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Desingularization of multiple zeta-functions of
generalized Hurwitz-Lerch type and evaluation of
p-adic multiple L-functions at arbitrary integers

By

HIDEKAZU FURUSHO ; YASUSHI KOMORI;* KOHJI MATSUMOTO** and
HIROFUMI TSUMURA'

Abstract

We study analytic properties of multiple zeta-functions of generalized Hurwitz-Lerch type.
First, as a special type of them, we consider multiple zeta-functions of generalized Euler-
Zagier-Lerch type and investigate their analytic properties which were already announced in
our previous paper. Next we give ‘desingularization’ of multiple zeta-functions of generalized
Hurwitz-Lerch type, which include those of generalized Euler-Zagier-Lerch type, the Mordell-
Tornheim type, and so on. As a result, the desingularized multiple zeta-function turns out to
be an entire function and can be expressed as a finite sum of ordinary multiple zeta-functions
of the same type. As applications, we explicitly compute special values of desingularized
double zeta-functions of Euler-Zagier type. We also extend our previous results concerning
a relationship between p-adic multiple L-functions and p-adic multiple star polylogarithms to
more general indices with arbitrary (not necessarily all positive) integers.
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§0. Introduction

In the present paper we continue our study developed in our previous papers [6, 7],
with supplying some proofs of results in [6] which were stated with no proof. In [6], we
studied multiple zeta-functions of generalized Euler-Zagier-Lerch type (see below) and
considered their analytic properties. Based on those considerations, we introduced the
method of desingularization of multiple zeta-functions, which is to resolve all singular-
ities of them. By this method we constructed the desingularized multiple zeta-function
which is entire and can be expressed as a finite sum of ordinary multiple zeta-functions.

The first main purpose of the present paper is to extend our theory of desingular-
ization to the following more general situation.

Let &k, vk, 85 (1 < j <d,1 <k < r) be complex parameters with |§,| < 1, real
parts Ry, = 0, RB; > 0, and let s; (1 < j < d) be complex variables. We assume
that for each k (1 < k < r), at least one of Rv;; > 0. We define the multiple
zeta-functions of generalized Hurwitz-Lerch type by

(0.1) G ((s5); (&k)s (v5r); (B5))
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Obviously this is convergent absolutely when Rs; > r for 1 < j < d, and it is known
that this can be continued meromorphically to the whole space C? (see [12]).

In the present paper we will construct desingularized multiple zeta-functions, which
will be expressed as a finite sum of (. ((s;); (&x); (Vix); (B5))-

The multiple zeta-function of generalized Euler-Zagier-Lerch type defined
by

(0.2) G((s): (&) =D - Y TI&™ (maya + -+ myy;) ™~

mi1=1 mr=1j5=1
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for parameters §;,7; € C (1 < j < r) with |§;| = 1 and Ry; > 0, is a special case of
(0.1). In fact, putting d =7, vjr =y (j = k), v =0 (j < k), and B; =v1 +--- + 5,
(0.1) reduces to (0.2). This (0.2) was the main actor of the previous paper [6].

When &; = ~; =1 for all j, (0.2) is the famous Euler-Zagier multiple sum (Hoffman
[10], Zagier [20]):

(0.3) Go(stooyse) = Y o Y ]+ +my)%.

mi=1 m,=1j5=1

Singularities of (0.3) have been determined explicitly (see Akiyama, Egami and Tani-
gawa [1]).
On the other hand, when » = 1 and ; = 1, then the above series coincides with

the Lerch zeta-function

00
(0.4) P(s1,61) = Z &my

mi=1
It is known that ¢(s1,&;) is entire if & # 1, while if & = 1 then ¢(s1,1) is nothing but
the Riemann zeta-function ((s;1) and has a simple pole at s; = 1.

The plan of the present paper is as follows.

In Section 1 we prove that (-((s;); (§;); (7)) can be continued meromorphically
to the whole space C”, and its singularities can be explicitly given (Theorems 1.1 and
1.4). This result was announced in [6, Section 2] without proof. The assertion of the
meromorphic continuation is, as mentioned above, already given in [12]. However in
Section 1 we give an alternative argument, based on Mellin-Barnes integrals, which is
probably more suitable to obtain explicit information on singularities.

In Section 2, we give desingularization of the multiple zeta-functions of generalized
Hurwitz-Lerch type (see (0.1)), which include those of generalized Euler-Zagier-Lerch
type, the Mordell-Tornheim type, and so on. In fact, we will show that these desingular-
ized multiple zeta-functions are entire (see Theorem 2.2), which was already announced
in [6, Remark 4.5]. Actually this includes our previous result shown in [6, Theorem 3.4].
We further show that these desingularized multiple zeta-functions can be expressed as
finite sums of ordinary multiple zeta-functions (see Theorem 2.7).

In Section 3, we give some examples of desingularization of various multiple zeta-
functions. The main technique is a certain generalization of ours used in the proof of [6,
Theorem 3.8]. In particular, we give desingularization of multiple zeta-functions of root
systems introduced by the second, the third and the fourth authors (see, for example,
13)).

In Section 4, we study special values of desingularized double zeta-functions of
Euler-Zagier type. More generally, we give some functional relations for desingular-
ized double zeta-functions and ordinary double zeta-functions of Euler-Zagier type (see
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Propositions 4.3, 4.5 and 4.7). By marvelous cancellations among singularities of ordi-
nary double zeta-functions, we can explicitly compute special values of desingularized
double zeta-functions of Euler-Zagier type at any integer points (see Examples 4.4, 4.6,
4.8 and Proposition 4.9).

An important aspect of [7] is the construction of the theory of p-adic multiple L-
functions. The second main purpose of the present paper is to give a certain extension
of our result on special values of p-adic multiple L-functions.

In [14], the second, the third and the fourth authors introduced p-adic double L-
functions, as the double analogue of the classical Kubota-Leopoldt p-adic L-functions.
In [7], we generalized the argument in [14] to define p-adic multiple L-functions. On the
other hand, the first author [4] [5] developed the theory of p-adic multiple polylogarithms
under a very different motivation. A remarkable discovery in [7] is that there is a
connection between these two multiple notions. In fact, we proved that the values of
p-adic multiple L-functions at positive integer points can be described in terms of p-adic
multiple star polylogarithms ([7, Theorem 3.41]).

In Section 5 of the present paper, we extend this result to obtain the description
of the values of p-adic multiple L-functions at arbitrary (not necessarily all positive)
integer points in terms of p-adic multiple star polylogarithms (Theorem 5.8).

§1. The meromorphic continuation and the location of singularities

The purpose of this section is to prove the following result which was announced
in [6, Theorem 2.3].

Theorem 1.1.  The function (-((s;); (&5);(v5)) can be continued meromorphi-
cally to the whole space C". Moreover,

() I & # 1 for all j (1< j <), then G ((s)); (&); (1)) s entire.

(i) I & # 1 forallj (1< j<r—1) and & = 1, then (.((s;); (&): (7;)) has a
unique simple singular hyperplane s, = 1.

(ili) If & = 1 for some j (1 < j < r —1), then (((s5);(&5); (75)) has infinitely
many simple singular hyperplanes.

Actually the location of the singular hyperplanes will be more explicitly described
in Theorem 1.4.
Remark 1.  The multiple polylogarithm is defined by
Zfl . Zkv“

(11) Linl,...,nr(zlw'-azT) = Z PR ]{;Lr
1 r

= Z Z H(zj---zr)mj(ml+---+m]-)_”j,

mi1=1 myr=17=1
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where (n;) € N” and (z;) € C" with |z;| =1 (1 < j < r) (see Goncharov [9]). Inspired
by this definition, we generally define

(1.2) Lisy,. s, (21,05 20) = Gr((s5); (H zv); (1))

for (s;) € C" and (z;) € C" with |z;] =1 (1 < j < ) (see (0.2)). In fact, it follows
from Theorem 1.1 that the right-hand side of (1.2) can be meromorphically continued
to (s;) € C". Moreover, when HZ:j z, # 1 for all j, the right-hand side is entire. In
particular, setting &; = szj z, (1< j<r)and &1 =1, we obtain

: &1 & &r
(1.3 G565 (1)) = Limn, (1220
§2 &3 Ert1
for all (n;) € Z" when & # 1 (1 < j < r). In Section 5, we will show a p-adic version
of (1.3) (see Theorem 5.8 and Remark 7).

Now we start the proof of Theorem 1.1. Let C(j,r) be the number of h (j < h < r)
for which &;, = 1 holds. We first prove the following lemma.

Lemma 1.2.  The function (-((s;); (§;); (75)) can be continued meromorphically
to the whole space C", and its possible singularities can be listed as follows, where £ €
Ny := NuU{0}.

o If¢;=1,thensj+sjy1+-+s =C(j,r)—€ (1<j<r—1),

o If& =1, then s, =1,

o If&; #1 forallj (1< j<r), then (((s5); (&5); (7v5)) is entire.

Proof. We prove the theorem by induction on r. In the case r = 1, our zeta-
function is essentially the Lerch zeta-function (0.4), so the assertion of the lemma is
classical.

Now let r > 2, and assume that the assertion of the lemma is true for » — 1. The

proof is based on the Mellin-Barnes integral formula

ANdz,

(1.4) (1+A)7 = % " Al +FZ<§(_Z)

where s,\ € C, Rs > 0, |arg \| <7, A # 0, —Rs < ¢ < 0 and the path of integration is
the vertical line Rz = ¢. This formula has been frequently used to show the meromorphic
continuation of various multiple zeta-functions (e.g. [15], [16], [17]). In particular,
the following argument is quite similar to that in [17]. In what follows, € denotes an
arbitrarily small positive number, not necessarily the same at each occurrence.
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First of all, using [15, Theorem 3], we see that series (0.2) is absolutely convergent
in the region

(15) {(817"'737')‘O-T—j-l—l_'—"'_'—o'r>j(1<j<7a)}7
where 0; = Rs; (1 < j < r). At first we assume that (si,...,s;) is in this region.
Divide

—S,

(mim + -+ meyr)

s
_ My Yr
= (miy1 + -+ Mp_1Yr—1 ST(1+ ) '
(may r=1%-1) miyL 4+ My 1Yr—1

and apply (1.4) to the second factor on the right-hand side with A\ = m,~,./(m1vy1 +
-+ 4+ my_179,—1) to obtain

(1.6)

Gr((s5); (&5); (75))

:L/ F(Sr“ Z Z o x &y
2mi (c) mi—1 m171 (m171 +- 4+ mr—l’Yr—l)ST71
& ( MYy )zd
z
(miyr 4+ Mp_1¥r—1) \ My + -+ Mp_1vr—1
1 [(s, +2)I'(—2)

:% © F(Sr) §7’ 1(<517"'7ST—278T—1+ST+Z);(§17"'?§T 1) (71?"'7’77"—1))

X 7:¢(_Za €T‘)d’z

where —o, < ¢ < —1. (To apply (1.4) it is enough to assume ¢ < 0, but to ensure the
convergence of the above multiple series it is necessary to assume ¢ < —1.)

Next we shift the path of integration from Rz = ¢ to Rz = M — ¢, where M is a
large positive integer, and ¢ is a small positive number. This is possible because, by
virtue of Stirling’s formula, we see that the integrand is of rapid decay when &z — oo.
Relevant poles are z = 0,1,2,... (coming from I'(—z)) and z = —1 if { = 1 (coming

from ¢(—2z,&,.)). Counting the residues of those poles, we obtain

(1.7) Q((sj)'(ﬁj)'( i)

(81505 8pm2,8pm1 5 = 1)5(61y - 6r—1)s (10 - V=)

=0(r )

M —

Z ( ><T 1 (Sly--~75r—2787‘—1+Sr+k);(£17---7‘£r 1) (’717---;77"—1))
X’yr(b(_kvf?")
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1 L(s, + 2)I'(—2)
+ —
21 (M—¢) F(ST)
X C’F*l((sla ceey Sp—2,8r—1 + Sp + Z), (517 cee 7&7“*1); (’717 cee 7/77‘*1))
X ’Yf(ﬁ(_zaé})d'z

M—1
=X+ > Y(k)+2
k=0
say, where
1 (57" = 1)7
1.8 o(r) =
) ") 0 & #1)

From (1.5) we see that

Cr—1((81, ceey 8p—2,8p—1 1+ Sp + Z); (517 oo >€7”—1); (’71a s 777’—1))

is absolutely convergent if

Or—j+-+o.+Rz>j (1<j<r—1),
so the integral Z is convergent (and hence holomorphic) in the region
(1.9) {(s1,...,87) |ov—j+-+o,>j—M+e (0<j<r—1)}L

(Here, the condition corresponding to j = 0 is necessary to assure that the factor
['(s, + z) in the integrand does not encounter the poles.) Therefore by (1.7) and the
assumption of induction we can continue ¢, ((s;); (&;); (7v;)) meromorphically to region
(1.9). Since M is arbitrary, we can now conclude that ¢, ((s;); (§;); (7;)) can be continued
meromorphically to the whole space C".

Next we examine the possible singularities on the right-hand side of (1.7). By the
assumption of induction, we see that the possible singularities of Y (k) are

(1.10) sj+---+sp—2+S-1+s,+k=C(G,r—1)—¢ if =1 (1<j<r—2)
and
(1.11) o1t s thk=1 if & =1

If§; #1forall j (1 <j<r—1),then Y (k) is entire. The term X appears only in case
&- =1, and in this case, s, = 1 is a possible singularity. Moreover, by the assumption
of induction we find the following possible singularities of X:

(1.12)
Sj+"'+ST_2+87-_1—|—Sr—1:C(j,7”—1)—€ if szl (1<]§T—2, jZT)
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and
(1.13) Sp_1+s.—1=1 if & _1=1and§& =1.

If§ #1forall j (1 <j<r—1),then X is entire. Since k also runs over Ny, renaming
k+¢in (1.10) and k in (1.11) as ¢, we find that the above list of possible singularities
can be rewritten as follows (where ¢ € Ny).
es;+--+s = (C(j,r—1)+1)—fand s, =1if & =1(1<j<r—2)and
fr =1,
s, 1+s,=2—Cand s, =1if &1 =1and . =1 (given by (1.11) and (1.13)),
osi+ - +s5=C(r—1)—Lif§=1(1<j<r—2)and§ #1,
os,_1+s,=1—-0if&& 1 =1and & # 1.
Since C(j,r) = C(j,7 — 1) + 1 when & = 1 and C(j,r) = C(j,r — 1) when &, # 1,
the factors C(j,r — 1) + 1 and C(j,r — 1) in the above list are all equal to C(j,7).
This completes the proof of the lemma, because we also notice that C(r — 1,7) = 2 if
&1 =& =1land C(r—1,r)=11if &1 =1and & # 1. O

Next we discuss whether the possible singularities listed in Lemma 1.2 are indeed

singularities, or not. For this purpose, we first prepare the following

Lemma 1.3. Let £ € C with |§| = 1. If £ # £1, then ¢(—k,&) # 0 for all
k € No. If £ = +1, then ¢(—k,§) # 0 for all odd k € N and k = 0, and ¢(—k,&) =0
for all even k € N.

Proof. 1f £ = £1, then we have
¢(—k,1) = ((=k),
¢(—k, —1) = (2 = 1)¢(=k),

which reduces to the well-known cases. In the following we assume that £ # +1. Put
¢ =™ with 0 < 0§ < 1 and 6 # 1/2. It is known that

1 - tF
gt~ > o(—k, 5)@
k=0

(cf. [6, Section 1]). If k = 0, then we have

6(0,6) = T #0.

Assume k > 1. For any sufficiently small € > 0, we have

¢(=k,¢) L/ t=htat
|

a t|=e 1—¢&et

(1.14)

k! 271

1 et > 1
©2mi Jjye 1 — €20 = (2mi(n — 0))F+1’
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where the last equality follows by counting residues at the poles t = 2mi(n—@). Therefore
it is sufficient to show that

(1.15) ZW 0.

nez

If £ is odd, then the left-hand side is clearly positive. If k is even, then

1 > 1 1
Zmzz<(n+l—9)k+l B (n+9)k+1> 70,

nez n=0

because for all n > 0,

1 1 <0 (0<0<1/2)
(n+1-=0)"1  (n+0)"1 >0 (1/2<0<1).

The lemma is proved. U

Now our aim is to prove the following theorem, from which Theorem 1.1 immedi-

ately follows.

Theorem 1.4.  Among the list of possible singularities of ¢, ((s;); (§5); (75)) given
i Lemma 1.2, the “true” singularities are listed up as follows, where £ € Ny.

(I) If ¢, =1, then sj + - - + 5, = C(j,r) — ¢ (1<j<r—2),

(IT) If & -1 =1 and & = 1, then sp—1 + s, = 2,1, =24,

(IT) If & -1 =1 and & = —1, then sp—1 + s, = 1, =24,

(IV) If &—1 =1 and & # £1, then sp—1 + s, =1 — ¢,

(V) If & =1, then s, = 1.

Remark 2. When &; =v; =1 (1 < j <), this theorem recovers [1, Theorem 1].

Proof. The proof is by induction on r. The case r = 1 is obvious, so we assume
r > 2 and the theorem is true for r — 1.

First we put s,_1+s, = u, and regard (1.7) as a formula in variables s, .. ., S,_2, u, S,
This idea of “changing variables” is originally due to Akiyama, Egami and Tanigawa
[1]. We have

1
Tr
o0 srp u = 15 (€5 &) (1 1)),

Y(k) = (_]:7"> C’F*l((sla ceey Sp—2, U+ k)a (517 s 757“*1); (’717 s 7’77‘71))7f¢(_k7 57”)

X =0(r)

Consider Y (k). The singularities (1.10) and (1.11) are coming from the (._; factor.

These singularities do not be canceled by the factor (_lfr), because the (,_; factor
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(after the above “changing variables”) does not include the variable s,.. Also, if k' # k,
then the singularities of Y (k") and of Y (k) do not cancel with each other, because Y (k')
and Y (k) is of different order with respect to s,.

When &, = 1, the term X appears. The possible singularities coming from X are
(1.12), (1.13), and s, = 1. These singularities do not cancel with each other. Also,
these singularities do not cancel the singularities coming from Y (k), which can be seen
again by observing the order with respect to s,..

Therefore now we can say:

(i) The possible singularities of Y (k) are “true” if they are “true” singularities of
Gr—1 and ¢(—k, &) # 0,

(ii) When &, = 1, the hyperplane s, = 1 is a “true” singularity, while the other
possible singularities of X are “true” if they are “true” singularities of (,_.

Consider (i). By the assumption of induction, the “true” singularities of

gr—l((sh ey Sr—2,8r—1 + 8 + k)y (517 see ;gr 1) (/71; oo 7’77’—1))

are
(1) sj+-+s,+k=C(,r—1)—Lif§=1(1<j5<r—3),
(i-2) s,_ 2—|—sr s bk =21,-20if & 0 =1, 1 =1,
(i-3) Sp—o+ Sp—1+8p+h=1,-20if & o =1, &1 = —1,
(i-4) sp—p+sp—1+ 8, +hk=1-Lif {5 =1, &1 # £1,
(i-5) Sp_1 + sy +h=11if &_1 = 1.
Here, by Lemma 1.3 we see that k& € Ny if §. # +1, while k is 0 or an odd positive
integer if &, = +1. Renaming k 4 ¢ in (i-1) as ¢, we can rewrite (i-1) as
(1) s;+ 48 =Clr—1)—Lif&§=1(1<j<r—3)
Next, the equality in (i-2) is s,—2 4+ s,—1+ 8, =2 —k,1 —k, —2¢ — k, and the right-hand

side exhausts all integers < 2 even in the case when k is 0 or an odd positive integer.

1-

Therefore (i-2) can be rewritten as
(i-2) Sp—o+ Sp—1+ 8, =2—Lif & o =1,§_1 = 1.
Similarly we rewrite (i-3) and (i-4) as
(i-3") Sp—o+ Sp—1+ 8, =1—0if & o=1,&_1=—1,
(i-4") sp—o+ Sp—1+ 8, =1—0if & o =1, &1 # £1.
These (i-1")—(i-4’) and (i-5) give the list of “true” singularities coming from the case (i).
Next consider (ii). By the assumption of induction, the “true” singularities of

O

- ((817-‘ s Sr—2, Sr— 1+37’_1) (517"‘757’ 1) (717"'77’/’—1))

are
(ii1) 85+ s, —1=Cli,r—1) —Lif & =1(1<j<r—3), & =1,
(ii-2) Spoo 4 Sr14+ 8 —1=2,1,-20if & o =1,6_1=1,& =1,
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(i-3) Sy + Syt +8p —1=1,-20if & p=1,6_1 = -1, & =1,

(ii-d) 8y 0+ sp_1 s, —1=1—Lif & o=1,6 1 #£+L & =1,

(ii-5) sy 1 +sp—1=1if & 1 =1, & =1,
and

(ii-6) s, = 1 if &, = L.

The last (ii-6) is singularity (V) in the statement of Theorem 1.4.

From (i-1’), (ii-1) and the definition of C'(j,r) we obtain s; +---+ s, = C(j,7) — ¢
if §; =1 (1 <j <r—3). This gives singularity (I) for 1 <j <7 —3.

Consider the case j = r—2. From (i-2’) and (ii-2) we find that s, _o+s,_1+s, = 3—¢
are singularities if {,_o =1, .1 = 1, { = 1. From (i-3’), (i-4’), (ii-3) and (ii-4) we
find that s,_o + s._1 + s, = 2 — £ are singularities if & o =1, &1 # 1, & = 1.
These observations and (i-2’)—(i-4’) imply that s,_o + s,—1 + s, = C(r — 2,7) — £ are
singularities if {._o = 1. This is singularity (I) for j =r — 2.

Finally, from (i-5) we obtain the singularities s,_1+s, = 1 =0 if &1 = 1, & # 1,
and s,_1 + s, = 1,-20if {1 = 1, § = +1. The former case gives singularity (IV).
The latter case, combined with (ii-5), gives singularities (II) and (III). This completes

the proof of the theorem.
O

Remark 3.  In the above proof, an important fact is that there are infinitely many
k € N with ¢(—k, &) # 0. Actually, Lemma 1.3 ensures this fact. We can give another
approach to ensure this fact. The number defined by

(1.16) Hy(¢7") = (1-&d(-k &) (k€N

is called the kth Frobenius-Euler number studied by Frobenius in [8]. He showed that,
if £ is the primitive cth root of unity with ¢ > 1 and p is an odd prime number with

p1c, then
1
1y _
Hk(f ) = 5_1 —1 (mOd p)
for any k € Ny with £ =1 (mod p — 1). Thus there are infinitely many k£ € N with
1 _
P(—k,§) = 1T§Hk(€ b #0.

Remark 4. It is desirable to generalize the results proved in this section to more
general multiple zeta-functions defined by (0.1), but it seems not easy, because the
argument based on Mellin-Barnes integrals will become more complicated (see [18]).

§ 2. Desingularization of multiple zeta-functions

In this section, we define desingularization of multiple zeta-functions of generalized
Hurwitz-Lerch type (0.1), which includes those of generalized Euler-Zagier-Lerch type
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(0.2).
Combining the integral representation of gamma function

(2.1) I'(s) = as/ e sy
0

for a € C with Ra > 0, and

oo

(2.2) 1 ety

ev — g n=0

for |€] < 1 and y > 0, the multiple zeta-function of generalized Hurwitz-Lerch type
defined by (0.1) is rewritten in the integral form as

(2.3) G ((55); (&x); (vjn); (By)) = T(s1) '%‘F(Sd)

/ 6(711+---+71r—51)9€1 .. 6(7d1+"'+’7dr_,3d)17dm'i1_1 . 'CL’Zd_l
X

(6I1711+.4.+Id’7d1 _ 61) .. (6x1'717"+“‘+13d7dr — gr) dxy - - dzyg

T

1 / d . r 1
T, 1) Ju L7 () x]gexp(zjzmkxj)—sk

If & # 1 for all k, then, as was shown in [12], it can be analytically continued to the

whole space in (s;) as an entire function via the integral representation:

1
[T, (e2miss — 1)I'(s;)

d r r
x /Cd 1= eXP((Z Vik = ﬁj)fﬂj>d%‘ 11 a :
j=1 k=1

k=1 €XP (ijl ’m%) — &k

(2.4)  ¢r((55); (r)s (ir); (By)) =

where C is the Hankel contour, that is, the path consisting of the positive real axis (top
side), a circle around the origin of radius ¢ (sufficiently small), and the positive real axis
(bottom side). The replacement of [0,00)% by the contour C¢ can be checked directly
(for the details, see [12], where, more generally, the cases {; = 1 for some j are treated).

Motivated as in [6], we introduce the notion of desingularization.

Definition 2.1.  Let &, v,%,8; € C with || < 1, Ry, = 0, R5; > 0, and for
each j, at least one of Rvy;;, > 0. Define the desingularized multiple zeta-function,
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which we also call the desingularization of (,.((s;); (&x); (v5x); (B5)), by
G ((s7): (& ): (vin)s (B5))

1
= lim

=1 [T (1 —d(k)e)

d r
1 / s;j—1
— . Texp( (Y vk — Bj)x; )dx;
(627”5] _ 1)F(SJ) Cdj]‘__{ J ( ; )

(2.5)

=1

X
IT;
T 1 c
X — (k) )
1};[1 <exp (Z;-lzl %’k%‘) — & exp (C > %‘k%‘) —1

for (s;) € C", where the limit is taken for ¢ € R and 6(k) is as in (1.8).

Remark 5. If & # 1 for all k, then (,-((s;); (&k); (v5k); (B;)) is already entire as
we mentioned above, so there is no need of desingularization. In fact, since in this case

d(k) =0 for all k, (2.5) coincides with (2.4).

ForceR, y, £ € C,§ € {0,1} with d =1if £ =1, and § = 0 otherwise, let
1 1 c
(55— -0 ) (c#1),

1—dc\ey —¢ (e —1)
Fc76(ya€> - 1 oY
- (c=1),
¢ -1y

and further we write Fs(y, &) = F15(y,§).

Theorem 2.2.  For &, vk, 85 € C as in Definition 2.1, we have

G ((55); (€r)s (vn): (B7))

_ 1 d o1 r o |
(2.6) N H;l:l(ezm'sj —D)I(sy) /Cdjl:llxj e p((; Vik ﬁj)xj>dxj

T d
< T Fswy | D vinzsnén |
k=1 j=1

and is analytically continued to C" as an entire function in (s;).

Theorem 2.2 can be shown in almost the same way as in [6, Theorem 3.4]. We first
use Lemma 2.4 below in place of [6, Lemma 3.6] to find that the limit and the multiple
integrals on the right-hand side of (2.5) can be interchanged. Then we use the following
Lemma 2.3 to obtain the assertion of Theorem 2.2.

Lemma 2.3.
Fus(y,€) = lim Fe 5(y, ).
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Proof. 1f £ =6 =1, then

) 1 1 c . 1 1 c
lim < ) )zhm ( — )
c—11—dc\ey — & ey —1 c»11l—cl\e¥Yy —1 e —1

1 —eY+yeY
(27) o (ey _ 1)2
1 yeY
ey —1 (ev—1)2’
while if § = 0 and & # 1, the assertion is obvious. U

Let N(e) ={z€C | |z|] <e} and S(0) = {z € C | |argz| < 0}.

Lemma 2.4. Let 0 < 0 < w/2. Assume || < 1. Then there exist A > 0 and
sufficiently small € > 0 such that for all ¢ € R with sufficiently small |1 — ¢/,

(2.5) Fos(y,6)] < Ac~"02
for any y € N(e) US(0).
Proof. (1) Assume § = 0 and £ # 1. Then there exist £,C > 0 such that for all

y € N(e),
1

Fos(y, &) = ‘ ) C.
[Fe5(y,8)] ¢l <
Further for y € S(0) \ N(g), we have
1 e Ry
F, < - <Cle ™.
| 75(y7€)| |ey|_1 1_6_§Ry C@

(2) Assume 6 = £ = 1. Then this case reduces to [6, Lemma 3.6]. O
It is to be noted that the following continuity properties hold.

Theorem 2.5.  The desingularization (3% ((s;); (€x); (vjk); (B;)) is continuous in

both (s;) and (&). In particular, if & # 1 for all k, then (-((s;); (§k); (vix): (B5)) is
continuous in both (s;) and (&).

Proof. The first statement follows easily from Lemma 2.4 by using the dominated
convergence theorem. The second statement is just a special case of the first statement
in view of Remark 5. U

Next we give a generating function of special values of (,((s;); (&x); (vix); (B5)) at
non-positive integers. Write the Taylor expansion of Fj(y, &) with respect to y as

R SR GO o SRy i
_ey_g 5(ey—1)2_7§F‘5(£>n!'

(2.9) Fs(y,€)
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Then

Biw  (€=14=1),
(210) ) =

9 g0

where B,,;1 denotes the (n + 1)-th Bernoulli number. The first formula of (2.10) can

be shown by differentiating the definition of Bernoulli numbers

(2.11)

y
ey—l ZB

while the second formula follows from (1.14) and (1.16).

Theorem 2.6. Let \i,...,\q € Ng. Then we have

(212) G (=25 (&) (va)s (B5)) =

d
H(_l)/\j)\j[ Z (H F(;/(llf)+ “FVdak k:)>

mj—‘rl/jl-‘r----i-l/j,-:)\g k=1

(1<j<d)
d v
(H D k=1 Vik — B;)" )(H - Vjijck>
m;! V!
j=1 J j=1k=1 "7

Proof. Let D; =%, _, vjx — B;. It is sufficient to calculate the Taylor expansion
with respect to x;’s of the integrand on the right-hand side of (2.6). Using (2.9) we
have

(2.13) Hexp( Zvjk — 55) x]> H Fsw) <273k33j7§k>
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Fk(

Z 1 ‘“’“) (ZWJ)

ni,...,nr=0 k=1

> e

ni,. anr—Ok 1

d
Nk Vik Vik
( ) Ty
Vky,.--,Vdk

I
3

I
g

=
3o
—&
=3

I
—
<

ml,...,md:O J

-
3

[
(]

.
2o
—8
e

I
_
<

mi,...,mgqg=0 \j

(]

Vig+-+var=ng j=1
o) d m; o) r ng d
D;” Fyihy (k)
_ J_my 5(k) Vik  Vik
-y (I2) s 0y S s
mi,...,mq=0 =1 Nniye..,Npr=0 k=1 v+ FVir=np 7j=1
00 00 d m; d r Vik
- > Y Y (T[22,
5(k) m; ! I/'k!
Mi1yeee;mag=0n1,....,np=0 v1p+Fvap=nr k=1 j=1 j=lk=1 7
(1<k<r)
d
mj+vii+-+vr
<11+ ;
i=1
which gives the formula (2.12).
O
Remark 6.  Since D;j =0 for all j = 1,...,d in the case of multiple zeta-functions

of generalized Euler-Zagier-Lerch type, only terms with m; = 0 with j = 1,....,d

contributes to the sum in the formula (2.12), which recovers [6, Theorem 3.7].

Lastly, we give a formula which expresses the desingularized zeta-function as a linear
combination of ordinary zeta-functions of the same type, which is a generalization of
[6, Theorem 3.8]. To this end, we prepare some notation and assume the following

condition: There exists a set of constants ¢,,; (1 < k,m < r) such that

d

(2.14) Zcmj’)/jk = 5mk
j=1

for all k, m, where d,, is the Kronecker delta. Under this assumption, for indeterminates
u = (u;j),v=(v;5) (j=1,...,d), we define the generating function

(2.15) G(u,v) = ﬁ{l — (k) (1 + i:ckj(vj_l — Bj)) (i 'yjkujvj> },

and also define constants oy ., as the coefficients of the expansion

d
(2.16) G(u,v):Zal,mHuéjv;nj with 1= (l1,...,lg), m=(my,...,mg).
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We define the Pochhammer symbol (s); = s(s+1)---(s + k — 1) as usual. Then we
have the following theorem, which is a generalization of [6, Theorem 3.8].

Theorem 2.7.  Under the assumption (2.14), we have

(2.17) G((s5); (& ): (vm); (B))

:Zal,m(f[ )y ) G5+ m): () () (7).
2\ 11

Proof. First note that it is sufficient to show the statement with sufficiently large
Jts; due to the analytic continuation. Then we can write

(2.18) C“ies«sﬂ) (&k); (Vjk); (53)) c—>1 ((H£L(1£(k1)’—(’?(kl€))’c()ﬁj)),
where
(2.19)

1 - 851 - B\ :
L) (60 o) 9D = /_)O)f_[ exp(( e~ )23

T 1 c
X — (k) ) .
1};[1 <6XP(Z?1 %’k%‘) — & exp (C >y %‘k%) —1

We obtain

. L((5); (k); (k) (B7))
(2:20) -l = 0 s(k)e)

— 21_% Hg T(s;) /0 o H x) eXp<(I;7jkz - 5j)acj>d;pj
X H Fe s <Z /ij.ﬁl;’j,fk)
k=1 e
T(s;) /0 o H x eXP((kZ—; Yik — ﬂj)xj>dxj
X H Fis i) (Z YikTjs §k>.
k=1 j=1

For |£] < 1 and y > 0, equation (2.2) and

o0

(2.21) v =3 (n4 1)

-1 " &
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holds. Using these formulas, for any K C {1,...,r} we have

(2.22) /[O’Oo)djlixjjlexp«g Vik — Bj)zj>dxj
1 (k) <Z?=1 ’W%‘> exp <Z;'l:1 %‘k%’)
(o (o) 1)

= /[O » f[xjj_leXp((i%k - 5j)xj>d$j H o(k) (i ij)
(St )

X
d
k¢ K €XP <Zj:1 %‘k:ﬂcj) — &k kek

k¢ K \hp=0
X H (Z (hk + 1) exp(—(hk + 1) Z’ijilij)>
ke K \hr=0 7j=1
= Z hk+ / Ha: a exp( Z’yjkhk—kﬂj :L'J)dscj
h >0 kGK
1<k<r

d
< TT & TT 60 (3 vinas ).
k¢ K keK j=1

(When K = ), the empty product is to be regarded as 1.) Since d(k) = §(k)&p*, we

have
(2.23) [Tk I &= T o) IT &
keK k¢K keK k=1

Also, since we assume (2.14), we can write

(2.24) IRMH—IHZ%@+Zwm—W+Q

kEK leK j=1

Therefore, introducing constants By with I = (l1,...,lq) € Ng as the coefficients of

the expansion
d d
(2.25) H d(k) (Z 'ijx]) = ZBK,z H 1‘?}
keK j=1 l Jj=1

we find that (2.22) is equal to

(2.26) ;BKJ S (T (e + i’}/gkhk ~ ) +1)) HE

hi>0 meK j=1
1<k<r

U
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/O - H ay T eXp(—(ZT: Vikhi + ﬁj)xj>dﬂfj
_ZBKL > (11 (Zcmj ﬂj—l-Z’)’gkhk +emo) ) e
k=1

hy>20 meK j=1
1<k<r

d 1
H sj-i—l

. 8j+lj )
B (i)

where ¢,p0 =1 — 2?21 ¢mjBj. Consider the factor

d r
H (Z ij(ﬁj + Z’Y]khk) + CmO) (:; Q, say)
k=1

meK j=1

on the right-hand side of (2.26). Putting

D ey ikl (1< <
(2.27) aj = Bi 4 > k=1 Vikha ( j <d),
1 (j =0),

we find that

Q=] icmj%z > (H ijm><H O‘“)'

meK j=0 0<ims<d meK meK
meK

For each {j,, | m € K}, define
J(G) = TG {gm}) = Hm € K [ jm =3} = ) 65,  (1<j<d).
meK
Then we see that .
S0
Il e =11 v
meK j=1

Therefore we obtain

d r
(2'28) Q = Z ( H ijm> H(/Bj + Z’ijhk)J(j)-
j=1 k=1

0<jm<d meK
meK

Using (2.28) we find that (2.26) can be rewritten as

d

;BKJ(H (sj +1; )

J=1
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= (M) )

hp>20 \0<jm<d meK L < . B B
1<k/<7“ meK ijl BJ Zk,1 VikItk

:ZBKJ(H (55+1)) D0 (T emin )6 (1415 = TG): (€0): (0): (8)).
l

j=1 0<jim<d meK
meK

Therefore from (2.18) we obtain

(229) G ((s5); (& ); (vn); (B))

- Z (—1)IKl Z Bk (ﬁ(sj)lj>

Kc{1,...,r}

2 ( 11 Cmﬂ'm>fr<(sj + 1 = J()); (k)i (jk); (@)).

0<jim<d meK

meK
Put
d .
(2.30)  H(uw,v):= Y ‘K'ZBKz 3 (H ijm) [T w0,
KC{l,...,r} 0<jm<d meK j=1
meK
Our last task is to show that
(2.31) G(u,v) = H(u,v).
From (2.25), we have
(2.32)
d ‘ d o
Hwoy= 37 0% 3 (1w ) (TT57) 3 Bra [Ty
Kc{l,..,r} 0<jm<d meK j=1 l j=1
meK
d d
= > Y (10 Cmam)(H H B ) T 600 (X viwuss ).
Kc{1,...,r} 0<]m§d meK meK j=1 keK j=1
me

Since we see that
d
H,Ui(sjvjm I ,Ujm <‘] 1)
71 (m=0),
j=1

under the convention vy = 1, we find that the right-hand side of (2.32) is equal to

S M S (T o) TT309 (S wen)

Kc{1,.., r} 0<jm<d mEK
meK
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= Z (-1 |K‘<H<Zcmjfu +1-— Zcmjﬂj>>

Kc{1,...,r} meK j=1

x [T ak) (Z %’kua‘va’)

keK

_ Z (_1>|K\{H 5(]{)(]_—|—zi:ij(Uj_l_6j)) (Zi:%‘kujvj>}

Kc{lL,...r} kEK
=H{1—5(k)<1+§:c;@j(vj_l— ><ny]kujvj>} G(u,v),

hence (2.31). Therefore, regarding (s;);, and ¢, ((sj + 1 — J(4)); Ek); (Vir): (53))

) ) l; Li—J(
indeterminates u.? and vjj @)

; , respectively, we arrive at the assertion of the theorem.

O

§ 3. Examples of desingularization

Our Theorem 2.7 in the preceding section requires the assumption (2.14). In this

section we see how this assumption is satisfied in examples.

Example 3.1. In the case of the triple zeta-function of generalized Euler-Zagier-
Lerch type (d = r = 3), we have

(3.1) (&) = <1 1 1> ; (85) = (71 iEv2 e+ 73> ;
wto0 0 7 00
(3.2) (emj)=|-%" %" 0 [, (u)=[71n70
0 —v 75! Y1273
The generating function constructed by using these data coincides with G(u,v) in [6,
Example 4.4].
Example 3.2. Consider the case of the Mordell-Tornheim double zeta-function,

which is defined by the double series

(33) CMT,2(81752783) = Z Z S81,.,,52 .
2

(cf. [15] [18]), corresponding to d = 3 and r = 2. In this case, constants c,,; are not
uniquely determined. For any a,b € C, we have

(3.4 ©)=(11).  B)=(112),
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10

a+1 a -—a
(3.5) (ij)=< " b+1—b>’ (vjk) = |01
11

Therefore we have

G(u,v) = (1 — vy (ugvy +uszv3))(1 — vy (UQ'U2 + uzvs))
— (1 — vy Mugvy + uzvs)) (vt + vyt — w3t (urvr 4 uzvs)a
— (1 — vy Nugvr +usvs)) (ot oyt — vgl)(ugvg + usv3)b
+ (ot vyt — ’U3_1)2(U11)1 + usvs) (ugve + uzvs)ab
= (uy — V)(ug — 1) + us(ur — vy vz + us(uy — 1oy tos + uivy toy o
+ {(UQ — D(ug — us) —us(1 — uy — ug + us)vy ‘vz + udvy 03
+ 1 (ug — uz — Dvvg ' — ug(ug — 1)1}11)3_1 + uuzv1vy 203
+ (ug — 1uzvy vz +uivy toy lvg}a

+ {(ul — D (ug — us) —us(1 — uy — ug + us)vy 'vs + udvy 02

-1 1 —2
+ ug(ur — usz — 1)vy wg — ug(ur — 1)vovy 4 ugusvy “vavs
~1.-1.2
+ (ug — Dugvy vz +uivy toy Ug}b
+ {u% — 2U1U3 — QUQU;), + 2U1U2

+ ug(uy 4 2uy — 2u3)vl_11)3 + us(2ug + ug — QU3)’02_1’03
+ U1U31)1U2_2’U3 + U2U3Ul_2’021)3

+ up (ug — QU3)v1v2_1 + ug(ug — 2u;>,)vl_1v2

— u1(2u2 — u;»,)vlvs_l — uz(2uy — U3)1)2’03_1

+ u3vl v3 + u3v2 21}%

— ~1, -1, 2
+ U U1 Va3 2 4 2udvy Ty vs}ab.

From the constant part of this expression with respect to a and b, we obtain the following

identity, which is an example of Theorem 2.7.

(3.6)

](%4% o(s1,82,83) = (51 —1)(s2 —1)Cumr,2(s1, S2, 53) +53(s1 —1)Camrr,2(s1, 82 — 1,83+ 1)

-+ 83(82 — 1)CMT,2(31 — 1,52,83 + 1) + 83(53 + 1)CMT,2(31 — 1,82 — 1, S3 + 2).
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On the other hand, coefficients of a, b, and ab give rise to the following identities!:

(3.7)
(s2 — 1)(s1 — s3)Cmr,2(81,82,83) — $3(2 — 81 — S2 + $3)Cmr,2(s1,82 — 1,83 + 1)
+ s3(ss + 1)Cur2(s1,82 — 2,83 +2) + s1(s2 — s3 — 1)Cur2(s1 + 1,52 — 1, s3)
—s1(s2 — 1)Cumr2(s1 + 1, 82,83 — 1) + s153Cmr2(s1 + 1,82 — 2,53 + 1)
+ (s2 — 1)ssCur2(s1 — 1, 82,83 + 1) + s3(s3 + 1)Cur2(s1 — 1,82 — 1,83 +2) =0,
(3.8)
(s3(s3 + 1) — 28153 — 25253 + 25152)Cumrr,2(S1, S2, 53)
+ s3(81 + 252 — 283 — 2)Curr2(51 — 1, 82,83 + 1)
+ 53(251 + 52 — 283 — 2)Curr,2(51,82 — 1,83 + 1)
+ s183CmT,2(51 + 1,50 — 2,83 + 1) + s253CumT,2(51 — 2,82 + 1,83 + 1)
+ s1(s2 — 2s3)Cvr,2(s1 + 1,82 — 1, 83) + sa(s1 — 283)Cpr2(s1 — 1,52 + 1, 83)
— 51(2s2 — s3)Cur2(s1 + 1, 52,83 — 1) — s2(281 — s3)Cmr,2(51, 52 + 1,83 — 1)
+ s3(s3 + 1)Cur2(s1 — 2, 82,53 +2) + s3(s3 + 1)Cvr,2(51, 52 — 2,53 + 2)
+ s152Cmr2(s1 + 1,82 + 1,83 —2) 4+ 253(s3 + 1)Cmr2(s1 — 1,82 — 1,53 +2) = 0.

The coefficients of a and of b give the same identity (3.7) (because of the symmetry of
s1 and sz in (3.3)), while (3.8) follows from the coefficient of ab.

However it should be noted that each coefficient of s; in (3.7) and (3.8) can be
shown to be equal to 0 by partial fractional decompositions. Hence these equations do
not yield new relations. Similarly in general cases, it may be expected that only the

constant term will give a non-trivial result.

The following example can be regarded as a root-theoretic generalization of Exam-
ple 3.2, because (yrr,2(51, 82, 53) is the zeta-function of the root system of type A,.

Example 3.3. In the case of zeta-functions of root systems (cf. [13]), we have

(3.9) (k) = (Er)1<hsrs (Ba) = ({(@”, p))aea
(3.10) (ema) = (1:0), (ar) = ({0 AD)acaacher

where I, is the r x r identity matrix, Ay = {ay,...,q;,...} is the set of all positive

roots in a given root system, whose first r elements aq, ..., «a, are fundamental roots,

IHere, the second term of (3.7) is not s3(1 — s1 — s2 + s3), but s3(2 — s1 — s2 + s3), because the
factor corresponding to u3(1 + u3) = uz + u% is not s3(1 + s3), but s3 + s3(s3 + 1) = s3(2 4 s3).
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d =|A4|, p is the Weyl vector, and Aq,--- , A\, are fundamental weights. Thus

T

G(u,v) = H (1 - 5(k)(1 + Z Cra (vt — Ba))< Z 'yakuava)>

k=1 ach, eh,
(3.11) = H (1 — (k) <1 +ugl - <ag,p>) ( 3 @, Ak>uava>)
k=1 ael,
- ﬁ (1 —5(k) > (", )\k>uavav;kl>.
k=1 aEAL

In particular, if £ =1 (1 < k < r), then

(3.12) G(u,v) = ﬁ (1 — Z <av,)\k>uavav;kl>.
k=1

CYGA+

§4. Special values of ({* at any integer points

The multiple zeta-function of Euler-Zagier type defined by (0.3) can be meromor-
phically continued to the whole complex space with many singularities (see [1]). In the
case r = 2, the singularities of (2(s1,s2) are located on

82:1, 81+82:2,1,0,—2,—4,—6,...

([1, Theorem 1]), which implies that its special values of many integer points cannot be
determined.

Here we consider the desingularized double zeta-function of Euler-Zagier type de-
fined by

3o (51, 89) = (5% (1,805 1,1;1,0,1,1;1,1)

in (2.1) with (r,d) = (2,2). We showed in [6, (4.3)] that

(4.1)  (5%(s1,52) = (s1 — 1)(s2 — 1)(a(s1, 52)
+ s2(s2+1—s1)C(s1 — 1,80+ 1) — sa(s2 + 1)Ca(s1 — 2,52 + 2),

which is entire. Therefore its special values of all integer points can be determined,
though each term on the right-hand side has singularities. We give their explicit ex-
pressions as follows. Note that a part of the examples mentioned below were already
introduced in [6, Examples 4.7 and 4.9] with no proof.

First we consider the case sy € Z<o. We prepare the following lemma.
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Lemma 4.1. For N € Np,

N
42 Glo ) =~ lls = N =1+ Y () )els - N+ R

hold for s € C except for singularities.

Proof. 1t follows from [15, (4.4)] that

M—

—

) Calor,s2) = — 1((81 +s2—1) + Z <_k82)<(81 + 50+ k)((—F)
°2 k=0
1
+ m /(M_e) F(S2 + Z)F(—Z)C(Sl + s9 + Z)C(—z)dz

for M € N and (s1,s2) € C? with Rsy > —M + &, R(s1 + s2) > 1 — M + ¢ for any
small € > 0. Setting (s1,s2) = (s,—N) and M = N 41 in (4.4), we see that (4.2) holds
for any s € C except for singularities because the both sides of (4.2) can be continued
meromorphically to C. Next, using the well-known relation

C2(s1,82) + G252, 51) = C(s1)¢(52) — C(s1 + 52),
we can immediately obtain (4.3). O

Example 4.2.  From (4.2) and (4.3), we have

(4.5) Gal5,0) = ~Cls — 1) — 5¢(9),
(4.6) Gl 1) = —5C(s —2) — 3¢5 — 1)~ 75C(s),
(4.7) G(0,5) = (s~ 1)~ C(s),
(48) G(-1,5) = 5 {¢(s —2) ~ (s~ 1)}
Proposition 4.3.  Fors e C and N € Ny,
(4.9) 5°%(s,—N) = —g:o (]lj) (k+1)(s—N+k—1)(s— N+ k)((—k).

Proof. From (4.1) we have

des(s, —N) = (s — 1)(=N — 1){a(s,—N) = N(=N +1 — 5)Ca(s — 1, =N + 1)
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+ N(=N +1)C(s — 2, —N +2).

Substituting (4.2) with (s, —N), (s—1,—N+1) and (s —2, —N +2) into the right-hand
side of the above equation, we have

P :i{(s_l)(_N_l)(]Z) —N(—N+1—s)(Nk—1)

k=0

+N(=N +1) (Nk_ 2) }g(s _ N+ R)C(—k),

and the right-hand side of the above formula can be transformed to the right-hand side
of (4.9). O

Example 4.4. Setting N = 3 in (4.9), we obtain

—4 -3 -1
(4.10) §°(s.-8) = S5 (s = ) + T C(s = 2) = T C(s).
For example,
des _ i des 9\ l o i
2 (17 _3) - 20’ 2 (27 3) - 3 3OC<2)7
3 1 1 1 1
273, -8) = 7~ 4B, @4 -8) = 5+ 5(2) — 15¢@)

Also we have

1 1 1
des = — des —1 —1 —_ — des _2 = 75
2 (07 0) 4 3 2 ( 9 ) 36 ’ 2 (O’ ) 8

Proposition 4.5. For s € C and N € Ny,

(4.11) Jes(—N, 5)
(=N -=3)(s—N-2)
S N Nty AN
N+1 . s — o
JFZ:(ks+N k:+j—v2l(2 N +k 1)<N;2)g(s—N+k)((—k)
k=0

— (N +1)(s = 1)C()C(=N) + s(5 + 1 + N)C(s + 1)¢(—N — 1)
+(s— N —1)¢(s — N).

Proof. From (4.1), we have

ges(—N, s)=(=N—=1)(s = 1)(2(—=N,s) + s(s+ 1+ N)G(—N—-1,s+1)



DESINGULARIZATION OF MULTIPLE ZETA-FUNCTIONS 53

—s(s+1)((—N — 2,5+ 2).

Similar to the proof of Proposition 4.3, substituting (4.3) with (=N, s), (=N —1,s+1)
and (—N —2, s+ 2) into the right-hand side of the above equation, we can obtain (4.11).
Note that, in this case, we apply (4.3) with the sum on the right-hand side from 0 to
N + 2, but the term corresponding to k = N + 2 is canceled and does not appear in the
final statement. O

Example 4.6.  Setting N =1 in (4.11), we have

(s—4)(s—3) s(s—1)

-2
(412)  @(-Ls) = T (s = D) + S5 (s — 1) — mo—((s).
For example,
des _ 1 des/ _ E . 1
2 (_171> - ]’ 2 ( 172) - 12 6C(2>7

des _ i 1 _l
$9(-1,8) = 5 + 5C(2) — 5C3).

Next we consider ($°(N,1) (N € N). From (4.1) with s; = N € Z~; and sy — 1,

we have

SeS(N,1) = (N — 1) lim (s9 — 1)¢a(N, s2) 4+ (2 = N)Co(N — 1,2) — 2¢(N — 2, 3).

so—1

We know from Arakawa and Kaneko [2, Proposition 4] that

(4.13) Ca(N, 5) = % +0(1) (N €Zs).

Thus we obtain the following.
Proposition 4.7. For N € N1,
(4.14) S(N,1) = (N = 1)¢(N) + (2 = N)G(N — 1,2) — 2(2(N — 2,3).
Example 4.8. Using well-known results for double zeta-values, we obtain
§9(2,1) = ¢(2) — 26(0,3) = 2(3) ~ ¢(2),
$2(3,1) = 20(3) - 6(2,2) — 26(1,3) = 2(3) ~ ~¢(4),
$9(4,1) = BC() — 26(3,2) — 262(2,3) = 3C(4) + 2(5) — 20(2)C(3),
where we note (2(0,3) = ¢(2) — ((3).

The case N = 1 should be treated separately.
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Proposition 4.9.
1
des
1,1) = —.
2 ( Y ) 2

Proof. Denote the first, the second and the third term on the right-hand side of

(4.1) by I, I5 and I3, respectively. Setting M = 1 in (4.4), we have

(4.15) lim lim [; = lim (sy — 1) liml(sl —1)¢a(s1,82) = 0.
S1—

so—1s1—1 So—1

Using (4.7) and (4.8), we obtain

(4.16) lim Tim (I + I3) = lim {522(0, 55 + 1) — s3(s5 + 1)Ca(— 1,52+ 2)}
- Sligl1 (5% - %) {C(s2) — C(s2+ 1)}
— Slzignl %2(82 — 1){¢(s2) — ((s2+ 1)} = %

From (4.15) and (4.16), we obtain the assertion. Note that, since ($°(sy, s2) is entire,

the final result does not depend on the choice how to take the limit. O

8§ 5. p-adic multiple star polylogarithm for indices with arbitrary integers

Now we proceed to our second main topic of the present paper. Our aim is to extend
the result of [7, Theorem 3.41] to the case of indices with arbitrary (not necessarily all
positive) integers (Theorem 5.8), which is a p-adic analogue of the equation (1.3).

First we prepare ordinary notation. For a prime number p, let Z,, Q,, @p and C,
be the set of p-adic integers, p-adic numbers, the algebraic closure of @, and the p-adic
completion of Q, respectively. For a in P*(C,) (= C, U {z5}), @ means the image red(a)
by the reduction map red : P*(C,) — P'(F,) (=F,U{s5}), where F), is the algebraic
closure of F,. For a finite subset S C P!(F,), we define |S[:= red'(S) c P'(C,).
Denote by |- |, the p-adic absolute value, and by g, the group of cth roots of unity in
Cpforce N. Weput g =pif p# 2 and ¢=4if p=2. We denote by w:Z; — Z; the
Teichmiiller character and define (z) := x/w(x) for x € Z.

We recall that, for » € N, ky,...,k, € Z and ¢ € N5 with (¢,p) = 1, the p-adic
multiple L-function of depth 7, a Cp,-valued function on

(sj) € X, (q_l) = {(31, ., 80) €CY ‘ 5j]p < g VPV (1< < r)} ,
is defined in [7] by

.k k..
Lpr(81,...,85W" .. w™;c)
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P — 82 —S8
= / /(xl) Yxy + z2) E xj) rwk (z1) E x; Hdmc zj),
(z3)

where (Z;)/ = {(xj) € 7,

pta, pf(zitae),..., pI2 2 }, and m, is the p-adic

measure given in [7, §1]. The function is equal to Ly (s1,. .., smwt, ..., wF1,...,1;¢)
in [7, Definition 1.16]. When r = 1, we have

(5.1) Lypa(s;w* 15 0) = ({e) 7*wh(c) = 1) Lp(s;0"),

where L, (s;wk) is the Kubota-Leopoldt p-adic L-function (see [7, Example 1.19]).

The p-adic rigid TMSPL can be defined for indices with arbitrary integers in the
same way as |7, Definition 3.4]: Let ny,...,n, € Z and &;,...,§ € C, with |[§], <1
(1 < j < r). The p-adic rigid TMSPL 2 is defined by the following p-adic power
series:

(p),* o fl"ff’" k.
(5.2) 0P 1y &y 2) = > 2 or_,

..... k,nl . knr
0<k1<--<knr 1 "
(klzp):”':(kr7p):1

which converges for z €]0[={z € C, | |z|, <1} by |¢], <1for 1 <j <7
When [§;], =1 for all 1 < j < r, by the completely same way as the arguments

in [7, §3], we can show that it can be extended to a rigid analytic function (consult [7,
§3.1]) on P*(C,)—]S[ with

(5.3) S={&" (Ga&) (G &)

Namely,
<P> * (b1, & 2) € ATE(P ).

We also note that
(54) ggzpl),’i,nr (517 s ’ST; 0) - Egzpl),’i,nr (617 s 557“; OO) =0,
and the following equality:

Proposition 5.1.  Forny,...,n, € Z and c € Ny with (¢,p) =1,

Ly,r(ni,...,npw™ ™ o w "ie) = Z ggfl),*,nr(é].?"'?g?“;l)'
5%: :5(3 1
fl"'£r7é1 ) fr 157“751: 57’#1

2TMSPL stands for the twisted multiple star polylogarithm. Here ’star’ means that we add equalities
in the running indices of the summation.
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The p-adic partial TMSPL can also be defined for indices with arbitrary integers
in the same way as [7, Definition 3.4]: Let ny,...,n, € Z and &,...,& € C, with
€ilp <1 (1 <j<r). Let a,...,0r € Nwith 0 < a; < p (1 < j < ). The p-adic
partial TMSPL Enl(,alj o) (@) (&1,...&r; 2) is defined by the following p-adic power
series:

( ) (o). gfl...gkr N
* r
(5.5) O O PRy s 2) = Z Wz
0<ki < <ky 1 "
ki=ai,...,kr=a, mod p

which converges for z €]0].
When |{;|, =1 for all 1 < j <7, by the completely same way as the arguments in
7, §3.2], we can show that it is a rigid analytic function on P!(C,)—]S[. Namely,

(5.6) glon o Rhx (gL g z) € ATS(P S).
We have

(5.7) glon o Bhx (g6 0) = (5 e Phx (g g ie0) = 0

Ly ADLI T TIT S TNy

by the equality

=(« (6% * 1 — Q1 — *
gﬁl(,,,l,jﬁ;’ P L€ 2) = o Z pr Py Tgv(lpl),7...,nr(p1§17'--aprfr;z)-

We also note
(58) AP (G &)= Y e (g gz,
0<ay,...,ar<p
The following formulas are extensions of [7, Lemma 3.19] to the case of indices with

arbitrary integers.

Lemma 5.2.  Letny,...,n, € Z, &,...,& € C, with [&], <1 (1< j<r) and

ar,...,ap ENwith0<oa; <p (1<j<r).
(i) For any index (ny,...,n,),
d 1 =

— (o ar%@)’*(gl,...,gr;z):ngbf"“mia)(f’ "1y 6 7).

(ii) Forn, =1 and r # 1,

ig;(ah »ar), (), *(61 57“7 Z)

dz M1y esNp
( Qpr—Qp_1—
gr(grfl(gﬂ)p “ln (,Oil-:nﬁaf DR e, b 602)
Zf Qp = O 1,
ar—ap._1+p—1 1y O
gr(ng) (grz)p gn’l(a . n'r’ 1 1) (p) *(517 e 757’—2757’—1; é"f’z)

if ar < ap_q.
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(iii) Forn, =1 andr =1 with & = &£ and a1 = «,

d =a,(p)* £(€2)*!
_g s\P)» . — .
dz 1 (év Z) 1 — (fZ)p
Proof. They can be proved by direct computations. U

The following result is an extension of [7, Theorem 3.21] to the case of indices with
arbitrary integers.

Proposition 5.3. Letni,...,n, €Z, &,...,& € Cp with ||, =1 (1< j<r)

and ai,...,00 € Nwith0 < o <p (1 <j<r). SetS asin (5.3). The function
Y/ =(ai,...,ar) (p)7 (é 1y..

T yeoe T &3 2) is an overconvergent function on P\ S. Namely,

(L P (6 i) € ATRTAS).

Here AT(P!\ S) means the space of overconvergent functions on P!\ S (consult
[7, Notation 3.13]).

Proof. The proof of [7, Theorem 3.21] was done by the induction on the weight
but here it is achieved by the induction on the depth r.

(i) Assume that r = 1. By [7, Theorem 3.21], we know E‘al’(p)’ (€15 2) € AT(P\ S)
when n; > 0. When n; < 0, by Lemma 5.2 (i) and (iii) we know that the function
is a rational function and the degree of whose numerator is less than that of whose
denominator which is a power of 1 — (£;2)P, which implies that the poles of the function

are of the form (,/&1 ((p € pp)-
(ii) Assume that r > 1 and n, = 1. We put

Seo = S U {5} and S0 =S U{c} U{0}
and take a lift {50, 51,...,54} of Seo 0 With §p = 0o and 57 = 0. Put

Er(grz)or—oro1t
1—(&-2)P
Blz) = sr(érzfgffﬁrfl””
1—(&r2)P

if oy 2 Qr_1,

if o, <a,_q.

By our assumption
oo DN (g6 &oi6z) € ATPIA{E T, TG &) )
and by the fact B(2)dz € QF1(P1\ {0,50, & '}), we have
(Zlanmar- ) P)x (g e o 6 1;62) - B(2)dz € QPP S ).
For the symbol Q1. consult [7, §3.2]. Put

(5.9)  f(2) = L5 Bx (g e 6 136,2) - Bz) € AT(P\ S )
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Since @nl(?éljﬁ;’ar)’(p)’*(fl, ..., & 2) belongs to A™8(PL\ 9) (C Arig(Pl\ Soo,O)) by
(5.6) and it satisfies the differential equation in Lemma 5.2 (ii), i.e. its differential is
equal to f(z), we have particularly, in the expression of [7, Lemma 3.14],

(5.10) am(51;f) =0  (m>0)
(recall 57 = 0) and
(5.11) ai(s; /) =0 (2<i<d).

By (5.9) and (5.10),
f(z) € AT(P\ S.o).

By (5.11) and [7, Lemma 3.15], there exists a unique function F(z) in AT(P!\ S.),
i.e. a function F'(z) which is rigid analytic on an affinoid V' containing

P!(Cp)— ]S8[ = P'(Cp)~]55, 8]

such that
(5.12) F(0)=0 and dF(z)= f(z)dz.
Since Enl(, 1:;1.;“,%) (P) (&1,...,& 2) is also a unique function in A™8(P1\S) satisfying

(5.12), the restrictions of both F'(z) and Knl(,aljﬁ;’ar)’(p)’*(ﬁl, ...,&r; 2) to the subspace
P1(C,)—]Soo[ must coincide, i.e.

F = g (C’él ----- a'r) (p) . r .
(=) L B G- 8ri2) P*(Cp)~]Sec

Hence by the coincidence principle of rigid analytic functions ([7, Proposition 3.3]),
there is a rigid analytic function G(z) on the union of V and P!(C,)—|S[ whose
restriction to V is equal to F(z) and whose restriction to P*(C,)—]S] is equal to
651(?.1%;] ) ()% (&1,...,&32). So we can say that

(=man) ()X (g e ) € ATE(PL 9)

N1,

can be rigid analytically extended to a bigger rigid analytic space by G(z). Namely,

e;(al ..... ar)’(p)7*(£1,---,fr;z) c AT(Pl \S)

MN1yeeeyNyp

(iii) Assume that » > 1 and n,, < 1. In our (ii) above, we showed that
(5.13) e Dt g 2) € AP S).

Now showing that an(,alj Hr)s(P)x (€1,...,&52) € AT(P1\S) is immediate, which follows
from the differential equation in Lemma 5.2 (i) and (5.7).
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(iv) Assume that r > 1 and n, > 1. The proof in this case can be achieved by the
induction on n,. Recall that we have (5.13) by our (ii) above. By our assumption

e ey 61, 652) € AT(PI S)

and by the fact % € QF1(P!\ {z0,0}), we have

LA (SO ST S )— e QML (P S 0).

Put
1

f) = S Gt (G 61 6i2) € AP\ Swco).

Then it follows that
/¢ 1(&1, -ar), ()% (E1,..., 6 2) € AT(Pl \ S)
by the same arguments as those given in (ii) above. O
By (5.8) and Proposition 5.3, we have

Corollary 5.4. Letny,...,n, € Z, &,...,& € Cp with ||, =1 (1 < j < 7).
Set S as in (5.3). The function zﬁf’}, (&1, ...,&; 2) s an overconvergent function on

P\ S. Namely, (9% . (&1,...,6:2) € AT(PL\ 9).

The p-adic TMSPL can also be defined for indices with arbitrary integers in the
same way as [7, Definition 3.29]: Let ny,...,n, € Z and &;,...,& € C, with |¢;], < 1
(1 < j < r). The p-adic TMSPL Li”* . (&1,...,& 2) is defined by the following
p-adic power series:

0 st

5.14 Lit) L E2) = SLS A

( ) an, LNy (517 a£ Z) Z k?l . k;zr
0<k1 < <kn

which converges for z €]0[ by ||, < 1 for 1 < j < r. By direct computations one
obtains the following differential equations which are extensions of [7, Lemma 3.31] to
the case of indices with arbitrary integers.

Lemma 5.5. Letny,...,n, € Z, &1,...,&§ € C, with ||, <1 (1< j<r).
(i) For any index (ny,...,n,.),

d

AL o rrni2) = LD (G e)

(ii) Forn, =1 and r # 1,

d &r 1] .
EL 7(11?1),*, (617 s 75’/’;’2) = {1 _5 » + ;} L,L?(’in),’.,.(.,n,«_1(£17 e 7&7“727&7“71;67“2)’
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(iii) Forn, =1 and r = 1 with & =&,

§
1—¢&2

d *
LY (€ 2) =

The following result is an extension of [7, Theorem-Definition 3.32] to the case of
indices with arbitrary integers.

Proposition 5.6.  Fix a branch of the p-adic logarithm by w € C,,. Letny,...,n, €
Z, &1, .8 € Cp with €], <1 (1<j<r). Put

S i ={0,,(&) L (& 1&) L (G- &)1} C PL(F).

Then the function ngbpl) ,,,,, n.(&1,...,&r; 2) can be analytically continued as a Coleman
function attached to @ € C,, that is,

ng?;*’j;;;(gl, &6 2) € AZ (PN S,)

whose restriction to |0[ is given by nglpl)j (&1, & 2) and which is constructed by
the following iterated integrals:

&1
1— &t

(5.15) LilP™*%(£1:2) = —log® (1 — &12) = / dt,
0

(5.16)  LilP)*% (&,...,&52)

ni,
% fﬁ),’*’fir 1 Gt if n, #1,
Jo s (& an b6 {5 + 1)t if my =1

Here AZ (P! \ S,) means the space of Coleman functions of P!\ S, (consult (7,
Notation 3.25]).

Proof. The proof of [7, Theorem-Definition 3.32] was done by the induction on
the weight but here it is achieved by the induction on the depth 7.

(i) Assume that » = 1. By [7, Theorem-Definition 3.32], we know LiP T (&1;2) €
AZ(PY\ S1) when ny > 0. When ny < 0, it is immediate to see the assertion by the
differential equation in Lemma 5.5 (iii) because differentials of Coleman functions are
again Coleman functions.

(ii) Assume that » > 1 and n, = 1. Then by our induction assumption on r,
Lz(p) e (61, &5 2) € AZ (P S._1) and also L= (&, 6021;0) =0,

Hence ngﬁ),’,,_’zpl(fl, ...,&_1;t) has a zero at t = 0. Therefore the integrand on the
right-hand side of (5.16) has no pole at t = 0. So the integration (5.16) starting from 0

makes sense and whence we have

(517) Li glpl);* zr 1, 1(517 s 757'—1757';’2) € Agol(Pl \ST)
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(iii) Assume that r > 1 and n, < 1. It is immediate to prove

Lz(p) b ZT 1,0 (517 s 757"717 gr; Z) € Agol(]':)1 \ S’I’)

by (5.17) and the differential equation in Lemma 5.5 (i).
(iv) Assume that » > 1 and n, > 1. The proof can be achieved by the induction

on n,. By our induction assumption, Lz(p)’*szl(ﬁl, &y z) € AZ (PN S,) and
also Lz(p)’*’zﬁl(&, ...,&;0) = 0. Hence Lz(p) * o 1(61,. .., &5 t) has a zero at ¢ = 0.
Therefore the integrand on the right-hand Slde of (5.16) has no pole at ¢t = 0. The
integration (5.16) starting from 0 makes sense and thus we have Ll(p),,_.’ynr (&1,...,&32) €
AZ (P Sy). O

It should be noted that the restriction of the p-adic TMSPL ngfl),’*’w (&1,...,&032)
to P1(C,)— ]S, \ {0}[ does not depend on any choice of the branch @ € C,, which can
be proved in the same way as [7, Proposition 3.34].

In particular, we remind that it is shown in [7, Theorem-Definiton 3.38] that, for

P1s---5Pr € p and &1, ..., & € pe with (¢,p) =1 and

1 "57‘#13 52"'€T7é1’ ) 57“—157"7&17 £T7é17

(p) o (p1€1, .. pr€r2) at 2 = 1 is independent of the choice

the special value of Liy,
of w. This value, denoted by qu(fl)j e (p1&1, ..., pr&y) for short, is called the p-adic
twisted multiple L-star value.

The following result is an extension of [7, Theorem 3.36] to the case of indices
with arbitrary integers, where we give a relationship between our p-adic rigid TMSPL

GE (&1, &3 2) and our padic TMSPL Liff) 7 (€1, &3 2).

.....

Proposition 5.7.  Fiz a branch w € C,. Let ny,...,n, € Z, &,...,& € C,
with ||, =1 (1 < j < ). The equality
(5.18) €P)* | (&1, 6r2) = LT (&1, 603 2)

..........

T 1 d .
+X () X X meE ([Iee)s)
d=1 p 1<’Ll< <Zd<7‘p 1—1 p =1 =1

vd

holds for z € PY(C,)—]S, \ {0}[, where 8;; is the Kronecker delta.

Proof. By using the power series expansions (5.5) and (5.14), direct calculations
show that the equality holds on ]0[. By Corollary 5.4, the left-hand side belongs to
AT(PI\ S,) (C A ,(P'\ S,)), while by Proposition 5.6, the right-hand side belongs to
AZ (P'\S,). Therefore by the coincidence principle (consult [7, Proposition 3.27]), the
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equality holds on the whole space of P*(C,)— ]S, \ {0}, in fact, on an affinoid bigger
than the space. O

Our main theorem in this section is the following, which could be regarded as an
extension of [7, Theorem 3.41] to the case of indices with arbitrary integers and might
be also regarded as an extension of [7, Theorem 2.1] to the case of indices with arbitrary
integers in the special case of v = -+ =, = 1.

Theorem 5.8.  Forny,...,n, € Z and c € Ny with (¢,p) = 1,

(5.19)
Ly,r(ni,....,npw” "o, w5 0)
-y Y L (é & & )
f—l gc 1 nl, o 52, 537 ’ £T+1
G#1 &1
r 1 d H 1136
()Y Y ey S (TS
a=1 > P/ <Tiacr ot 21 Pl =185=1  gi=1 S+
G#1 &#L
where we put 41 = 1.
Proof. 1t follows from Proposition 5.1 and Proposition 5.7. U

Remark 7. From (1.3), we have

65200 S G € (1) = 3 o S Ly (g—g— & )

=1 go=1 =1 go=1 Sr41
Gl &A1 g4l A1

where &1 = 1. Similarly, we obtain

G2y Y ) ) = S L (§—§— r )

=1 ge=1 (=1 ge=1 S
§1#1 §r#l &1#1 &rFl

where

(51/52)]€1 T (gr/fr—i—l)kr

(5.22) Gy (&)= >

Byt ’
0<k1< <k
with &.41 =1 and
Zfl “ .. kT
-k .
(5.23) Ly o (21, 2) = Z JECI .k;:Lr
1 T
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for (n;) € N" and (z;) € C" with |z;| = 1, which are star-versions of (0.2) and (1.1),
respectively. Also (5.23) should be compared with (5.14). Note that Theorem 5.8 can
be regarded as a p-adic analogue of (5.21). Therefore L, .((s;); (w*); ¢) might be called
the p-adic multiple L-star function.

Corollary 5.9.  Forny,...,n, € Ny and ¢ € Nsq with (¢,p) =1,
(5.24) Ly, (—n1,...,—n;w™, . o, w5 0)

_ Z Z B((ny); (&)

£€=1 £e=1
£1#1 Er#l

D SCINND SHD EED b 3R oL IUNA(H ) PH

ISin<<iasrpy =1 pf =1 gc; 26751 ish
1 s

where {%((nj), (&)} are certain twisted multiple Bernoulli numbers defined by

Gexp(X,_1t) T !
5.25 "
(5.25) o (Cimh) 11— g enp (S, 1)
00 00 _ tnl t?r
:n1z=:o nrzz:o%((nj)7(£j)>7;' '“nr'

Proof. We first show the following result which can be proved by the same method
as in the proof of [11, Lemma 5.9]. For z €]0[, we obtain from the definition (5.14) that

- tnl...tnr
5.26 R S STOR & & & O\ttt
(5.26) > Z e S i)

n1=0 n,=0 fr—l—l

_ Erzedv=rtv ﬁ 1
1—&zelimt =2 1-— szezz=j ty

(cf. [11, (5.16)]). Since Lz(p) * o, (61/62,82/83, ..., & /&r11; 2) 1s a rational function
in z, we can let z — 1 on the both sides of (5.26). Hence it follows from (5.25) that

(21) L T(g—l,é,...,g—’“)z%<<nj> ) ((n)) € Np).

52 63 §r+1
Therefore we can see that the right-hand side of (5.19) coincides with the right-hand
side of (5.24). This completes the proof. O

Remark 8. It should be emphasized that (5.24) with replacing s1~3((n]), (&) by
B((n): (¢;)) defined by

T o0 [e.e]

1 t"1 tnr
I1 =2 2 Bl (&)
j:]_ 1 - 5] eXp (Zyzj l/> ni= =0 nr—o "
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(see [7, Definition 1.4]) is also valid; in fact, it is [7, Theorem 2.1].

Finally, we consider the case r = 1. Since

t n
e n+1 t
25 N

£¢=1

41
SPIRTLCE Z{ Ay e SO
t - t - t = . — T
pP=1 E;ll ’056 pP=1 pe 1 peec 1 ep 1 ecp 1
N 1yt "
— """ B 1—
7;) L D) + (1 = 0o)p,

we have
1— et Betr (> 0),

B(n; &) = i
; 1< (n=0),
£#£1

—~

(1 _ Cn+1)pn+1 By (?’L > 0),

S Bmp) =< . i
e Oz (n=0).

Hence (5.24) implies that

Lyi(—n;w™;c) = Z B(n; &) — - Z Z B (n; p)

g;ﬂl pp 1 gc 1
fa-ema B mso),
0 (n=0).

By (5.1), this can be rewritten as the Kubota-Leopoldt formula ([19, Theorem 5.11]):
n n—1 BTL
(5.28) L,(1-nw")=—-1-p )7 (n € N).

On the other hand, combining (5.19) in the case r = 1 and (5.1), we obtain the Coleman
formula ([3]):

(5.29) Ly(n;wl™™) = (1 — 2%) LiP*(1) (neN)

(see [7, Example 3.42]). Therefore Theorem 5.8 can be regarded as a generalization of
both (5.28) and (5.29).
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