^{(10)}(\frac{\alpha}{\pi})^{5}+ \cdot \cdot \cdot ,
Received October 21, 2014. Revised August 12, 2016
2010 Mathematics Subject Classification(s):
Key Words: Multiple zeta values, Feynman diagrams, loops.
Supported in part by Grant‐in‐Aid for scientific research No. 23540281 from MEXT, Japan.

 *

Department of Physics, Tohoku University Sendai, 980‐8578 Japan.
 e‐mail: sumino@tuhep. phys. tohoku. ac. jp

 1\mathcal{O}(m_{e}/m_{\mu}) terms are suppressed.

© 2017 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



16 Y. Sumino

where the expansion coefficients are given by

(1.2)  a_{e}^{(2)} =  \frac{1}{2},
(1.3)  a_{e}^{(4)} =  \frac{197}{144}+\frac{\pi^{2}}{12}+\frac{3}{4}\zeta(3)-
\frac{\pi^{2}}{2}\ln 2,
(1.4)  a_{e}^{(6)}  =   \frac{83}{72}\pi^{2}\zeta(3)-\frac{215}{24}\zeta(5)+\frac{100}{3} (   Li_{4}(\frac{1}{2})  + \frac{1}{24} ln42—   \frac{1}{24}\pi^{2}\ln^{2}2)

 - \frac{239}{2160}\pi^{4}+\frac{139}{18}\zeta(3)-\frac{298}{9}\pi^{2}\ln 2+
\frac{17101}{810}\pi^{2}+\frac{28259}{5184}.
By equating  a_{e} to the experimentally measured value, we obtain the value of  \alpha . Since

the expansion parameter  \alpha/\pi is much smaller than one, the above expansion gives a

fairly accurate prediction with only first several terms. The expansion coefficients can

be computed by evaluating Feynman diagrams. So far, they have been computed ana‐

lytically up to the third term  (a_{e}^{(6)})  [1] , while they have been computed numerically up

to the fifth term  (a_{e}^{(10)})  [2] . The above analytic expressions include a class of transcen‐

dental numbers, which can be expressed as infinite sums:

(1.5)   \zeta(n)=\sum_{m=1}^{\infty}\frac{1}{m^{n}} , ln2  =- \sum_{m=1}^{\infty}\frac{(-1)^{m}}{m},
(1.6)  -2 (   Li_{4}(\frac{1}{2})  + \frac{1}{24} ln42—   \frac{1}{24}\pi^{2}\ln^{2}2)  + \frac{\pi^{4}}{180}  = \sum_{m>n>0}\frac{(-1)^{m+n}}{m^{3}n},
where  \zeta(x) and   Li_{n}(x)=\sum_{k=1}^{\infty}\frac{x^{k}}{k^{n}} denote the Riemann zeta function and polylogarithm,

respectively. The infinite sums belong to generalized MZVs.

As the above example shows, it is an important theme of today’s quantum field the‐

ory and elementary particle physics to compute Feynman diagrams. To compute higher

orders of perturbative expansions for various physical quantities, one needs to evaluate

more complicated Feynman diagrams (with more complicated topologies). Empirically,
they are often expressed by more complicated (generalized) MZVs.

Relations between topologies of Feynman diagrams and MZVs are the subjects  0

common interests for mathematicians and physicists; see e.g. [3, 4, 5]. Mathematicians
want to relate a topology, represented by a Feynman diagram, to MZVs as given by

the value of the diagram. This may be used to characterize topologies if the relations

are understood well. Physicists want to find a systematic way to relate a topology  0

a diagram to the value of the diagram when expressed in terms of MZVs. If this is

achieved, physicists may find an efficient way to evaluate Feynman diagrams in terms
of MZVs.

Each Feynman diagram is known to be characterized by various singularities which

have clear physical origins. The singularities are closely tied to the topology of the
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Figure 1. (a) Example of a Feynman diagram with external legs. The internal lines correspond
to massive propagators with mass  m  =  1 . The upper internal line has the propagator power
 n=2 and the lower internal line has  n=1 . (b) Analyticity of  I(q) in the complex  q‐plane.

diagram. In this article we discuss connections between these singularities in Feynman

diagrams and generalized MZVs contained in the diagrams. To our knowledge there

exists no systematic argument for this connection, and we present an argument as

obtained from experiences in explicit computations of Feynman diagrams in particle

physics. We also explain some aspects involved in contemporary computations at higher
orders.

This article is organized as follows. In Sec. 2, examples of Feynman diagrams are

shown. In Sec. 3, we explain singularities in Feynman diagrams and their physical

origins. Then we discuss a relation between singularities of diagrams and types  0

MZVs in the diagrams in Sec. 4. We continue the discussion to more complicated cases

in Sec. 5. A new relation among complicated MZVs is explained in Sec. 6. An example

of an unsolved problem is given in Sec. 7. Finally we summarize our arguments in Sec. 8.

§2. Examples of Feynman Diagrams

An example of a Feynman diagram (with external legs) is shown in Fig. 1(a). To
each internal line  i , we assign a four‐dimensional vector (momentum)  \vec{p}_{i}  \in \mathbb{R}^{4} , a mass
 m_{i}  \in \mathbb{R} and an integer  n_{i^{2}}. To each external line  j a momentum  \vec{p}_{j}  \in \mathbb{R}^{4} is also assigned.

Each internal line represents a propagator  ( \frac{1}{|\vec{p}_{i}|^{2}+m_{i}^{2}})^{n_{i}} . At each vertex, momentum

conservation   \sum_{i}\vec{p}_{i}=\vec{0} is imposed (including both internal and external momenta). We
take the product of propagators and integrate over all possible internal momenta. Thus,

the value of the diagram in Fig. 1(a) is given by

(2.1)  I(q)= \int d^{4}p \frac{1}{(|p\neg^{2}+1)^{2}(|\vec{p}+\vec{q}|^{2}+1)},
where  \vec{p},  \vec{q}\in \mathbb{R}^{4} . The integral region is entire  \mathbb{R}^{4} . Since the integral is invariant under

rotation of  \vec{q} (  SO(4) invariant), it depends only on   q\equiv  |\vec{q}| . We can evaluate the above
2The four dimensions correspond to the dimensions of our space‐time.
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Figure 2. Example of a Feynman diagram without external legs. It is given by closing the external
lines of the diagram in Fig. 1 a) after assigning  m=  1 and  n=2 to the closing line.

integral easily and find

(2.2)  I(q) \propto \frac{1}{q^{2}\sqrt{1+4/q^{2}}} \log(\frac{\sqrt{1+4/q^{2}}+1}
{\sqrt{1+4/q^{2}}-1})
up to an irrelevant overall constant.

We may extend  q to a complex variable and examine the analyticity of  I(q) in the

complex  q‐plane. See Fig. 1(b) . The square‐root  \sqrt{1+4}/q^{2} generates branch points at
 q=\pm 2i . Branch cuts start from these branch points. One may check that there is also

a logarithmic singularity at  q=\infty.

An example of a Feynman diagram without external legs is shown in Fig. 2. It is

obtained by closing the external lines of the diagram in Fig. 1(a) , after assigning  m=1

and  n=2 to the closing line. By explicit computation, one finds that this diagram is

given by

(2.3)   \int dq\frac{1}{(|\vec{q}|^{2}+1)^{2}}I(q)\propto C1_{2} (\frac{\pi}{3}) ={\rm
Im} [\sum_{n=1}^{\infty}\frac{e^{i\pi n/3}}{n^{2}}] .

Thus, it is given by a special value of the Clausen function, which is a special type  0

dilogarithm.

The generalized MZVs considered in this article are defined by a nested sum

(2.4)  Z( \infty;a_{1}, a_{2}, . . . , a_{N};\lambda_{1}, \lambda_{2}, . . . , 
\lambda_{N})=\sum_{n_{1}>n_{2}>\cdots>n_{N}>0}\lambda_{1}^{n_{1}}\lambda_{2}^{n_
{2}}\cdots\lambda_{N}^{n_{N}}n_{1}^{a_{1}}n_{2}^{a_{2}}\cdots n_{N}^{a_{N}} ,

where  a_{i}  \in  \mathbb{N} and  a_{1}  \geq  2 . In the case  \lambda_{i}  \in  \{1\} it is simply called a MZV; in the

case  \lambda_{i}  \in  \{-1, 1\} it is called a sign‐alternating Euler sum. We also consider the cases

that  \lambda_{i} is a root of unity (e.g.  \lambda_{i}  =  e^{i\pi/3} ) and  \lambda_{i}  \in C. In computations of Feynman
diagrams, including the above example (2.3), these types of generalized MZVs appear
in the analytic results. Hereafter, we refer to generalized MZV simply as MZV.

Each MZV also has a nested integral representation. By way of example,

(2.5)   \int_{0}^{1}\frac{dx}{x}\int_{0}^{x}\frac{dy}{y-\alpha}\int_{0}^{y}\frac{dz}{z
-\beta} =-Z(\infty;2,1;\frac{1}{\alpha}, \frac{\alpha}{\beta}) ,
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which can be verified easily by rewriting the integrand as an infinite series expansion in

 y and  z and integrating each term. As inferred from this example, in the case that  \lambda_{i} ’s

are roots of unity, generally the nested integral representation has singularities of the

integral variables at zero or at roots of unity. We will use this property below.

§3. Singularities in Feynman Diagrams

A Feynman diagram is regarded as an analytic function of SO(4) invariants  0

the momenta of external lines. Singularities contained in a Feynman diagram can be

classified according to their physical origins as follows:

 \bullet IR singularity, generated as external momenta are taken to zero.  (qarrow 0)

 \bullet UV singularity, generated as external momenta are taken to infinity.  (qarrow\infty)

 \bullet Mass singularity, generated as the masses of internal particles are taken to zero.

 (m_{i}arrow 0)

 \bullet Threshold singularity, generated as the external energy crosses the threshold energy
of an intermediate state.  (q arrow\pm i\sum_{i\in I}m_{i})

Each type of singularity has clear physical origins. In a complicated Feynman diagram,

often overlaps of various types of singularities are included. Algorithms for evaluating

Feynman diagrams are essentially procedures to disentangle such overlaps of singulari‐
ties.

Here, we explain the origin of the threshold singularity in particular. For illustration

we consider the example given by Figs.  1(a)(b) and by eqs. (2.1),(2.2). Let us set
 \vec{q}=(0,0,0, q) ,  \vec{p}=(p_{1},p_{2},p_{3},p_{4}) and integrate over  p_{4} in eq. (2.1). The integral can be
performed using Cauchy’s theorem. Writing  \vec{p}'=(p_{1},p_{2},p_{3}) , we find

(3.1)  I(q) \propto\int d\vec{p}' [\frac{1}{(|\vec{p}'|^{2}+1)^{2}(q-2i\sqrt{|\vec{p}
'|^{2}+1})}+\cdots] ,

where we have shown explicitly only one term after partial fractioning in  q . If  q is along

the zigzag line shown in the upper half plane in Fig.l(b), the integrand diverges for
some  \vec{p}'\in \mathbb{R}^{3} . This shows that indeed there is a branch cut. The starting point of the

cut (branch point) is located at  i \sum_{a}m_{a} , where the sum is taken over the internal lines
 a included in an intermediate state. An intermediate state is indicated by the dashed

line in Fig. 3.

In general, for a given Feynman diagram, it can be shown that threshold singular‐

ities arise as branch points, each of which corresponds to the sum of the masses of an
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Figure 3. Intermediate state of  I(q) indicated by the dashed line, which gives rise to the branch cuts
from  q= \pm i\sum_{a}m_{a}  =\pm 2i.

Figure 4. Examples of diagrams which include MZVs with sixth roots of unity  \lambda_{i}  =  e^{in_{i}\pi/3} . Each
line corresponds to either a massive propagator with mass  m=  1 or a massless  (m=0) propagator.

intermediate state of the diagram.3 Since collection of intermediate states determines
the topology of a diagram, the threshold singularties carry information on the topology

of the diagram.

§4. Relation between Singularities of Diagram and  \lambda_{i} ’s of MZVs

In this section we discuss what kind of MZVs given by eq. (2.4) (in particular which
 \lambda_{i}' s) are associated with a diagram. We discuss some empirical aspects gained through

experiences in explicit computations. For instance, the diagrams shown in Fig. 4 are

known to be expressed by MZVs with  \lambda_{i} ’s given by sixth roots of unity. We have

already seen this for the second diagram in eq. (2.3). It is expected that  \lambda_{i} ’s are closely
connected to singularities in a Feynman diagram, which are also closely tied to the

topology of the diagram, as we have seen in the previous section.

Let us clarify the connection in the case of the second diagram of Fig. 4. On

the left‐hand‐side of eq. (2.3), we can integrate over the angular variables and reduce
the integral to a one‐dimensional integral over  q . The square‐root  \sqrt{1+4}/q^{2} in the

integrand can be eliminated by an Euler transformation  x  =   \frac{1}{2}  (1+ \sqrt{1+4}/q^{2}) . We

may further express the logarithm as an integral of a rational function. In this way, we

 3The locations of threshold singularities can be identified using the cut diagram method. This is
a generalization of the optical theorem, which follows from unitarity of the  S‐matrix in quantum
field theory.
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Figure 5. Cat’s‐eye diagram. Lines  n1 , . . . ,  n4 have mass  m=  1 and lines  n,n have  m=0.

can express this diagram as a nested double integral of rational functions, which is in

fact a MZV. The map of the singularities by the Euler transformation is given by

(4.1)  \{\pm i, \pm 2i, \infty e^{\pm\pi i/3}, --, (0,1)\}.

 x=  \frac{1+\sqrt{1+4/q^{2}}}{2}

The singularities at  \pm i stem from the propagator 1/  (q^{2} + 1)^{2} attached to  I(q) and
those at  \{\pm 2i, \infty\} are the ones included in  I(q) . The map is double‐valued, and the

singularities at  \pm 2i are mapped to regular points. As mentioned, the ratios of the

singularities of rational function in the integrand become  \lambda_{i} ’s of MZVs. Thus, we see

that sixth‐roots of unity are generated by this map, and that they indeed originate from

physical singularities in the diagram.

We discuss more complicated cases below.

§5. Computation of Diagrams: Method of Differential Equation

In computing Feynman diagrams, there is no known systematic method to disen‐

tangle general overlapping singularities in such a way to cast them into MZVs (if this
is possible at all).4,5 In simple cases this can be achieved, for instance, by iteratively
applying the method of differential equation [8]. We explain the method in this section.

Let us consider the Cat’s‐eye diagram shown in Fig. 5, with two kinds of masses
 m=1 (red lines) and  m=0 (purple lines) for the internal lines. We can choose various
combinations of the powers of six propagators,  (n1, . . . , n_{6}) . It turns out, however, that

only two of the combinations are independent, in the sense that any diagram with arbi‐

trary  (n1, . . . , n_{6}) can be expressed as a linear combination of two bases, say,  F_{1}(z) and

 F_{2}(z) corresponding to  (n1, . . . , n_{6})  =  (1,1,1,1,1,1) and (1, 1, 1, 1, 1, 2), respectively,
modulo diagrams with simpler topologies (see below).

 4In numerical evaluations of Feynman diagrams disentanglement of overlapping singularities is al‐
ways possible in finite steps, using sector decomposition and the theorem on resolution of singular‐
ities [6].

5Although Feynman diagrams without external legs and with integer masses cannot always be
expressed by MZVs, they can always be expressed as periods [7].
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Figure 6. Diagrams which appear on the right‐hand side of eq. (5.1). These diagrams are obtained
by pinching some of the internal lines of the Cat’s‐diagram (Fig. 5 .

If we differentiate  F_{1}(z) or  F_{2}(z) with respect to  z=  1/q^{2} , it can be expressed by

the same diagram with either n5 or  n_{6} raised by one.6 Hence, it can be expressed by a
linear combination of  F_{1}(z) and  F_{2}(z) , modulo diagrams with simpler topologies. The

latter diagrams are those, where some of the internal lines of the Cat’s‐eye diagram

are pinched. These are shown in Fig. 6. In this way we obtain a coupled differential

equation

(5.1)   \frac{d}{dz} (\begin{array}{l}
F_{1}
F_{2}
\end{array}) - (\begin{array}{ll}
0   4
\frac{6}{z(1-16z)}   -\frac{2(1-28z)}{z(1-16z)}
\end{array})  (\begin{array}{l}
F_{1}
F_{2}
\end{array}) = (\begin{array}{l}
f_{1}
f_{2}
\end{array}) ,

where on the right‐hand side  f_{1},  f_{2} are given by linear combinations of the diagrams in

Fig. 6.

The solution to the differential equation is given by

(5.2)   (\begin{array}{l}
F_{1}(z)
F_{2}(z)
\end{array}) =M(z)\int d_{Z}M(z)^{-1} (\begin{array}{l}
f_{1}(z)
f_{2}(z)
\end{array})
with

(5.3)  M(z) = (_{F_{2a}^{(hom)}(z)}^{F_{1a}^{(hom)}(z)} F_{2b}^{(hom)}(z)F_{1b}^{(hom)
}(z)) ,

where  (F_{1i}^{(hom)}, F_{2i}^{(hom)}) represents a solution to the homogeneous differential equation

[eq. (5.1) with  f_{1}  =  f_{2}  =  0]. Thus,  F_{i}(z) can be expressed as an integral of simpler
diagrams. The above solution depends on constants of integration. They can be de‐

termined from boundary conditions, such as expected asymptotic behaviors of  F_{i}(z) as
 zarrow 0 or  zarrow\infty.

The diagrams in Fig. 6 can be expressed by simpler diagrams in a similar manner.

Thus, this procedure can be iterated recursively to express  F_{i}(z) in terms of even simpler

diagrams. Finally diagrams become so simple that they can be evaluated easily in terms

 6If we retain  m  (= 1) ,  F_{i} is a function of  m^{2}/q^{2} . Hence, differentiating  F_{i} with respect to  m^{2} raises
the power of a massive propagator by one.
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of simple functions. Using this method, the Cat’s‐eye diagram can be expressed by a

combination of nested integrals of the form

(5.4)   \int_{0}^{z}d_{Zig_{i,1}}(zi)\int_{0}^{z_{1}}dz_{2}g_{i,2}(z_{2}) \int_{0}^{z_
{N-1}}dz_{N}g_{i,N}(z_{N}) .

Although  g_{i,j}(z) ’s include square‐roots, they can be eliminated by successive Euler

transformations and the integrand can be expressed by rational functions. Then the

integral can be written easily by combinations of MZVs.

Using the above method, we can convert Feynman diagrams to combinations  0

nested integrals. In simple cases,  g_{i,j}(z) ’s can be written in simple functions and

by transformations of integral variables we can convert diagrams to combinations  0

MZVs. On the other hand, the locations of singularities in terms of external momentum‐

invariants can be identified easily, for each diagram that appear at intermediate stages

of computations. Hence, we can trace the origins of  \lambda_{i} ’s and they can be associated to

physical singularities of diagrams, in the cases that this method can be used to reduce

Feynman diagrams to MZVs.

We anticipate that the above argument would be useful for elucidating the connec‐

tion between the topology of a diagram and its value in terms of MZVs.

§6. Proliferation of  \lambda_{i} ’s and Relations among Generalized MZVs

It is well known that various MZVs can be expressed by a small set of basis MZVs.

More precisely, one may consider the vector space over  \mathbb{Q} spanned by MZVs at each

given weight, and the dimension of the vector space is much smaller than the number

of MZVs. This fact enables us to obtain compact analytic expressions for higher‐order

terms of perturbative expansions of physical quantities, although they originally stem

from vast numbers of Feynman diagrams. (e.g. The anomalous magnetic moment  0

electron in Sec. 1.)
In computing diagrams with complicated topologies, we encounter the cases where

MZVs with more general  \lambda_{i} ’s are required. In such cases, reduction of MZVs to smaller

sets become quite non‐trivial. Although shuffle relations [9] are known to be powerful in
the case  \lambda_{i}  \in\{1\} , these relations become no longer sufficient, since there are too many

variables and constraints obtained by the shuffle relations are insufficient. In [10] we
have found a new class of relations among MZVs, which can be used to reduce MZVs
in such cases.

Let us give an example. Suppose that  \lambda\in \mathbb{C} satisfies

(6.1)  |\lambda|  \leq 1 and  \lambda\neq 1.
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We rearrange the order of the summation of a weight‐two MZV:

(6.2)  Z( \infty;1,1;\lambda, -\lambda) =\sum_{n>m>0}\frac{\lambda^{n}(-\lambda)^{m}}
{nm} =\sum_{ms=3=1}^{\infty}\lfloor\frac{s-1}{\sum 2}\rfloor\lambda^{s}\frac{(-
1)^{m}}{m(s-m)}
 =  \sum\lambda^{2r+1}\infty \sum^{r} \frac{(-1)^{m}}{m(2r+1-m)} +
\sum\lambda^{2r+2}\infty \sum^{r} \frac{(-1)^{m}}{m(2r+2-m)}. r=1 m=1 r=1 m=1

We set  s  =  n+m . The upper bound of  m follows from the condition  m  \leq  n-  1  =

 s-m-1 . In the last line we separate  s to odd and even numbers and set  s=2r+1

and  s  =  2r+2 , respectively. The sum over  m in the last line can be converted to a

combination of nested sums using Algorithm I of [10]. Hence, the right‐hand side is also
given as a combination of MZVs. In this way, we find a relation among MZVs:

(6.3)  z( \lambda, -\lambda)=-\frac{1}{2}z(-2\lambda^{2})+\frac{3}{4}z(-\lambda, -1)-z
(-\lambda, -i)-z(-\lambda, i)-\frac{1}{4}z(-\lambda, 1)
 - \frac{1}{4}z(\lambda, -1)+z(\lambda, -i)+z(\lambda, i)-\frac{1}{4}z(\lambda, 
1)+\frac{1}{4}z(\lambda^{2},1) .

A short‐hand notation for MZV is used, where the original forms can be reproduced via
 z (x1, . . . ,  x_{n} )  arrow Z(\infty;\alpha_{1}, \ldots, \alpha_{n};\beta_{1}, \ldots, \beta_{n}) with  \alpha_{i}=  |x_{i}(\lambda=1)| and  \beta_{i}=x_{i}/\alpha_{i} . For
instance, in the case  \lambda=  e^{i\pi/4} (a primitive eighth root of unity), we obtain a relation
between MZVs with eighth roots of unity, which is independent of the shuffle relations or

other known relations (to the best of our knowledge). In fact, this reduces the number
of new bases that appear at weight two for eighth roots of unity to two (in contrast to
the previously known three new bases).

§7. Challenge: Integral not reducible to MZV (as yet)

The following integral includes a constant whose value has not been expressed in

terms of MZVs up to now:

(7.1)   \int_{0}^{\Lambda}dx\frac{1}{\sqrt{x}\sqrt{1-4x}}\int_{1/4}^{x}dy\frac{1+2y}{y
\sqrt{1-y}\sqrt{1-4y}}\int_{1}^{y}dz\frac{Arc\tan z}{z1-z}
 =C_{2} \log^{2}\Lambda+C_{1}\log\Lambda+C_{0}+\mathcal{O}(\frac{1}{\Lambda}
\log^{n}\Lambda) .

We consider the limit  \Lambda  arrow  \infty and extract the coefficients  C_{0},  C_{1},  C_{2} as above. (We
omit the terms which vanish as  \Lambdaarrow\infty. )  C_{2} and  C_{1} can be expressed by MZVs, which
is already a result of a non‐trivial analysis. The constant  C_{0} has not been expressed by

MZVs and its nature is still unknown. This is a part of the third‐order perturbative

corrections to the static QCD potential, whose full analytic expression is as yet unknown.

Colleagues are invited to reveal the nature of  C_{0}.
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§8. Summary

In particle physics, evaluation of Feynman diagrams in terms of MZVs and their

extensions is a fundamental subject. There are many known examples, in which coeffi‐

cients of perturbative expansions of physical quantities are given by (generalized) MZVs
defined by eq. (2.4). In particular, we encounter the cases in which  \lambda_{i} ’s are roots  0

unity and more generally complex numbers.

At present, there is no known algorithm applicable to evaluate general Feynman di‐

agrams analytically. The method of differential equation is one of the powerful methods

for analytical evaluation. It converts Feynman diagrams to combinations of nested inte‐

grals. In simple cases, integrands can be transformed to rational functions and therefore

the integrals can be expressed in terms of MZVs. In such cases,  \lambda_{i} ’s can be related to

singularities of Feynman diagrams which have clear physical interpretations. In this

way we may elucidate connections between the topology of a Feynman diagram and the

types of MZVs included in the diagram. In evaluating complicated diagrams, overlaps

of various singularities and variable transformations to cast integrals to MZVs can cause

proliferation of  \lambda_{i}' s . In such cases, reduction of MZVs becomes quite non‐trivial and

new relations between MZVs become requisite. We have found a new class of relations

which are useful for this purpose.

Many aspects of complicated Feynman diagrams are still unknown. We quoted an

example in Sec. 7, which appears in a three‐loop Feynman diagram for the static QCD

potential. We encourage our colleagues to reveal its nature.
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