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 \Phi‐cohomology Theory

By

Tomohide TERASOMA*

Abstract

In this paper, we introduce  \Phi‐cohomology theory based on an associator  \Phi . This cohomol‐
ogy theory takes a value in the category, whose objects are triple of two  Q‐vector spaces with a
comparison map. Using this cohomology theory, the periods can be expressed by coefficients of
the given associators. We prove that the coefficients of associator can be expressed as iterated
integrals.

§1. Introduction

1.0.1. Introduction There are many algebraic relations over  Q among the multiple

zeta values. Associator relation is one of the most interesting relation. It is a series

of relations and to describe this relation, it is convenient to consider the generating

function of multiple zeta values, which is called the Drinfeld associator. The Drinfeld

associator satisfies, 2‐cycle, 3‐cycle and 5‐cycle relations. In general a non‐commutative

formal power series satisfying these relations is called an associator. It is conjectured

that all the relations among the multiple zeta values are satisfied by the coefficients  0

any associator  \Phi.

Many relations on multiple zeta values are proved by considering integral expression

or hypergeometric functions. They are interpreted as period integrals which are obtained

by comparison of de Rham and Betti cohomologies. It is natural to ask that these

methods of period integrals can be applicable to any associator. In this paper, we

establish a new cohomology theory, called  \Phi‐cohomology theory whose “fake” period

is expressed by the coefficients of an associator  \Phi . For example, using  \Phi‐cohomology
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theory, we can prove Brown‐Zagier identities for associators. This will be proved in a

subsequent paper (arXiv:1301.7474). In this paper, most of the part is spent to rewrite
well known facts on usual cohomology theory in the context of algebroids.

1.0.2. Notations A locally compact vector space  V is an inductive limit of projective

limits of finite dimensional vector spaces equipped with a linear topology after Lefschetz.

(See [L], [D].) In the literature [K], these spaces are called Tate vector spaces. From now
on a vector space is assumed to be a locally compact vector space and a homomorphism

is assume to be continuous with respect to linear topology. Tensor product means

completed tensor product. If  L is discrete,  M,  N are compact, then  Hom(M, L) is

discrete and  M\otimes N is compact. Moreover, we have   Hom(M, Hom(N, L))=Hom(M\otimes
 N,  L) . A compact discrete vector space is called an artinian vector space. An artinian

vector space is finite dimensional.

1.0.3. Acknowledgment The author would like to thank I. Iwanari for letting the

author know literatures on Tate vector space.

§2. Cohomology of algebroids

§2.1. Algebroids

Let  k be a field and  S a non‐empty finite set. A  k ‐algebroid  A  =  (A, S) over
 S consists of a data of a set  \{A_{pq}\}_{p,q\in S} of compact  k‐vector spaces equipped with a

structure of multiplications

 \mu_{pqr}:A_{pq}\otimes A_{qr}arrow A_{pr}.

These data should satisfy the following axioms.

1. There exists a specified element  1_{p} in  A_{pp} such that

 A_{pq}arrow A_{pp}\otimes A_{pq}1_{p}\otimes idarrow A_{pq}\mu_{ppq},
 A_{pq}arrow^{q}A_{pq}\otimes A_{qq}id\otimes 1arrow A_{pq}\mu_{pqq}

are identities.

2. Associativity for multiplication holds. That is, the following diagram is commuta‐
tive

 id \otimes\downarrow A_{pq}\bigotimes_{\mu_{qrs}}A_{qr}\otimes A_{r}
 A_{pq}\otimes A_{qs}

 pr\otimes A_{rs}
 \downarrow\mu_{prs}

 arrow^{\mu_{pqs}}  A_{ps}.
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3. For any  p,   q\in  S , there exist elements  x\in A_{pq} and  y\in A_{qp} such that  xy=  1_{p} and

 yx=1_{q}.

The above condition 3. is called the condition for connectedness. Using above axioms,

we can prove that  A_{p}  =  A_{pp} is an algebra and  A_{pq} is a free left  A_{p}‐module (right
 A_{q}‐module) of rank one.

An algebroid  \mathcal{A}=(\mathcal{A}, S) equipped with the counit homomorphism  \epsilon_{pq} :  \mathcal{A}_{pq}arrow Q,
coproduct homomorphisms  \triangle_{pq} :  \mathcal{A}_{pq}arrow \mathcal{A}_{pq}\otimes \mathcal{A}_{pq} and the antipodal homomorphisms

 S_{ab} :  \mathcal{A}_{pq}arrow \mathcal{A}_{qp} is called a Hopf algebroid if they satisfies the following properties.

1. The coproduct homomorphisms are coassociative, i.e.  \triangle_{pq}\circ(\triangle_{pq}\otimes id)  =\triangle_{pq^{\circ}}(id\otimes
 \triangle_{pq}) , and counitary, i.e.  (id\otimes\epsilon_{pq})\circ\triangle_{pq}=(\epsilon_{pq}\otimes id)
\circ\triangle_{pq}=id.

2. Antipodal is the inverse of multiplication, i.e.  1_{b}\circ\epsilon_{ab}=\mu_{bab}\circ(S_{ab}\otimes id)\circ\triangle_{ab} and

 1_{a}0\epsilon_{ab}=\mu_{aba^{O}}(id\otimes S_{ab})\circ\triangle_{ab} , and anti‐multiplicative, i.e.  \mu_{bca}\circ sw\circ(S_{ab}\otimes S_{bc})=
 S_{ac}\circ\mu_{abc} . Here sw:  \mathcal{A}_{ba}\otimes A_{cb}arrow \mathcal{A}_{cb}\otimes A_{ab} is the map obtained by switching the
first and the second tensor forctors.

Remark 1. One can define an algebroid object in any  k‐linear abelian tensor cat‐

egories with an identity object 1. In this case, we do not assume property 3 of the

axiom of algebroid. In the example in §3.1, we do not assume the existence of a base
in  \mathcal{A}_{ab} . We assume the existence of basis for each  \mathcal{A}_{dR,ab} and  \mathcal{A}_{B,ab} . We can not take

basis which correspond to each other via the comparison isomorphism in general.

Let  \mathcal{A}=  (\mathcal{A}, S) and  \mathcal{B}=  (B, T) be two  k‐algebroids. We define an external tenso

product  \mathcal{A} !  \mathcal{B} of  \mathcal{A} and  \mathcal{B} by the algebroid over  S  \cross  T as follows. For three points
 x_{1}  =(s_{1}, t_{1}) ,  x_{2}=(s_{2}, t_{2}) and  x_{3}=(s_{3}, t3) in  S\cross T , we set

 (\mathcal{A}\otimes \mathcal{B})_{x_{1}x_{2}} =\mathcal{A}_{s_{1}s_{2}}\otimes 
B_{t_{1}t_{2}} .

and define the mutliplication

 (\mathcal{A}\otimes \mathcal{B})_{x_{1}x_{2}}\otimes(\mathcal{A}\otimes 
\mathcal{B})_{x_{2}x_{3}} arrow(\mathcal{A}\otimes \mathcal{B})_{x_{1}x_{3}} .

by  \mu_{s_{1}s_{2}s_{3}}\otimes\mu_{t_{1}t_{2}t_{3}}.

Example 2.1. Let  X be a connected topological space,  S be a finite set of points

in  X . Let  \pi_{1}(X) be the fundamental groupoid over  S . That is, for two points  p,  q in

 S,  \pi_{1}(X,p, q) is the set of homotopy equivalent classes of paths in  X beginning from  p

and ending with  q . Then the unipotent completion  A_{p,q} of  Q[\pi_{1}(X,p, q)] forms an Hop

algebroid by the standard multiplication of the groupiods  \pi_{1}(X) .
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§2.2.  A‐Modules and their extensions

Definition 2.2. Let  A=  (A, S) be an algebroid over  S . Let  M=\{M_{p}\}_{p\in S} be

a set of locally compact vector spaces and  \mu_{M}=\{\mu_{M,pq}\} be a set of linear maps

 \mu_{M,pq}:A_{pq}\otimes M_{q}arrow M_{p}.

The data  M=\{M_{p}, \mu_{M,pq}\} is called a left  A ‐module  (=left(A, S) ‐module ) if it satisfies

the following axioms

1. The element  1_{p} acts as an identity.

2. The action  \mu_{M} and the action of multiplications of  A are associative.

We define a right  A ‐module similarly.

Let  \mathcal{A} be a Hopf algebroid, and  \mathcal{M} and  \mathcal{N} be left  \mathcal{A} modules. We introduct an
 \mathcal{A}‐module structure on  \mathcal{M}\otimes \mathcal{N}=\{\mathcal{M}_{a}\otimes \mathcal{N}_{a}\}_{a} by

 \mathcal{A}_{ab}\otimes(\mathcal{M}_{b}\otimes N_{b}  a^{\otimes \mathcal{N}}a

One can define a left  \mathcal{A}‐module structure on a space of  k‐linear map  M^{*}  =Hom_{k}(M, Q)
by

 \mathcal{A}_{ab}\otimes Hom_{k}(M_{b}, Q)arrow Hom_{k}(M_{a}, Q)

 (x\otimes\varphi)(m)=\varphi(\mu_{M}(S_{ab}(x)\otimes m)) for  \varphi\in Hom_{k}(M_{b}, Q) ,  m\in M_{a},  x\in \mathcal{A}_{ab}.

It is called the dula of  M.

Let  M and  N be left  A modules. A family of linear maps  \varphi_{p} :  M_{p}arrow N_{p} is called
an  A‐homomorphism if it is compatible with the left action of  A , i.e.

 A_{pq}\otimes M_{q}arrow M_{p}
 \downarrow  \downarrow

 A_{pq}\otimes N_{q}arrow N_{p}.

The set of continuous  A‐homomorphism from  M to  N is denoted by  Hom_{A}(M, N) .

Then the space  Hom_{A}(M, N) is isomorphic to the kernel of the map

  \prod_{p}Hom_{k}(M_{p}, N_{p})arrow\prod_{pq}Hom_{k}(A_{pq}\otimes M_{q}, 
N_{p})
 (\varphi_{p})_{p} \mapsto (\mu_{pq}(1\otimes\varphi_{q})-\varphi_{p}\mu_{pq})
_{pq}

We define the extension group  Ext_{A}^{i}(M, N) by the cohomology of the complex  RHom_{A}(M, N)
defined by the following complex  C^{\cdot}(M, N)=C_{(A,S)}(M, N) :

(2.1)   C^{\cdot}(M, N) :0arrow C^{0}(M, N)arrow C^{1}(M, N)arrow C^{2}(M, N)
arrow\cdot\cdot ,
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where

 C^{i}(M, N)= \prod Hom_{k}(A_{p_{0}p_{1}}p0,\ldots,p_{i}\otimes A_{p_{1}p_{2}}
\otimes\cdots\otimes A_{p_{i-1}p_{i}}\otimes M_{p_{i}}, N_{p_{0}})
and the differential  \delta :  C^{i}(M, N)arrow C^{i+1}(M, N) is defined by

 \delta(\varphi)_{p0\cdots p_{i+1}}(a_{1}\otimes \cdot \cdot \cdot \otimes a_{i+
1}\otimes m)

 =a_{1}\varphi_{*} (a_{2}\otimes \cdot \cdot \cdot \otimes a_{i+1}\otimes m)-
\varphi_{*}(a_{1}a_{2}\otimes \cdot \cdot \cdot \otimes a_{i+1}\otimes m)

 +\varphi_{*}(a_{1}\otimes a_{2}a_{3}\otimes\cdots\otimes a_{i+1}\otimes m)-
\cdot\cdot

 +(-1)^{i+1}\varphi_{*}(a_{1}\otimes a_{2}\otimes \cdot \cdot \cdot \otimes a_{i
+1}m) .

Here we write the obvious index of  \varphi as  * . For example,

 \varphi_{*} (a_{2}\otimes \cdot \cdot \cdot \otimes a_{i+1}\otimes m)=
\varphi_{p_{1}\cdots p_{i+1}}(a_{2}\otimes \cdot \cdot \cdot \otimes a_{i+1}
\otimes m) \in N_{p_{1}}.

Remark 2.

1. Since all the vector spaces are locally compact in linear topology, and tensor prod‐

ucts are completed tensor products, the extension group commute with the scalar
extension for an extension of fields  karrow k'

2. If the set of base points  S is one point set  \{s\} , then a data for algebroid over  S is

equal to that of algebra and the extension group defined as above is equal to that

for modules over the algebra.

§2.3. Homomorphism of algebroids

Let  S,  T be non‐empty finite sets and  (A, S) and  (B, T) be algebroids over  S and
 T , respectively. The homomorphism  \varphi :  (A, S)  arrow  (B, T) of algebroids is a pair of map

 \psi :  Sarrow T and a set of linear maps

(2.2)  \varphi_{pq} :  A_{pq}arrow B_{\psi(p)\psi(q)}

such that

1. the map  \varphi preserves the identities: i.e.  \varphi_{pp}(1_{p})  =1_{\varphi(p)} for all  p\in S , and

2. the set of maps  \{\varphi_{pq}\} is compatible with the multiplications.

 A_{pq}\otimes A_{qr} arrow^{\mu_{pqr}} A_{pr}
 \downarrow  \downarrow

 \ovalbox{\tt\small REJECT}_{\psi(p)\psi(q)\psi(r)}
 B_{\psi(p)\psi(q)}\otimes B_{\psi(q)\psi(r}  \psi(p)\psi(r) .
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When  S  =  T and  \psi is the identity map, a homomorphims of algebroids  \varphi :  (A, S)  arrow

 (B, S) is called a homomorphism of algebroids over  S.

Example 2.3. Let  (A, S) be an algebroid and  s  \in  S . Then we have a natural

morphism of algebroids:  i_{s} :  (A, \{s\})arrow(A, S) .

Let  \varphi :  A=  (A, S)  arrow B  =  (B, T) be a homomorphism of algebroids and  M be a
 B‐module. The pull back  \varphi^{*}M of  M is an  A‐module defined by  (\varphi^{*}M)_{s}  =M_{\varphi(s)} and

the action of  A_{pq} on  (\varphi^{*}M)_{s} is defined via the map (2.2).
Now we consider the functoriality of extensions. Let  \varphi :  A  arrow  B be a homomor‐

phism of algebroids, and  N,  M be  B‐modules. We define a map  RHom_{B}(M, N)  arrow

 RHom_{A}(\varphi^{*}M, \varphi^{*}N) by

  \prod_{q_{0},\ldots,q_{i\in}}  Hom_{k}(B_{q_{0}q_{1}}\otimes B_{q_{1}q_{2}}\otimes\cdots\otimes B_{q_{i-1}
q_{i}}\otimes M_{q_{i}}, N_{q_{0}})  \ni\alpha

  \mapsto\beta\in\prod_{p0,\ldots,p_{i}\in S}Hom_{k}(A_{p_{0}p_{1}}\otimes A_{p_
{1}p_{2}}\otimes\cdots\otimes A_{p_{i-1}p_{i}}\otimes M_{\varphi(p_{i})}, 
N_{\varphi(p_{0})}) ,

where  \beta_{p_{0}\cdots p_{i}} is defined by the composite  0

 A_{p_{0}p_{1}}\otimes\cdots\otimes A_{p_{i-1}p_{i}}\otimes M_{\varphi(p_{i})}

 arrow B_{\varphi(p_{0})\varphi(p_{1})}\otimes\cdots\otimes B_{\varphi(p_{i-1})
\varphi(p_{i})}\otimes M_{\varphi(p_{i})} arrow\alpha N_{\varphi(p_{0})}.

It defines a homomorphism of complexes.

Proposition 2.4. Let  A be an algebroid and  M be a compact  A ‐module and  N

be a discrete  A ‐module. Then the natural homomorphis

RHom  (A,S)(M, N)arrow RHom_{(A,\{s\})}(M_{s}, N_{s})

induced by the restriction map  \{s\}arrow S is a quasi‐isomorphism.

Corollary 2.5. Under the same assumption as the above proposition, there is

natural isomorphism of cohomologies

 Ext_{(A,\{s\})}^{i}(M_{s}, N_{s})\simeq Ext_{(A,\{t\})}^{i}(M_{t}, N_{t})

for elements  s,  t in  S.

Proof. Let  p  \in  S . We define a left  A‐module  \mathcal{A}_{*p} by  (\mathcal{A}_{*p})_{q}  =  A_{qp} . For a fixed
 N , the functor

 F^{i} :  M\mapsto Ext_{A}^{i}(M, N)  (i=0,1, \ldots)

is a  \delta‐functor for compact  \mathcal{A}‐modules. We prove the following two statements.
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1.  F^{0}(\mathcal{A}_{*p})  =N_{p} and

2.  F^{i}(\mathcal{A}_{*p})=0 for   i\geq  1.

By the above statements for  S'  =  \{s\} , both the functor  F for  S and  F' for  S' are

universal and identical in degree zero. Therefore by the naturality of universal delta
functor, we have the statement of the proposition. To prove the above statements, it is

enough to show that

(2.3)   0arrow N_{p}arrow C^{0}(\mathcal{A}_{*p}, N)arrow C^{1}(\mathcal{A}_{*p}, N)
arrow C^{2}(\mathcal{A}_{*p}, N)arrow\ldots

is exact. We define a map  \alpha :  C^{i+1}(\mathcal{A}_{*p}, N)  arrow C^{i}(\mathcal{A}_{*p}, N) . Let  u=  (u_{p0\cdots p_{i+1}}) be an

element in  C^{i+1}(\mathcal{A}_{*p}, N) . We define an element  \alpha(u)  \in C^{i}(\mathcal{A}_{*p}, N) by

 \alpha(u)_{q0\cdots q_{i}}(a_{1}\otimes\cdots a_{i}\otimes m)=u_{q0\cdots q_{i}
p}(a_{1}\otimes\cdots a_{i}\otimes m\otimes 1) .

Then, for  u\in C^{i}(\mathcal{A}_{*p}, N) and

 a_{1}\otimes\cdots\otimes a_{i}\otimes m\in A_{p_{0}p_{1}}\otimes A_{p_{1}p_{2}
}\otimes\cdots\otimes A_{p_{i-1}p_{i}}\otimes N_{p_{i}},

we have

 \delta\alpha(u)-\alpha\delta(u)=(-1)^{i}u.

Therefore the sequence (2.3) is exact. Thus we have the statement of the proposition.

§2.4. Higher direct images and Hochschild‐Serre‐Leray

quasi‐isomorphism

2.4.1. In this section, we define relative cohomologies and study their properties.

Let  f :  (A, S)  arrow  (B, T) be a homomorphism of algebroids,  M be a discrete A‐
module and  t  \in  T . Let  B_{*t} be the left  A‐module  (B_{f(s),t})_{s} . We define a complex

 (Rf_{*}M)_{t} to be  RHom_{A}(B_{*t}, M) . The right  B action on  A\otimes\cdots\otimes A\otimes B_{*t} induces a

left  B‐module structure on  Rf_{*}M . As a consequence, we have a left  B‐module structure
on  R^{i}f_{*}M=H^{i}(Rf_{*}M) .

2.4.2. Let  (A, \{s\})  arrow^{g}  (B, \{t\})  arrow f  (C, \{u\}) be morphisms of algebroids and

a discrete  (A, \{s\}) module. We have the following analog of Hochschild‐Serre‐Leray
quasi‐isomorphism.

Proposition 2.6.
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1. For a compact vector space  N , the sequenc

 K(N) :  0arrow Hom(N\otimes C, M)  arrow\partial Hom(N\otimes B\otimes C, M)

 arrow\partial Hom(N\otimes B\otimes B\otimes C, M) arrow\partial Hom(N\otimes B
\otimes B\otimes B\otimes C, M)

is exact. Here the differential  \partial is given by the following formula.

 (\partial\varphi)(n\otimes b_{1}\otimes \cdot \cdot \cdot \otimes b_{q+1}
\otimes c) =\varphi(n\otimes b_{1}b_{2}\otimes \cdot \cdot \cdot \otimes b_{q+1}
\otimes c)

 -\varphi (n\otimes b_{1}\otimes b_{2} b3\otimes\cdots\otimes b_{q+1}\otimes c)+
\cdots

 +(-1)^{q}\varphi(n\otimes b_{1}\otimes\cdots\otimes f(b_{q+1})c)

for  \varphi\in Hom(N\otimes B^{\otimes q}\otimes C, M) and  n\in N,  b_{i}  \in B,  c\in C.

2. Let  M be a discrete vector space. The homomorphis

(2.4)  Hom(A^{\otimes k}\otimes C, M)  arrow\psi\oplus_{p+q=k}Hom(B^{\otimes p}\otimes C, Hom(A^{\otimes q}\otimes B, 
M))

is a quasi‐isomorphism, here  \psi is defeind by

 Hom(A^{\otimes k}\otimes C, M)arrow Hom(C, Hom(A^{\otimes k}\otimes B, M))=
Hom(A^{\otimes k}\otimes B\otimes C, M)

 \varphi\mapsto  (a\otimes b\otimes c\mapsto\varphi(a\otimes f(b)c)) for  a\in A^{\otimes k},  b\in B,  c\in c.

3. Let  M be a discrete  A ‐module. There is a canonical quasi‐isomorphis

(2.5)  R(fg)_{*}Marrow\sim Rf_{*}(Rg_{*}M) .

Proof. 1. The exactness is reduce to the case where  N=k . We use the adjointness

for tensor product for compact modules. The null homotopy  \theta is given by the formula:

 (\theta\varphi)(b_{1}\otimes\cdots\otimes b_{q}\otimes c)=\varphi(1\otimes 
b_{1}\otimes\cdots\otimes b_{q}\otimes c)

2. We apply the statement 1. for  N  =  k,  A,  A^{\otimes 2} , . . . and get the following long

exact sequences  K^{p} for  p=0 , 1, . . . :

 K^{p} :  Hom(A^{\otimes p}\otimes C, M)arrow Hom(A^{\otimes p}\otimes B\otimes C, M)

 arrow Hom(A^{\otimes p}\otimes B\otimes B\otimes C, M)arrow. .

One can check that the cone of (2.4) is quasi‐isomorphic to the simple complex associated
to the double complex  K^{0}arrow K^{1}  arrow\cdots . Therefore it is exact.  \square 

Using Proposition 2.4, we have the following corollary.
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Corollary 2.7. For homomorphisms of algebroids  (A, S)  arrow^{g}  (B, T)  arrow f  (C, U) ,

we have the similar quasi‐isomorphism (2.5).

Corollary 2.8. We have a spectral sequenc

 E_{2}^{p,q}=R^{p}f_{*}(R^{q}g_{*}M)\Rightarrow E_{\infty}^{p+q}=R^{p+q}(fg)_{*}
(M) .

§2.5. Semi‐simplicial algebroids and semi‐simplicial modules

2.5.1. Let  A.  =  ((A_{I}, S_{I}))_{I} be a semi‐simplicial algebroid indexed by  I  =  (i_{0}  <

 i_{1}  <. . .  <i_{p}) of the following type:

. .  . \vec{\vec{\vec{arrow}}}\bigoplus_{i_{0}<i_{1}<i_{2}}A_{i_{0}i_{1}i_{2}}
\vec{\vec{arrow}}\bigoplus_{i_{0}<i_{1}}A_{i_{0}i_{1}}\vec{arrow}
\bigoplus_{i_{0}}A_{i_{0}}.
An A. semi‐simplicial module  M.  =(M_{I})_{I} is defined by a collection of  A_{I} ‐module  M_{I}

endowed with a collection of  A_{I} ‐homomorphism

 \partial_{M,I,i} :f_{I,\partial_{i}I}^{*}M_{\partial_{i}I}arrow M_{I},

which is functorial for face maps. Here  f_{I,\partial_{i}I} :  A_{I}arrow A_{\partial_{i}I} is induced by the face map.

2.5.2. Let A. be a simplicial algebroid,  B be an algebroid and  \psi_{i} :  A_{i}  arrow  B

be an augmentation of A. to  B . Let M. be a discrete A.‐module and and  N be a

compact  B‐module. By composing face maps, we get a homomorphism of algebroids

 \psi_{i_{0}\cdots i_{p}} :  A_{i_{0}\cdots i_{p}}  arrow B . Then we have the complex  RHom_{A}.(\psi^{*}N, M.) defined as follows

 0 arrow\prod_{i_{0}}RHom_{A_{i_{0}}}(\psi_{i_{0}}^{*}N, M_{i_{0}})
arrow\prod_{i_{0}<i_{1}}RHom_{A_{i_{0}i_{1}}}(\psi_{i_{0}i_{1}}^{*}N, M_{i_{0}i_
{1}})
  arrow\prod_{i_{0}<i_{1}<i_{2}}RHom_{A_{i_{0}i_{1}i_{2}}}(\psi_{i_{0}i_{1}i_{2}
}^{*}N, M_{i_{0}i_{1}i_{2}})arrow\cdot\cdot .

§3. Category  C and associator

§3.1. Category  C

Definition 3.1. (Category  C ) We define the abelian category  C as follows. An
object  V of  C is a triple  (V_{dR}, V_{B}, c_{V}) consisting  0

1.  Q‐vector space  V_{dR},

2.  Q‐vector space  V_{B} , and

3. a  C‐linear isomorphism  c_{V} :  V_{B}\otimes C\simeq V_{dR}\otimes C.
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The vector space  V_{dR} and  V_{B} are called de Rham part and Betti part of  V , respectively.

 \dot{L} From now on, we consider locally compact version. Here,  -\otimes C means the completed

tensor product. Morphism  f :  V  arrow  W is a pair of  Q‐linear maps  f_{dR} :  V_{dR}  arrow  W_{dR}

and  f_{B} :  V_{B}  arrow W_{B} compatible with the comparison maps. The category  C becomes a

 Q‐linear tensor category by tensoring each of de Rham and Betti components.

Let  T be a set. We define a notion of Hopf algebroid object  \mathcal{A} over  T in  C as in

§2.1. As for the axiom 1., we assume that the identity  1_{p} maps to identity  1_{p} under
the comparison map. For the axiom 3, we assume the existence of  x and  y for each

components. We define the notion of  \mathcal{A}‐module as follows.

Definition 3.2. Let  M=  (M_{a})_{a\in T}=(M_{dR,a}, M_{B,a}, c_{M,a})_{a\in T} be an object in  C

indexed by  a\in T . The triple  M is called an  \mathcal{A} ‐module if it is equipped with an action

 \mathcal{A}_{ab}\otimes M_{b}arrow M_{a}.

of  \mathcal{A} in  C , which is associative and unitary. Here the action of algebroid is given by a

morphism in  C.

Let  \mathcal{A},  \mathcal{B} be algebroid objects (or simply algebroids) in  C,  f :  \mathcal{A}  arrow a homo‐
morphism of algebroids in  C , and  M  =  (M_{dR}, M_{B}, c_{M}) a discrete  \mathcal{A}‐module. Then

 R^{i}f_{*}M=H^{i}(Rf_{*}M) becomes an object in  C and we have the natural isomorphisms:

 (R^{i}f_{*}M)_{dR}=R^{i}f_{dR*}(M_{dR}) , (R^{i}f_{*}M)_{B}=R^{i}f_{B*}(M_{B}) .

§3.2. Fundamental algebroid of moduli spaces

In this subsection, we recall the fact on the structure of Hopf algebroids  \mathcal{A}_{n,dR},  \mathcal{A}_{n,B}
of the moduli space  \mathcal{M}_{n}  =\mathcal{M}_{0,n} of  n‐punctured genus zero curves. As for the funda‐

mental groups and the de Rham fundamental groups, see [OT].

Definition 3.3. We define the set of tangential points  T_{n} of  n points in genus

zero curve by the set of planer trivalent tree with  n terminals up to mirror. A graph is

called trivalent if every vertex is terminal or adjacent to three edges. A graph with a

cyclic ordering for edges adjacent to each non‐terminal vertex. By giving a numbering

of four points as  0 , 1,  \infty,  x , we have

 T_{4}=\{\overline{01}, \overline{10}, \overline{0\infty}, \overline{\infty 0}, 
\overline{1\infty}, \overline{\infty 1}\}

For example, the tangential point  \overline{01} is tangent vector at  0 and its direction is going to

1. It is expressed as the following tree. In this tree  0 and  x is very close and 1 and  \infty

is also very close. The point  x lies between  0 and 1.
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Thus  \# T_{4}=3\cross 2,  \# T5=15\cross 4 , etc.

Then we can define the pro‐nilpotent  Q‐algebroids  \mathcal{A}_{n,dR},  \mathcal{A}_{n,B} over the set  T_{n} as
follows.

Definition 3.4. To define an algebroid  \mathcal{A}_{n,dR} , we consider a complete associa‐

tive algebra defined by the following generators and relations. Each component  \mathcal{A}_{n,dR,ab}
of the algebroid  \mathcal{A}_{n,dR} is defined as this algebra. In other words, an algebroid  \mathcal{A}_{n,dR} is
constant on  a,  b\in T_{n}.

1. (Generators)  t_{ij} with  1\leq i<j  \leq n . We use the notation  t_{ji}=t_{ij} for  i<j.

2. (Relations)

(a)  [t_{ij}, t_{kl}]=0 for  \#\{i, j, k, l\}=4.

(b)  [t_{ij}, t_{ik}+t_{kj}]=0 for  \#\{i, j, k\}=3.

(c)   \sum_{j\neq i}t_{ij}  =0 for all  i.

The multiplications are defined by the product structure of the algebra  \mathcal{A}_{n,dR,ab} . Then

 \mathcal{A}_{n,dR} is the completed de Rham fundamental group algebra of  \mathcal{M}_{n} and has a standard
coproduct  \triangle(t_{ij})  =t_{ij}\otimes 1+1\otimes t_{ij}.

Definition 3.5.

1. Two tangential base points  a,  b  \in  T_{n} are adjacent if it can be transformed by an

elementary  IH change. See the following figure. The shape of the tree in the left

hand side looks “I” and that in the right hand side looks  H”
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2. Two tangential base points  a,  b\in T_{n} are neighbors if  a is obtained by a half twisting

of  b with respect to a edge.

Here  A_{i}^{*} is the reflection of  A_{i}.

3.  \mathcal{A}_{n,B}  =\{\mathcal{A}_{n,B,ab}\}_{ab} is a pro‐nilpotent algebroid generated by two type of generators:

(a) path  p_{ab} connecting two adjacent tangential base points.

(b) small half circle  c_{ab} connecting two neighbors.

Relations on  \mathcal{A}_{n,B} are generated by the following relations.

 p_{\alpha\beta}p_{\beta\alpha}  =e (  a,  b are adjacent to each other, 2‐cycle relations)

 p_{\alpha'\beta}c_{\beta\beta'}p_{\beta'\gamma}c_{\gamma\gamma'}
p_{\gamma'\alpha^{\mathcal{C}}\alpha\alpha'} =e

 (\alpha'\beta,  \beta'\gamma,  \gamma'\alpha are dejacent,

 \alpha\alpha',  \beta\beta',  \gamma\gamma' are neibors, 3‐cycle relations)

 p_{\alpha_{1}\alpha_{2}}p_{\alpha_{2}\alpha_{3}}p_{\alpha_{3}\alpha_{4}}
p_{\alpha_{4}\alpha_{5}}p_{\alpha_{5}\alpha_{1}} =e

(  \alpha_{1}\alpha_{2},  \alpha_{2}\alpha_{3},  \alpha_{3}\alpha_{4},  \alpha_{4}\alpha_{5},  \alpha_{5}\alpha_{1} are adjacent, 5‐cycle relations)

Then the  \mathcal{A}_{n,B} is the completed groupoid algebra of  \mathcal{M}_{n}.

Definition 3.6. We define the category  M^{inf} as follows. The objects of  M^{inf}

are products  \mathcal{M}_{n} for various  n  (n \geq 4) , disc  \triangle and punctured disc  \triangle^{*} , and the mor‐

phisms are generated by infinitesimal inclusions and projections. As for the infinitesimal

inclusions, see [De].

Proposition 3.7. By attaching  \mathcal{A}_{n,dR} (resp.  \mathcal{A}_{n,B} ) to  \mathcal{M}_{n} and attaching  \mathcal{A}*=

  Q[[\frac{dx}{x}]]  (resp.  \mathcal{A}*,=Q[[\log c]]) to  \triangle^{*} , we have a functor  \mathcal{A}_{dR} (resp.  \mathcal{A}_{B} ) from the
category  M^{inf} to the category of Hopf algbroids.

§3.3. Functorial characterization of associators

In this subsection, we recall the definition of associator after Drinfeld and its func‐
torial characterization.
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Definition 3.8. An element  \Phi(e_{0}, e_{1}) of  Q\langle\langle e_{0},   e_{1}\rangle\rangle is called an associator if it

satisfies the following conditions.

1.  \Phi(e_{0}+f_{0}, e_{1}+f_{1})=\Phi(e_{0}, e_{1})\Phi(f_{0}, f_{1}) in  Q\langle\langle e_{0},  e_{1}\rangle\rangle\langle\langle f_{0},   f_{1}\rangle\rangle . Here  Q\langle\langle e_{0},  e_{1}\rangle\rangle\langle\langle f_{0},   f_{1}\rangle\rangle
is a complete associative algebra generated by  e_{0},  e_{1},  f_{0},  f_{1} with the commutativity

relations  [e_{i}, f_{j}]  =0 for  i,  j=0 , 1.

2.  \Phi(e_{0}, e_{1})\equiv 1  mod  (e_{0}, e_{1})^{2}.

3.  \Phi(e_{0}, e_{1})\Phi(e_{1}, e_{0})=1.

4.   \Phi(e_{0}, e_{1})e(\frac{e_{1}}{2})\Phi(e_{1}, e_{\infty})e(\frac{e_{\infty}}
{2})\Phi(e_{\infty}, e_{0})e(\frac{e_{0}}{2})=1.

5. The equality  \Phi(t_{34}, t_{45})\Phi(t_{12}, t_{23})\Phi(t_{45}, t_{51})\Phi(t_{23}, t_{34}
)\Phi(t_{51}, t_{12})  =1 holds in  \mathcal{A}_{5}.

The next proposition is a reformulation of the result of [Dr].

Proposition 3.9. The set offunctorial isomorphisms  \varphi from  \mathcal{A}_{B}\otimes C to  \mathcal{A}_{dR}\otimes C
such that

1. the isomorphism  \varphi sends the logarithm of the small half circle  \log(c_{ij}) to  \pi it_{ij} , and

2. the abelianization of  \varphi sends  [0 , 1  ]^{} to 1

is identified with the set of associators. The one‐to‐one correspondence is given by

 \mathcal{A}_{4,B,\overline{01},\overline{10}}\ni [0, 1]\mapsto\Phi\in 
\mathcal{A}_{dR,4}=C\langle\langle e_{0}, e_{1}\rangle\rangle.

Here  e_{0} and  e_{1} are the dual basis of  \omega_{0}  =   \frac{dx}{x} and  \omega_{1}  =   \frac{dx}{x-1} , respectively.

By the proposition above, for a given associator  \Phi , we have an isomorphism of Hop

algebroids

 c_{\Phi,n} :\mathcal{A}_{n,B}\otimes Carrow\simeq \mathcal{A}_{n,dR}\otimes C.

This isomorphism gives a Hopf algebroid object  \mathcal{A}_{n}  =  (\mathcal{A}_{n,dR}, \mathcal{A}_{n,B}, c_{\Phi,n}) in  C . The

isomorphism  c_{\Phi,n} is called the  \Phi ‐comparison map.

§4. Examples of  \mathcal{A}‐modules

§4.1. Choice of coordinates and homomorphism of algebroids

Let  C be a genus zero curve and  P=  (C, p1, . . . , p_{n})  (p_{i} \in C) an element in  \mathcal{M}_{n}.

We choose a coordinate  t of  C such that  t(p_{n-2})  =  0,  t(p_{n-1})  =  1,  t(p_{n})  =  \infty . Using

the coordinate  t,  \mathcal{M}_{n} is identified with an open set of  A^{n-3} defined by

{  (x_{1}, \ldots, x_{n-3})  |  x_{i}\neq x_{j} for  i\neq j,  x_{i}\neq 0 , 1 for all  i }
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by setting  x_{k}=t(p_{k}) . This coordinate is called the distinguished coordinate. By taking

the distinguished coordinate of  \mathcal{M}_{4} , it is identified with  P^{1}-\{0, 1, \infty\}.

Definition 4.1 (admissible function, admissible differential form).

1. Let  S  =  (i, j, k, l) be an ordered subset of distinct elements in  [ 1,  n] . Let  P  =

 (C, p1, . . . , p_{n}) be an element of  \mathcal{M}_{n} . There is a unique coordinate  t of  C such

that  t(p_{i})  =0,  t(p_{j})  =1,  t(p_{k})  =\infty . The value  t(p_{l}) at  p_{l} gives rise to an algebraic

function on  \mathcal{M}_{n} , which is denoted by  \varphi_{S} . A function on  \mathcal{M}_{n} of this form is called an

admissible function on  \mathcal{M}_{n} . The set of admissible functions is denoted by Ad(Mn).

2. Let  x_{1} , . . . ,  x_{n-3} be the distinguished coordinate. An element in the linear span  0

  \frac{dx_{i}}{x_{i}},   \frac{dx_{i}}{x_{i}-1},   \frac{d(x_{i}-x_{j})}{x_{i}-x_{j}} is called an admissible differential form.

Remark 3.

1.  \varphi  \in  Ad(\mathcal{M}_{n}) defines a morphism  \mathcal{M}_{n}  arrow  \mathcal{M}_{4} and a homomorphism of algebroids
 \mathcal{A}_{n}arrow \mathcal{A}_{4}.

2. If   S\cap\{n-2, n-1, n\}=\emptyset , using the distinguished coordinates of  \mathcal{M}_{n} , we have

  \varphi_{S}(P)= \frac{(x_{l}-x_{i})(x_{j}-x_{k})}{(x_{l}-x_{k})(x_{j}-x_{i})}.
Therefore  \varphi_{S} is invariant under the substitutions  irightarrow l,  jrightarrow k and  irightarrow j,  krightarrow l.

3. The following functions are admissible functions.

  \frac{x_{i}}{x_{j}}  = \frac{(x_{i}-0)(x_{j}-\infty)}{(x_{j}-0)(x_{i}-\infty)},  1- \frac{x_{i}}{x_{j}}  =   \frac{(x_{j}-x_{i})(\infty-0)}{(x_{j}-0)(\infty-x_{j})},  1-x_{i}=
 (1-x_{i})(\infty-0)
(1—0)  (\infty-x_{i})

Since the fundmental groups and de Rham fundamental groups are functorial on

morphisms in  M^{\inf} and products, we have the following theorem.

Proposition 4.2. Let  \Phi be an associator.

1. Let  3\leq m<n be integers and  f morphism defined by

 f:\mathcal{M}_{n}arrow \mathcal{M}_{m} :  (x_{1}, . . . x_{n-3})arrow(x_{1}, . . . x_{m-3}) .

Then for  \star  =  dR,  B , the induced maps of algebroids  \mathcal{A}_{n,\star}  arrow  \mathcal{A}_{m,\star} are compatible

with the  \Phi ‐comparison maps.

2. Let  3\leq m,  n be integers. Then a morphis

 f:\mathcal{M}_{n+m-3}arrow \mathcal{M}_{n} \cross \mathcal{M}_{m}

 (x_{1}, . . . x_{n-3}, y_{1}, . . . y_{m-3})\mapsto(x_{1}, . . . x_{n-3}) 
\cross (y_{1}, . . . y_{m-3})

induces a homomorphism of algebroids  f :  \mathcal{A}_{n+m-3}arrow \mathcal{A}_{n} !  \mathcal{A}_{m} in  C.
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3. Let  3\leq m<n_{1},  n_{2} be integers. Then the natural morphis

 f:\mathcal{M}_{n_{1}} \cross \mathcal{M}_{m}\mathcal{M}_{n_{2}} arrow 
\mathcal{M}_{n_{1}} \cross \mathcal{M}_{n_{2}}

induces a homomorphism of algebroids in  C.

§4.2. Fundamental examples of  \mathcal{A}‐modules

4.2.1. Let  4\leq m<n and  f :  \mathcal{M}_{n}arrow \mathcal{M}_{m} be the map defined by  (x1, . . . , x_{n-3})\mapsto
 (x_{1}, \cdots , x_{m-3}) . Then we have an algebroid homomorphism  f :  \mathcal{A}_{n}arrow \mathcal{A}_{m}.

4.2.2. By taking an abelianization  \mathcal{A}_{n}^{ab} of  \mathcal{A}_{n} , we have a homomorphism of Hop

algebroids  \mathcal{A}_{n}  arrow  \mathcal{A}_{n}^{ab} . By choosing a base point  p  \in  T_{n} , we have have an  \mathcal{A}_{n} ‐module

 \mathcal{A}_{n,p*}^{ab} . In particular, by using the distinguished coordinate  x,  \mathcal{A}_{4} ‐module  x^{\alpha}Q[[a]] is

defined by taking the base point as  \overline{01},

4.2.3. Let  \varphi be an admissible function on  \mathcal{M}_{n} and  \alpha formal parameter. The

morphism  \mathcal{M}_{n}  arrow  \mathcal{M}_{4} induced by  \varphi is also denoted by  \varphi and  x be the distinguished

coordinate of  \mathcal{A}_{4} . We define the  \mathcal{A}_{n}[[\alpha]] ‐module  \varphi^{\alpha}Q[[\alpha]] as the pull back  \varphi^{*}(x^{\alpha}Q[[\alpha]])
of  x^{\alpha}Q[[\alpha]] . It is compact and  x^{\alpha}(Q[[\alpha]]/\alpha^{k}Q[[\alpha]]) is discrete. We define

 ( \prod_{i=1}^{m}\varphi^{\alpha_{i}})Q[[\alpha_{1}, . . . , \alpha_{m}]] =
\varphi_{1}^{\alpha_{1}}Q[[\alpha_{1}]]\otimes\cdot \cdot 
\cdot\otimes\varphi_{m}^{\alpha_{m}}Q[[\alpha_{m}]]
Proposition 4.3. Let  \varphi_{i},  (i= 1, \ldots, m) ,  \psi_{j},  (j = 1, \ldots, l) be admissible func‐

tions on  \mathcal{M}_{n} and  a_{ij}  \in Z . We assume that  \psi_{j}  = \prod_{i=1}^{m}\varphi_{i}^{a_{ij}} , and set  L_{i}= \sum_{i}^{m}a_{ij}\alpha_{j} fo
 i=1 , . . . ,  m . Then we have an isomorphism

 ( \prod_{i=1}^{m}\varphi_{i}^{L_{i}})Q[[\alpha_{i}]] = (\prod_{j=1}^{l}\psi_{j}
^{\alpha_{j}})Q[[\alpha_{i}]].
as  \mathcal{A}_{n} ‐modules.

Remark 4. In the example  \varphi^{\alpha}Q[[\alpha]] in 4.2.3, the action of  Q[[\alpha]] by multiplica‐
tion commutes with the action of  \mathcal{A}_{4}.

§4.3.  \Phi‐cohomology, semi‐simplicial sheaf and compact support

cohomology

4.3.1. Let  M be a discrete  \mathcal{A}_{n} ‐module and  f the map  \mathcal{M}_{n}arrow \mathcal{M}_{3}=pt , the higher

direct image  Rf_{*}M is denoted by  R\Gamma(\mathcal{M}_{n}, M) and  R^{i}f_{*}M is denoted by  H_{\Phi}^{i}(\mathcal{M}_{n}, M) .

It is called the  \Phi ‐cohomology with coefficients in  M.
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4.3.2. Let  X.  =  (X_{I})_{I} be a semi‐simplicial object in  M^{inf} indexed by  I=  (i_{0}  <

 i_{1}  <. . .  <i_{p}) of the following type:

. .  .\vec{\vec{\vec{arrow}}}\coprod_{i_{0}<i_{1}<i_{2}}X_{i_{0}i_{1}i_{2}}\vec{\vec
{arrow}}\coprod_{i_{0}<i_{1}}X_{i_{0}i_{1}}\vec{arrow}\coprod_{i_{0}}X_{i_{0}}
Let  Y be an object in  M^{inf} and  \varphi_{i} :  X_{i}  arrow  Y be an augmentation of X. to  Y . Let

M. be a discrete  \mathcal{A}(X.) ‐module and  N a compact  \mathcal{A}(Y) ‐module. Then we have the

complex  RHom_{\mathcal{A}(X.)}(\psi^{*}N, M.) defined in 2.5.2. If  Y  =pt and  N=  Q , the complex

RHom  (\psi^{*}N, M) is denoted by  R\Gamma(X., M.) . The i‐th cohomologies of RHom  \mathcal{A}(X.)(\psi^{*}N, M.)
and  R\Gamma(X., M.) are denoted by  Ext_{\mathcal{A}(X.)}^{i}(\psi^{*}N, M.) and  H_{\Phi}^{i}(X., M.) .

4.3.3. Using the following diagram of sheaves and algebroids, we define the coho‐

mology with partial compact support on  \mathcal{M}_{4} for a discrete  \mathcal{A}_{4} ‐module  \mathcal{F}.

 (\mathcal{A}_{\triangle}*, j_{0}^{*}\mathcal{F}) arrow j_{0}(\mathcal{A}_{4}, 
\mathcal{F})arrow^{1}j (\mathcal{A}_{\triangle}*, j_{1}^{*}\mathcal{F}) ,

Let  j :  \mathcal{M}_{4}  arrow\overline{\mathcal{M}_{4}}-\{\infty\} be the open immersion. We define  H*(\overline{\mathcal{M}_{4}}-\{\infty\}, j_{!}\mathcal{F}) by

the cohomology of the cone of the following homomorphism of complexes:

 R\Gamma(\mathcal{M}_{4}, \mathcal{F})arrow R\Gamma(\triangle_{0}^{*}, j_{0}^{*}
\mathcal{F})\oplus R\Gamma(\triangle_{1}^{*}, j_{1}^{*}\mathcal{F})

§5. Comparison to classical de Rham theory and Betti theory

§5.1.  \Phi‐integral

5.1.1. Let  M be an artinian  \mathcal{A}_{n} ‐module. We have an isomorphism

 H_{\Phi}^{i}(\mathcal{M}_{n}, M)_{dR}\simeq H_{dR}^{i}(\mathcal{M}_{n}, M_{dR})

and

 H_{\Phi}^{i}(\mathcal{M}_{n}, M)_{B}\simeq H_{B}^{i}(\mathcal{M}_{n}, M_{B}) .

We set  M^{*}  =  Hom(M, Q) . Then the space  M^{*} is equipped with an  \mathcal{A}_{n} ‐module

structure via the antipodal. Let  C_{*}(\mathcal{M}_{n}, M^{*}) be the topological dual complex  0

 R\Gamma(\mathcal{M}_{n}, M) . Then it is isomorphic to

(5.1) . . .   arrow\bigoplus_{x,y,z}\mathcal{A}_{n,xy}\otimes \mathcal{A}_{n,yz}\otimes 
M_{k,z}^{*}arrow\bigoplus_{x,y}\mathcal{A}_{n,xy}\otimes M_{k,y}^{*}
arrow\bigoplus_{x}M_{k,x}^{*}arrow 0.
Its homology is denoted by  H_{i}^{B}(\mathcal{M}_{n}, M^{*}) and is identified with the homology group

of chain complex with the coefficient in  M^{*} : An element  \sigma of the chain complex is a
linear combination of  [\gamma, f] where  \gamma is an  i‐chain in  \mathcal{M}_{n} and  f is a section of  M^{*} on  \gamma.
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5.1.2. Homology and cohomology over a formal power series ring We set

 R_{k}  =  Q[[\alpha]]/(\alpha)^{k+1} . Let  M_{k} be an  \mathcal{A}_{n} ‐module equipped with  R_{k} ‐module structure,
such that each fibers are free  R_{k} ‐module of finite rank. We set  M_{k}^{*}  =Hom_{R_{k}}(M_{k}, Q) .

Then the complex  R\Gamma(\mathcal{M}_{n}, M_{k}) is a complex of discrete  R_{k} ‐modules. Let  C_{*}(\mathcal{M}_{n}, M_{k}^{*})
be the  R_{k} ‐dual complex of  R\Gamma(\mathcal{M}_{n}, M_{k}) . Then  C(\mathcal{M}_{n}, M_{k}^{*}) is a complex of compact  R_{k^{-}}

modules. This complex is expressed as (5.1), where the action of  \mathcal{A}_{n} on  M_{k}^{*} is obtained
by using antipodal. The i‐th homology of  C(\mathcal{M}_{n}, M_{k}^{*}) is denoted by  H_{i}(\mathcal{M}_{n}, M_{k}^{*}) .

Then we have the natural pairing

 H_{i}(\mathcal{M}_{n}, M_{k}^{*})\otimes H^{i}(\mathcal{M}_{n}, M_{k})arrow C[[
\alpha]]/(\alpha)^{k+1}

If  M_{k} is obtained by the quotient  M/\alpha^{k+1}M of a free  Q[[\alpha]] ‐module  M , we can take

the projective limit, and get a homomorphism

 H_{i}(\mathcal{M}_{n}, M^{*})\otimes H^{i}(\mathcal{M}_{n}, M)arrow C[[\alpha]]
.

Using the comparison map, we have the following pairing.

(5.2)  H_{i}^{B}(\mathcal{M}_{n}, M_{B}^{*})\otimes H_{dR}^{i}(\mathcal{M}_{n}, M_{dR}
)arrow C[[\alpha]].

Definition 5.1 (  \Phi‐integral, twisted chain). Let  \Phi be an associator.

1. Let  \sigma=  [\gamma, f]  \in H_{i}^{B}(\mathcal{M}_{n}, M_{B}^{*}) and  \omega\in H_{dR}^{i}(\mathcal{M}_{n}, M_{dR}) . We define a  Q[[\alpha]] ‐valued

 \Phi ‐integral by the pairing

  \int_{\gamma}^{\Phi}f\omega=(\sigma, \omega)\in C[[\alpha]],
where the pairing is defined in (5.2).

2. Let  \varphi_{i}  (i=1, \ldots, l) be admissible functions on  \mathcal{M}_{n},  D a domain in  \mathcal{M}_{n}(R) defined

by  0\leq x_{1}  \leq x_{2}  \leq  \leq x_{n-3}  \leq  1 for some distinguished coordinates  x_{1} , . . . ,  x_{n-3}.

Assume that the values of  \varphi_{i} are positive and real on  D . The twisted chain on  D

with the product of positive real branches of  \varphi_{i}^{\alpha_{i}} is denoted by   \prod_{i=1}^{l}\varphi_{D}^{\alpha_{i}}.

§5.2. Cohomology of nearby fibers and higher direct image

5.2.1. Higher direct images and nearby cohomology Let  \mathcal{M}_{n}  arrow  \mathcal{M}_{m} be a

morphism appeared in §4.2.1. We give a method to compute the higher direct image

of  f :  \mathcal{M}_{n}  arrow  \mathcal{M}_{m} for  dR and  B . Let  f :  T_{n}  arrow  T_{m} be the corresponding map for

infinitesimal points, and  y an element of  T_{m} . We set  T_{n,m}(y)=f^{-1}(y) .

Definition 5.2. Let  \mathcal{A}_{n,m,B,y} (resp.  \mathcal{A}_{n,m,dR,y} ) be the subalgebroid of  \mathcal{A}_{n,B},
(resp.  \mathcal{A}_{n,dR} ) generated by the images of  \mathcal{A}_{4,B} (resp.  \mathcal{A}_{4,dR} ) induced by infinitesimal
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inclusions of  \mathcal{M}_{4}  arrow \mathcal{M}_{n} contained in the fiber of  y . Then the image of  \mathcal{A}_{n,m,B,y}\otimes C
is equal to  \mathcal{A}_{n,m,dR,y}\otimes C . Therefore  \mathcal{A}_{n,m,B,y} and  \mathcal{A}_{n,m,dR,y} defines a Hopf algebroid

object in  C on  T_{n,m}(y) , which is denoted by  \mathcal{A}_{n,m,y} For  x  \in  T_{n,m}(y) ,  \mathcal{A}_{n,m,y,xx} is

denoted by  \mathcal{A}_{n,m,x}.

Remark 5. The  B‐part  \mathcal{A}_{n,m,B} can be interpreted as follows. Let  N_{n,m} be the

kernel of  \pi_{1}^{B}(\mathcal{M}_{n})  arrow\pi_{1}^{B} (Mm). Then  N_{n,m} becomes a fibered groupoid over the map
 T_{n}arrow T_{m} . We can easily see that  \mathcal{A}_{n,m} is the nilpotent completion of  N_{n,m}.

Proposition 5.3. We choose  x  \in T_{n},  y\in T_{m} such that  f(x)  =y . We have the

following exact sequence:

 0arrow \mathcal{A}_{m,y}arrow \mathcal{A}_{n,x}arrow^{0}d\mathcal{A}_{n,x}
\otimes \mathcal{A}_{n,m,x}arrow^{1}d \mathcal{A}_{n,x}\otimes \mathcal{A}_{n,m,
x}\otimes \mathcal{A}_{n,m,x}arrow. .

Here  d_{0}(x\otimes y)  =xy-x\epsilon(y) ,  d_{1}(x\otimes y\otimes z)  =xy\otimes z-x\otimes yz+x\otimes y\epsilon(z) , . . . , where
 \epsilon :  \mathcal{A}_{n,m,x}arrow Q is the augmentation. This becomes a free  \mathcal{A}_{n,x} ‐resolution of  \mathcal{A}_{m,y}.

Proof. We reduce the proposition to the  B‐part. Let  f :  Garrow H be a surjective

homomorphism of group and  N be the kernel of  f . We prove that the sequence

(5.3)   0arrow Q[H] arrow Q[G] arrow^{0}dQ[G\cross N] arrow^{1}d Q[G\cross N^{2}] 
arrow\cdot\cdot

is exact. We choose a set theoretic section  s:Harrow G . Then

 \theta_{0} :Q[H] arrow Q[G] :harrow s(h)

 \theta_{1} :Q[G] arrow Q[G\cross N] :garrow g\otimes g^{-1}s(g)
 \theta_{2} :  Q[G\cross N]  arrow Q[G\cross N^{2}] :  g\otimes narrow g\otimes n\otimes n^{-1}g^{-1}s(ng)

gives a null homotopy. Therefore the sequence (5.3) is an exact sequence. By taking a
nilpotent completion, we have the proposition for the  B‐part.  \square 

Corollary 5.4. The complex  Rf_{*}M_{y} is quasi‐isomorphic to the comple

 Hom(Q, M_{x}) arrow Hom(\mathcal{A}_{n,m,x}, M_{x})d_{0} arrow^{1}
Hom(\mathcal{A}_{n,m,x}\otimes \mathcal{A}_{n,m,x}M_{x})darrow. .

where  f(x)  =  y . For example  d_{0}(\varphi)(a)  =  a\varphi(1)  -\varphi(\epsilon(a)) . The action of  \mathcal{A}_{m,B}  0

 Rf_{*}M_{B} is given by the monodromy action.

§5.3. De Rham cohomologies and Gauss‐Manin connection

5.3.1. Comparison to de Rham complexes We show that the  dR‐part is equal

to the Gauss‐Manin connection with coefficients in  M_{dR} . The action of  t_{ij} yields a
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nilpotent endomorphism  E_{ij} on  M_{dR} . Then the connection  (M_{dR}, \nabla_{M}) on  \mathcal{M}_{n} defined

by

  \nabla_{M}(m)=(i,j)\neq(n-2,n-1)\sum_{1\leq i<j\leq n-1}\frac{(dx_{i}-dx_{j})
E_{ij}}{x_{i}-x_{j}}m
is integrable.

Proposition 5.5. Let  M_{dR} be a discrete  \mathcal{A}_{n,dR} ‐module and  f :  \mathcal{M}_{n}  arrow \mathcal{M}_{m} be

the map given in Proposition 4.2, 1.

1. As a vector space  Rf_{*}M_{dR} is quasi‐isomorphic to the following relative de Rha
complexes:

 Rf_{*}'M_{dR}:M_{dR}arrow M_{dR}\otimes\Omega_{n/m}^{1}\nablaarrow M_{dR}
\otimes\Omega_{n/m}^{2}\nablaarrow. . .

Here  \Omega_{n/m} is a subcomplex of the relative de Rham complex  \Omega_{\mathcal{M}_{0,n}/\mathcal{M}_{0,m}} generated

by  \underline{d(x_{i}-x_{j})} with  i,  j>m-3.
 x_{i}-x_{j}

2. if  M is finite dimensional, then  R^{i}f_{*}M_{dR} is also finite dimensional, and

3.  R^{i}f_{*}M_{dR}=0  ifi>n-m.

Proof. Since the action of  \langle E_{ij}\rangle are nilpotent, we can show that  Rf_{*}'M_{dR} is quasi‐

isomorphism to  Rf_{*}M_{dR} by the induction of the length of nilpotent filtrations.  \square 

To give an explicit quasi‐isomorphism, it is convenient to introduce the bar complex.

Let  \overline{B_{n}} be the reduced bar complex of the DGA of logarithmic differentials  \Omega_{n} . (For
the definition of simplicial bar complex, see [T] §5.) Then the topological dual of  \mathcal{A}_{n} is
isomorphic  B_{n}  =H^{0}(\overline{B_{n}})  \subset\overline{B_{n}} and  H^{i}(B_{n})  =0 for  i  \neq 0 . Then  B_{n} becomes a Hop

algebra and the  \mathcal{A}_{n} ‐action on  M_{dR} yields a right  B_{n}‐comodule structure on  M_{dR} . By

the definition (2.1), and Proposition 2.4,  Rf_{*}M_{dR} is quasi‐isomorphic to

 0arrow M_{dR}\otimes B_{m} arrow M_{dR}\otimes B_{n}\otimes B_{m}d_{0}arrow^{1}
M_{dR}\otimes B_{n}\otimes B_{n}\otimes B_{m}darrow\ldots.

For example  d_{0},  d_{1} is given by the formula:

 d_{0}(m\otimes a)=\triangle_{M}(m)\otimes a-m\otimes\triangle_{m}(a)

 d_{1}(m\otimes b\otimes a)=\triangle_{M}(m)\otimes b\otimes a-m\otimes\triangle
(b)\otimes a+m\otimes b\otimes\triangle_{m}(a) .

Here  \triangle_{m} :  B_{m}  arrow B_{n}\otimes B_{m},  \triangle :  B_{n}  arrow B_{n}\otimes B_{n} and  \triangle_{M} :  M_{dR}  arrow M_{dR}\otimes B_{n} are the

coproducts.

Proposition 5.6.
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1. Let  \psi^{k} :  M_{dR}\otimes B_{n}^{\otimes k}\otimes B_{m}arrow M_{dR}\otimes\Omega_{n/m}^{k} be a map defined by

 m\otimes a_{1}\otimes\cdots\otimes a_{k}\otimes b\mapsto m\otimes\pi(a_{1})
\cdots\pi(a_{k})\epsilon(b) ,

where  \epsilon :  B_{m}  arrow Q is the augmentation, and  \pi :  Barrow\Omega_{n/m}^{1} is the composite of the

projection to  \Omega_{n/m} and the projection to  \Omega_{n/m}^{1}.
The

  \sum_{k}\psi^{k} :M_{dR}\otimes B_{n}^{\otimes}. \otimes B_{m}arrow M_{dR}
\otimes\Omega_{n/m}
is a homomorphism of complex and quasi‐isomorphism.

2. The coaction  \triangle_{M} of  B_{m,dR} on  R^{i}f_{*}M_{dR} is equal to the exponential of the Gauss‐

Manin connection defined by

 \nabla^{(1)}  =\nabla,  \nabla(i)=(\nabla\otimes id)\circ\nabla^{(i-1)}  \in M\otimes\Omega_{n/m}^{\otimes i},   \triangle_{M}(m)=\sum_{i=0}^{\infty}\nabla (i)  (m) .

Proof. 1. We can show the map  \Psi is a map of complex using the fact  B_{m} is graded

by the bar length.  \square 

§5.4. Framing and  \mathcal{A}‐actions

Let  M be a discrete  \mathcal{A}_{4} ‐module and  c_{M} :  M_{B}  arrow M_{dR} be the comparison map  0

 M.

Definition 5.7.

1. Let  y  \in  T_{4} . A framing of  M at  y is a pair of homomorphisms  \alpha :  Q  arrow M_{B,y} and
 \beta:M_{dR}arrow Q.

2. Let  f=  (\alpha, \beta) be a framing of  M at  y , and  \gamma be an element in  \mathcal{A}_{4,B,yz} . The value

 f(\gamma) of  f at  \gamma is defined by  \beta\circ c_{M}\circ\gamma\circ\alpha\in C

Let  f  =  (\alpha, \beta) be a framing of  M at  \overline{01} . The  dR‐part  M_{dR} of  M is a  \mathcal{A}_{4,dR}  \simeq

 C\langle\langle e_{0},   e_{1}\rangle\rangle ‐module. Let  E_{0},  E_{1} be actions of  e_{0} and  e_{1} on  M_{dR} . The action of  \varphi  =

 \varphi(e_{0}, e_{1})  \in  C\langle\langle e_{0},   e_{1}\rangle\rangle on  M_{dR} is denoted by  \varphi(E_{0}, E_{1}) . Since the actions of  \mathcal{A}_{4,B} and

 \mathcal{A}_{4,dR} on  M_{B} and  M_{dR} are compatible via the comparison map, using the associator  \Phi,
we have

 f([0,1])=\beta c_{M}[0, 1]\alpha=\beta c_{\mathcal{A}_{4}}([0,1])c_{M}\alpha=
\beta\Phi(E_{0}, E_{1})c_{M}\alpha\in Q[[\alpha_{i}]].

of  M_{dR}.
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§6. Iterated  \Phi‐integral and coefficients of the associator

§6.1. Iterated  \Phi‐integral

Let  \Phi be an associator and  \omega_{0}  =   \frac{dx}{x},  \omega_{1}  =   \frac{dx}{x-1} be one forms on  \mathcal{M}_{4} . In this

subsection, we define the iterated  \Phi‐integral   \int_{[0,1]}^{\Phi}\omega_{i_{1}}\ldots\omega_{i_{k}} for  i_{1} , . . . ,  i_{k}  \in  \{0 , 1  \} . We

can check the following lemma. We set  X=\mathcal{M}_{4}.

Lemma 6.1. Let  0  \leq  m  <  n be integers. Let  f :  [ 1,  n]  arrow  [1, m] be a weakly

increasing surjective map. Then  f defines a partition of  [ 1,  n] into numbered  m ‐subset.

According to this partition, we have a map  \triangle_{f} :  X^{m}arrow X^{n} . Then  X^{m}  (m\leq n) can be

expressed as a simplicial objects in  M^{inf} such that the morphisms  \triangle_{f} are compatible

with these simplicial structures.

We set  X_{0}^{m+2}  =  \{ (p, x1, . . . , x_{m}, q) \in X^{m+2} |p\neq q\} . Using the lemma above, we

have the following co‐semi‐simplicial variety:

(6.1)  \coprod_{I_{n}}X_{0}^{n+2} arrowarrow \coprod_{I_{n-1}}X_{0}^{n+1_{arrow}
^{arrow}}\cdots \cdotsarrowarrow \coprod_{I_{1}}X_{0}^{3} arrowarrow \coprod_{I_
{0}}X_{0}^{2}
where  I_{m} is the set of weakly increasing surjective map from  [1, n+2] to  [1, m+2].
We define a map  \pi_{m} :  X_{0}^{m+2}  arrow  X_{0}^{2}  =  \mathcal{M}_{5} by  (p, x1, . . . , x_{m}, q)  \mapsto  (p, q) . Then the

above co‐semi‐simplicial variety is compatible with the map  \pi_{m} . Therefore we have the

following associated double complex:

(6.2)  0 arrow R\pi_{n*}Qarrow\bigoplus_{I_{n-1}}R\pi_{n-1*}
Qarrow\cdotsarrow\bigoplus_{I_{1}}R\pi_{1*}Qarrow\bigoplus_{I_{0}}R\pi_{0*}
Qarrow 0
We set  U=X_{0}^{n+2}-∪  i=0n\{X_{i} =x_{i+1}\} , where  p=x_{0} , . . . ,  x_{n+1}  =q is the coordinate  0

 X_{0}^{n+2} and  j :  Uarrow X_{0}^{n+2} is the natural inclusion.

Definition 6.2. The k‐th cohomology of the total complex of (6.2) is denoted
by  R^{k}\pi_{*}j_{!} Q. It is an  \mathcal{A}_{5} ‐module.

For  (i1, . . . , i_{m})  \in\{0, 1\}^{m} , we set

  V_{m}= \bigoplus_{(i_{1},\ldots,i_{m})\in\{0,1\}^{m}}\omega_{i_{1}}
\otimes\cdot
 \cdot  \cdot  !\omega_{i_{m}} Q.

Then we have the following proposition. (See also [DG].)

Proposition 6.3. Under the above notations, we hav

 (R^{k}\pi_{*}j_{!}Q)_{dR,x}\simeq  \{\begin{array}{ll}
\oplus_{m=0}^{n}V_{m}   (k=n)
0   (k\neq n)
\end{array}
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for any  x\in T_{2} . Moreover, the Gauss‐Manin connectio

 \nabla .:  V_{m} arrow\langle\langle\frac{dp}{p},   \frac{dp}{p-1}\rangle\rangle V_{m-1}\oplus V_{m-1}\langle\langle\frac{dq}{q},   \frac{dq}{q-1}\rangle\rangle
on this space  is given by

 \nabla (\omega_{i_{1}} \otimes \cdot \cdot \cdot \otimes\omega_{i_{m}})=\omega_
{i_{1}}(\omega_{i_{2}}\otimes \cdot \cdot \cdot \otimes\omega_{i_{m}})-
(\omega_{i_{1}} \otimes \cdot \cdot \cdot \otimes\omega_{i_{m-1}})\omega_{i_{m}}
.

As for Betti‐part, we have the similar proposition.

Proposition 6.4. Let  (x, y)  \in T_{4}  \cross T_{4} . The fiber of the Betti‐part of  R^{n}\pi_{*}j_{!}Q

at  (x, y) is canonically isomorphic to the dual vector space of  Q[\pi_{1}(\mathcal{M}_{4})_{xy}]/I^{n+1} , where

I is the augmentation ideal. Under this isomorphism, the path  [0 , 1  ] in  \pi_{1}(\mathcal{M}_{4})_{\vec{01},\vec{10}}
corresponds to the element  \triangle_{n}  =  \{0 \leq x_{n} \leq. . . \leq x_{1} \leq 1\} in the dual vector space of

 (R^{n}\pi_{*}j_{!}Q)_{B,(\vec{01},\vec{10})}.
We define the iterated integral as follows.

Definition 6.5. We define  \Phi ‐iterated integral   \int_{[0,1]}^{\Phi}\omega_{i_{1}}\cdots\omega_{i_{n}} by the pairing

 ([0,1], \omega_{i_{1}}!\cdots\otimes\omega_{i_{n}})

obtained by the comparison map in  R^{n}\pi_{*}j_{!} Q.

We can state the relation between iterated integral and the coefficient of the asso‐
ciator.

Theorem 6.1. The coefficient  c_{\Phi,I} of  e_{i_{1}}e_{i_{2}}\ldots e_{i_{k}} in  \Phi(e_{0}, e_{1})  =  c_{\Phi,4}([0,1]) is
equal to   \int_{[0,1]}^{\Phi}\omega_{i_{1}}\ldots\omega_{i_{k}}.

Proof. Let  \gamma .:  [0 , 1  ]  arrow  \mathcal{M}_{4} be a path such that  \gamma(0)  =  x,  \gamma(1)  =  y . We set

 U\cap\pi_{n}^{-1}(x, y)  =  U_{xy} Then  \gamma corresponds to the relative cycle  \overline{\gamma} in  H_{n}(X^{n};X^{n}-U_{xy})
defined by  \gamma  =  (\gamma(x_{1}), \ldots, \gamma(x_{n})) :  \triangle_{n}  arrow  X^{n} . For  x  =  y , the constant path  c_{x}

corresponds to  \overline{c_{x}} . By the functoriality of this construction, the constant path is in the

image of  \pi_{1}(pt)_{xx}arrow\pi_{1}(X)_{xx} . Therefore, we have

(6.3)  (\overline{c_{x}}, \omega_{i_{1}}!\cdots ! \omega_{i_{m}})=  \{\begin{array}{ll}
1   (m=0)
0   (m\neq 0)
\end{array}
We consider the infinitesimal inclusion

 i:\mathcal{M}_{4}arrow \mathcal{M}_{5} .:  y\mapsto(\vec{01}, y) .
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The dual  \mathcal{A}_{4} ‐module of the restriction of  R^{n}\pi_{*}j_{!}Q is denoted by

 \Pi_{\vec{01},*}^{(n)} .:=(i^{*}R^{n}\pi_{*}j_{!}Q)^{*}
Then we have the Betti framing  \alpha :  Qarrow(\Pi_{\vec{01},\vec{01}}^{(n)})_{B} at  \vec{01} corresponding to the constant

path  c_{\vec{01}} . On the other hand, we have

 ( \prod_{arrowarrow}^{(n)})_{dR} \simeq Q\langle\langle e_{0}, e_{1}
\rangle\rangle/(e_{0}, e_{1})^{n+1}
 01,01

as  \mathcal{A}_{4,dR}‐module, where  e_{i_{1}}\cdots e_{i_{n}} is the dual basis of  \omega_{i_{1}}  !\cdots !  \omega_{i_{n}} . Therefore the

element  \omega_{i_{1}}!\cdots !  \omega_{i_{n}} defines a de Rham framing  \beta :  (\Pi_{\vec{01},\vec{01}}^{(n)})_{dR}arrow Q . By the equality

(6.3), by the comparison map, we have  \alpha(1)  =  1  \in  Q\langle\langle e_{0},  e_{1}\rangle\rangle/(e_{0}, e_{1})^{n+1} via the
comparison map. Therefore, we have

 ([0,1], \omega_{i_{1}}!\cdots\otimes\omega_{i_{n}})=([0,1]c_{\vec{01}}, \omega_
{i_{1}}!\cdots\otimes\omega_{i_{n}})
 =(\Phi(e_{0}, e_{1}), \omega_{i_{1}}!\cdots\otimes\omega_{i_{n}}) .

Therefore we have the statement of the theorem.  \square 

We define the  \Phi ‐multiple zeta value by

 \zeta_{\Phi}  (m_{1}, . . . , m_{k})= \int_{[0,1]}^{\Phi}\omega_{0}^{m_{k}-1}\omega_{1} . . .  \omega_{0}^{m_{1}-1}\omega_{1}.

By the above theorem, it is a coefficient of the associator  \Phi.

§6.2. Remarks on the action of the Grothendieck‐Teichmüller group

In this paper, we introduced algebroids of  \mathcal{M}_{n} and simplicial objects consisting  0

these algebroids. We also introduced standard  \mathcal{A}_{n} ‐modules arising from abelianization

of  \mathcal{A}_{4} . Periods of  \Phi‐cohomologies with coefficients in such sheaves are expressed by

coefficients of associators. Similar stories can be applied to the action of functorial

automorphism group of fiber functors of Betti or de Rham realization. These groups  0

functorial automorphisms are called Grothendieck‐Teichmüller groups. We can consider

similar cohomology theory on which Grothendieck‐Teichmüller group acts.
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