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Relations of multiple zeta values: from the viewpoint
of some special functions

By

Zhonghua LI

Abstract

We review some relations of multiple zeta values and of multiple zeta‐star values that can
be deduced by using some special functions.

§1. Introduction

For a sequence  k  =  (k_{1}, k2, . . . , k_{n}) of positive integers with  k_{1}  >  1 , the multiple
zeta value (abbreviated as MZV)  \zeta(k) and the multiple zeta‐star value (abbreviated as
MZSV)  \zeta^{\star}(k) are defined by the following convergent series

  \zeta(k) =\zeta(k_{1}, k_{2}, . . . k_{n}) := \sum \frac{1}{k_{1}k_{2}k_{n}},
 m_{1}>m_{2}>\cdots>m_{n}>0^{m_{1}}  m_{2} . . .  m_{n}

  \zeta^{\star}(k) =\zeta^{\star}(k_{1}, k_{2}, . . . k_{n}) :=\sum_{m_{1}\geq 
m_{2}\geq\cdots\geq m_{n}\geq 1}\frac{1}{m_{1}^{k_{1}}m_{2^{2}}^{k}\cdots m_{n}^
{k_{n}}},
respectively. When  n=1 , both values reduce to the special values of the Riemann zeta

function at positive integer arguments, which we call zeta values.

There are many elegant algebraic relations among these values. In this paper, we

review some relations of MZV’s and of MZSV’s that can be deduced by using some

special functions. This paper is not served as a survey paper. Here we just recall the
relations that we are familiar with or we have some contributions to.
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This paper is organized as follows. In Section 2, we recall some special functions

that will appear here. In Section 3, we illustrate two simple examples of evaluations

of MZV’s deduced by using the sine function. In Section 4, we review some results

about some special sums of MZV’s and of MZSV’s which related to the generalized

hypergeometric functions. In Section 5, we explain a proof of the Zagier’s evaluation

formula of the MZV’s  \zeta(2, \ldots, 2,3,2, \ldots, 2) by using the generalized hypergeometric
function  {}_{3}F_{2}.

§2. Some special functions

We recall some special functions that will appear in this paper. The first one is the

gamma function  \Gamma(z) . When the real part of  z is positive, the gamma function can be

defined by an integral

  \Gamma(z) :=\int_{0}^{\infty}t^{z-1}e^{-t}dt.
The property of gamma function that we most frequently use is the Taylor series  0

 \Gamma(1-z) in  0

(2.1)   \Gamma(1-z)=\exp(\gamma z+\sum_{n=2}^{\infty}\frac{\zeta(n)}{n}z^{n}) , |z| < 
1,
where  \gamma is the Euler’s constant.

The second one is the digamma function, which is

  \psi(z) := \frac{d}{dz}\log\Gamma(z)= \frac{\Gamma'(z)}{\Gamma(z)} =\int_{0}^{
\infty} (\frac{e^{-t}}{t}-\frac{e^{-zt}}{1-e^{-t}})dt, \Re(z) >0.
The Taylor series of  \psi(1-z) in  0 is

  \psi(1-z)=-\gamma-\sum_{n=1}^{\infty}\zeta(n+1)z^{n}, |z| < 1.
The third one is the generalized hypergeometric function (For more details, see

for example [4]). Let  p be a nonnegative integer and  a_{1} , . . . ,  a_{p+1},  b_{1} , . . . ,  b_{p} be com‐
plex numbers with  b_{1} , . . . ,  b_{p} not nonpositive integers. Then we have the generalized

hypergeometric function

 {}_{p+1}F_{p}(^{a_{1},..\cdot.'.a_{p+1}}b_{1}.,,b_{p};z)  :=1+ \frac{a_{1}\cdot\cdot.\cdot.a_{p+1}}{b_{1}\cdot b_{p}}z+\frac{a_{1}(a_{1}+
1)\cdots a_{p+1}(a_{p+1}+1)}{2!b_{1}(b_{1}+1)\cdots b_{p}(b_{p}+1)}z^{2}+\cdot  \cdot  \cdot

 =! \frac{(a_{1})_{n}\cdots.(a_{p+1})_{n}}{n!(b_{1})_{n}\cdot\cdot(b_{p})_{n}}z^
{n},
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with the Pochhammer symbol  (a)_{n} defined by

 (a)_{n}  :=   \frac{\Gamma(a+n)}{\Gamma(a)}  =  \{\begin{array}{ll}
1,   if n=1,
a(a+1)\cdots(a+n-1) ,   if n> 1.
\end{array}
It is known that this formal power series converges absolutely for  |z|  <  1 , and it also

converges absolutely for  |z|  =  1 if   \Re(\sum b_{i}-\sum a_{i})  >0 . Furthermore, this function is a

solution to the differential equation

(2.2)  [\mathcal{D}(\mathcal{D}+b_{1}-1)\cdots(\mathcal{D}+b_{p}-1)-z(\mathcal{D}+
a_{1})(\mathcal{D}+a_{2})\cdots(\mathcal{D}+a_{p+1})]y=0

with   \mathcal{D}=z\frac{d}{dz}.
When  p=1 , we get the classical Gaussian hypergeometric function

 {}_{2}F_{1}  (a_{\mathcal{C}}   b      z) =!\frac{(a)_{n}(b)_{n}}{n!(c)_{n}}
z^{n}
If  \Re(c-a-b)  >0 , we have the Gaussian summation formula

(2.3)  {}_{2}F_{1}  (a_{\mathcal{C}}   b      1) = \frac{\Gamma(c)\Gamma(c-a-b)}
{\Gamma(c-a)\Gamma(c-b)},
which relates Gaussian hypergeometric function to gamma functions, and then to zeta

values. When  p=2 , we get the generalized hypergeometric function

 {}_{3}F_{2}  (\begin{array}{lllll}
a_{1}   a_{2}   a_{3}      
b_{1},b_{2}            z
\end{array}) =!\frac{(a_{1})_{n}(a_{2})_{n}(a_{3})_{n}}{n!(b_{1})_{n}(b_{2})_{n}
}z^{n}
At this case, we have the Dixon’s theorem

 {}_{3}F_{2}  (_{1+a-b,1+a-c}a,b, c;1)  =   \frac{\Gamma(1+a/2)\Gamma(1+a/2-b-c)\Gamma(1+a-b)\Gamma(1+a-c)}{\Gamma(1+a)
\Gamma(1+a-b-c)\Gamma(1+a/2-b)\Gamma(1+a/2-c)},
provided that  \Re(1+a/2-b-c)  >  0 . In [9], J. L. Lavoie et al. generalized Dixon’s
theorem. They showed that for some integers  i,  j (23 pairs), the specialization

 {}_{3}F_{2} (_{1+i+a-b,1+i+j+a-c}a, b, c;1)
can be represented by gamma functions, and for some integers  m,  k,  l (26 triples), the
specialization

 {}_{3}F_{2} (_{a-b+l-k+m+1,a+l+1}a, b, m;1)
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can be represented by digamma functions. In the case  m=1,  k=l=0 , the summation
formula is

(2.4)  {}_{3}F_{2} (_{a-b^{a}+^{b}2^{1}a+1};1) =- \frac{a(1+a-b)}{2(b-1)}
 \cross (\psi((a+1)/2)-\psi(a/2)+\psi(a/2-b+1)-\psi((a+1)/2-b+1)) .

§3. Evaluations of some MZV’s

We recall two simple evaluation formulas of MZV’s, which can be deduced from

the infinite product expansion of the sine function

(3.1)   \frac{\sin\pi z}{\pi z}=\prod_{n=1}^{\infty}(1-\frac{z^{2}}{n^{2}}) .

Since the Taylor series of  \sin x at  x=0 is

  \sin x=!\frac{(-1)^{n}}{(2n+1)!}x^{2n+1},
we get from equation (3.1) that

 ! \frac{(-1)^{n}}{(2n+1)!}(\pi z)^{2n}=!(-1)^{n}  !n

Hence one get the evaluation formula of  \zeta(2, \ldots, 2) .

Theorem 3.1 ([6]). For any nonnegative integer  n , we have

 \zeta(2,.  =   \frac{1}{(2n+1)!}\pi^{2n}
 n

Applying the operator   \frac{d}{dz}\log to e/uation (3.1), we get

  \sum_{k=1}^{\infty}2\zeta(2k)z^{2k-1} = \frac{1}{z}-\pi\frac{\cos\pi z}
{\sin\pi z} = \frac{1}{z}-\pi\sqrt{-1}-\frac{2\pi\sqrt{-1}}{e^{2\pi\sqrt{-1}z}-
1}.
Then one obtain the evaluation formula of zeta values at even arguments.

Theorem 3.2 (Euler . For any positive integer  k , we have

  \zeta(2k)=-\frac{B_{2k}}{2(2k)!}(2\pi\sqrt{-1})^{2k},
where  \{B_{n}\}_{n=0}^{\infty} are the Bernoulli numbers defined by

  \sum_{n=0}^{\infty}\frac{B_{n}}{n!}t^{n}= \frac{t}{e^{t}-1}.
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§4. Sum of  MZ(S)V ’s

In this section, we review some results about the sum of MZV’s (and of MZSV’s)
that can be represented as a polynomial of zeta values with rational coefficients.

For a sequence  k=  (k_{1}, k2, . . . , k_{n}) of positive integers with  k_{1}  >  1 , as in [18], the
weight, depth and height of  k are defined by

wt(k)  :=ki+\cdots+k_{n},  dep(k)  :=n , ht(k)  :=♯  \{l | 1\leq l\leq n, k_{l} \geq 2\},

respectively. Note that ht (k)  =1 if and only if  k has the form  k=(k-n+
 n-1

Now for positive integers  k,  n,  s with  k\geq n+s and  n\geq s , we define the sums

 X_{0}(k, n, s) :=  \sum \zeta(k) ,

wt  (k)=k , dep  (k)=n , ht  (k)=s

 X_{0}^{\star}(k, n, s) :=  \sum \zeta^{\star}(k) .

wt  (k)=k , dep  (k)=n , ht  (k)=s

For example, the sums in the height one case are just one term

 ). X_{0}(k, n, 1)  =\zeta(k-n+ X_{0}^{\star}(k, n, 1)  =\zeta^{\star}(k-n+
 n-1 n-1

,
In [18], Y. Ohno and D. Zagier found that some type generating function of sums

 X_{0}(k, n, s) is related to the Gaussian hypergeometric function

  \sum_{k\geq n+s,n\geq s\geq 1}X_{0}(k, n, s)u^{k-n-s}v^{n-s}t^{s-1}
 =   \frac{1}{uv-t}\{1- {}_{2}F_{1} (^{\alpha-u,\beta-u}1-u;1)\}

with  \alpha and  \beta determined by  \alpha+\beta  =  u+v and  \alpha\beta  =  t . Then by the Gaussian

summation formula (2.3) and the Taylor series of gamma function (2.1), one get the
so‐called Ohno‐Zagier relation.

Theorem 4.1 ([18]). Let  u,  v and  t be formal variables. We have

  \sum_{k\geq n+s,n\geq s\geq 1}X_{0}(k, n, s)u^{k-n-s}v^{n-s}t^{s-1}

 = \frac{1}{uv-t}\{1-\exp(\sum_{n=2}^{\infty}\frac{\zeta(n)}{n}(u^{n}+v^{n}-
\alpha^{n}-\beta^{n}))\}
with  \alpha and  \beta determined by  \alpha+\beta=u+v and  \alpha\beta=t . In particular, for any positive

integers  k,  n,  s with  k  \geq  n+s and  n  \geq  s , the sum  X_{0}(k, n, s) is a polynomial of zet

values with rational coefficients.
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In [1], a similar formula holds for the sums  X_{0}^{\star}(k, n, s) . While this time we do not
meet the Gaussian hypergeometric function but the generalized hypergeometric function
 {}_{3}F_{2}.

Theorem 4.2 ([1]). Let  u,  v and  t be formal variables. We have

  \Phi_{0}^{\star}(u, v, t) :=\sum_{k\geq n+s,n\geq s\geq 1}X_{0}^{\star}(k, n, 
s)u^{k-n-s}v^{n-s}t^{2s-2}
 = \frac{1}{(1-v)(1-\beta)}{}_{3}F_{2} (^{1-\beta,1-\beta+u,1}2-v, 2-\beta;1)

with  \alpha and  \beta determined by  \alpha+\beta=u+v and  \alpha\beta=uv-t^{2}.

To prove Theorem 4.1 and Theorem 4.2, the authors considered multiple polylog‐
arithms

  Li_{k_{1},k_{2}}, \cdots, k_{n}(z) :=\sum_{m_{1}>m_{2}>\cdots>m_{n}>0}\frac{z^
{m_{1}}}{m_{1}^{k_{1}}m_{2}^{k_{2}}\cdots m_{n}^{k_{n}}},
  Li_{k_{1},k_{2}}^{\star}, \cdots, k_{n}(z) :=\sum_{m_{1}\geq m_{2}
\geq\cdots\geq m_{n}\geq 1}\frac{z^{m_{1}}}{m_{1}^{k_{1}}m_{2}^{k_{2}}\cdots 
m_{n}^{k_{n}}},

which tends to MZV  \zeta  (k_{1}, k2, . . . , k_{n}) and MZSV  \zeta^{\star}(k_{1}, k2, . . . , k_{n}) when  z goes to 1

provided that  k_{1}  >  1 , respectively. Then they considered similar sums of multiple

polylogarithms and their generating function, built the differential equation satisfied

by this generating function, obtained the representation of the generating function via

(generalized) hypergeometric function by comparing the differential equation with (2.2),
and finally got the desired formula by setting  z  =  1 . We would like to mention that

in [14], we found that the Ohno‐Zagier relation can be deduced from the regularized
double shuffle relation([8]), which provides a pure algebraic proof of the Ohno‐Zagier
relation.

By the representation in Theorem 4.2, we could say that in general the sum

 X_{0}^{\star}(k, n, s) is not a polynomial of zeta values with rational coefficients. For example,

by [10, Eq. (2.2) and (2.3)], we have

 X_{0}^{\star}(8,6,1)  =\zeta^{\star}(3 =-\zeta(6,2)-6\zeta(7,1)+\zeta(2)\zeta(6) .

5

But it is conjectured that the value  \zeta(6,2) can not be reduced. Hence  X_{0}^{\star}(8,6,1) can

not be a polynomial of zeta values with rational coefficients. However, in [10, Theorem
1], M. Kaneko and Y. Ohno showed that for any positive integers  k and  n , the difference

 (-1)^{k}\zeta^{\star}(k+
 n  k

,,
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is indeed a polynomial of zeta values with rational coefficients. They proved this by

using the special values of the zeta function

  \xi_{k}(s) := \frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{t^{s-1}}{e^{t}-1}
Li_{k}(1-e^{-t})dt
defined in [3] and Ohno’s relation ([17]). In [20], C. Yamazaki gave another proof of this
result by using the representation of the generating function  \Phi_{0}^{\star}(u, v, t) obtained in [1].
Then M. Kaneko and Y. Ohno conjectured in [10] that this result can be generalized
from height one to general height. In [13], we modified the proof of C. Yamazaki, used
Theorem 4.2, borrowed two transformation formulas of  {}_{3}F_{2} from [4], and proved this
conjecture.

Theorem 4.3 ([13]). We have

 u \Phi_{0}^{\star}(-u, v, t)-v\Phi_{0}^{\star}(-v, u, t)=\frac{u-v}
{\alpha\beta}+\frac{\Gamma(\alpha)\Gamma(1-\alpha)\Gamma(\beta)\Gamma(1-\beta)
\Gamma(u+\beta)}{\Gamma(u)\Gamma(v)\Gamma(1-u-\alpha)}
  \cross (\frac{\Gamma(v)\Gamma(1-v)}{\Gamma(\alpha)\Gamma(1-\alpha)}+
\frac{\Gamma(u)\Gamma(1-u)}{\Gamma(\beta)\Gamma(1-\beta)})

with  \alpha and  \beta determined by  \alpha+\beta=-u+v and  \alpha\beta= −uv—t2. In particular, for any
positive integers  m,  n,  s with  m,  n\geq s , the difference

 (-1)^{m}X_{0}^{\star}(m+n+1, n+1, s)-(-1)^{n}X_{0}^{\star}(m+n+1, m+1, s)

is a polynomial of zeta values with rational coefficients.

The two transformation formulas ([4]) which we used in the proof are

(4.1)  {}_{3}F_{2}  (^{\alpha_{1},\alpha_{2},\alpha_{3}}\beta_{1},\beta_{2};1)  = \frac{\Gamma(\beta_{1})\Gamma(\beta_{1}-\alpha_{1}-\alpha_{2})}{\Gamma(\beta_
{1}-\alpha_{1})\Gamma(\beta_{1}-\alpha_{2})}{}_{3}F_{2}  (_{\alpha_{1}+\alpha_{2}-\beta_{1}+1,\beta_{2}}\alpha_{1}, \alpha_{2}, 
\beta_{2}-\alpha_{3};1)
 + \frac{\Gamma(\beta_{1})\Gamma(\beta_{2})\Gamma(\alpha_{1}+\alpha_{2}-
\beta_{1})\Gamma(\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}-\alpha_{3})}
{\Gamma(\alpha_{1})\Gamma(\alpha_{2})\Gamma(\beta_{2}-\alpha_{3})
\Gamma(\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2})}
 \cross {}_{3}F_{2} (^{\beta_{1}-\alpha_{1},\beta_{1}-\alpha_{2},\beta_{1}+
\beta_{2}-\alpha_{1}-\alpha_{2}-\alpha_{3}}\beta_{1}-\alpha_{1}-\alpha_{2}+1,
\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2};1) ,

provided that  \Re(\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}-\alpha_{3})  >0 and  \Re(\alpha_{3}-\beta_{1}+1)  >0 , and

(4.2)

 {}_{3}F_{2}  (^{\alpha_{1},\alpha_{2},\alpha_{3}}\beta_{1},\beta_{2};1)  = \frac{\Gamma(\beta_{2})\Gamma(\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}-
\alpha_{3})}{\Gamma(\beta_{2}-\alpha_{3})\Gamma(\beta_{1}+\beta_{2}-\alpha_{1}-
\alpha_{2})}{}_{3}F_{2}  (_{\beta_{1},\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}}\beta_{1}-\alpha_{1}, 
\beta_{1}-\alpha_{2}, \alpha_{3};1) ,

provided that  \Re(\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}-\alpha_{3})  >0 and  \Re(\beta_{2}-\alpha_{3})  >0.
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In [11], we studied a possible generalization of the Ohno‐Zagier relation. In fact,
for a sequence  k=  (k_{1}, k2, . . . , k_{n}) of positive integers with  k_{1}  >  1 and for any positive

integer  i , we defined  i‐height of  k to be

i‐ ht(k)  :=♯  \{l | 1!l!n, k_{l} \geq i+1\}.

Note that 1‐height isjust height. Then for a positive integer  r and integers  k,  n,  h_{1} , . . . ,  h_{r},
we set

 X_{0}^{(r)} (k, n, h_{1}, . . . , h_{r}) :=  \sum \zeta(k) .

wt  (k)=k , dep  (k)=n,
1‐ ht  (k)=h_{1},  r- ht  (k)=h_{r}

By studying similar sums of multiple polylogarithms, building the differential equation

satisfied by a generating function of these sums, and finally letting the variable  z to be

1, we represent the generating function

  \sum_{k,n,h_{1},\ldots,h_{r}\geq 0}X_{0}^{(r)}  (k, n, h1, . . . , h_{r})u_{1}^{k-n-\Sigma h_{j}}u_{2}^{n-h_{1}}u_{3}^{h_{1}-h_
{2}}u_{4}^{h_{2}-h_{3}}\cdots u_{r+1}^{h_{r-1}-h_{r}}u_{r+2}^{h_{r}}
by a sum of generalized hypergeometric functions  {}_{r+1}F_{r}  (; 1)' s . The general formula

([11, Theorem 1.1]) is too complicated to recall here. While for  r=  1 , it is just Ohno‐
Zagier relation, and for  r=2 , the formula reads as

 k,n,!_{2}^{X_{0}^{(2)}(k,n,h_{1},h_{2})u_{1}^{k-n-h_{1}-h_{2}}u_{2}^{n-h_{1}}u_
{3}^{h_{1}-h_{2}}u_{4}^{h_{2}}}\geq 0
 = \frac{u_{3}}{1-u_{1}}{}_{3}F_{2} (^{a_{1}+1,a_{2}+1,a_{3}+1}2-u_{1},2;1) + {}
_{3}F_{2} (_{1-u_{1},1}^{a_{1},a_{2},a_{3}};1) -1,

where  a_{1},  a_{2},  a_{3} are determined by the conditions

 \{\begin{array}{l}
a_{1}+a_{2}+a_{3}=-u_{1}+u_{2},
a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{1} =u_{3}-u_{1}u_{2},
a_{1}a_{2}a_{3}=u_{4}-u_{1}u_{3}.
\end{array}
We raised a problem in [11] that whether the sum  X_{0}^{(r)}  (k, n, h1, . . . , h_{r}) is a poly‐

nomial of zeta values with rational coefficients. We have a positive answer in the case
 r=1 (by the Ohno‐Zagier relation) and the case  n=h_{1} (by the symmetric sum formula
([6, Theorem 2.1])). While in the general case, J. Zhao found a counterexample ([21])

  X_{0}^{(2)}(10,4,3,2)=X_{0}^{(3)}(10,4,3,2,1)=\zeta(2,1,3,4)+\zeta(2,1,4,3)+
\cdots (18 terms)

 = \frac{47}{2}\zeta(2)\zeta(3)\zeta(5)-\frac{4399}{770}\zeta(2)^{5}+\frac{91}
{4}\zeta(5)^{2}+\frac{11}{20}\zeta(2)^{2}\zeta(3)^{2}-\frac{45}{4}\zeta(2)
\zeta(6,2)-\frac{73}{16}\zeta(3)\zeta(7) .

Again, the double zeta value  \zeta(6,2) leads to the assertion that the above sum is not a

polynomial of zeta values with rational coefficients.
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In [2], T. Aoki, Y. Ohno and N. Wakabayashi studied the MZSV version of our
result [11]. They represented a generating function of sums

  \sum \zeta^{\star}(k)
wt  (k)=k , dep  (k)=n,

1‐ ht  (k)=h_{1},  r- ht  (k)=h_{r}

by a sum of  {}_{r+2}F_{r+1}  (; 1)' s . And in [12], we studied the  q‐version of our result [11].

§5. Zagier’s evaluation formula

In a recent paper [5], F. Brown made a great progress in the study of MZV’s. He
succeeded in proving the basis conjecture of M. Hoffman ([7]), which claims that every
MZV is a rational combination of MZV’s with all arguments 2 or 3. In his proof, an

evaluation formula of the multiple zeta values  \zeta(2, \ldots, 2,3,2, \ldots, 2) proved by D. Zagier

in [22] plays an important role.

Theorem 5.1 ([22]). For any two nonnegative integers  a and  b , we have

 a+b+1

(5.1)  ),
 b  a  a+b+1-r

 a+b+1

(5.2)  \zeta^{\star}  ),
 a b

, ,where

 c_{a,b}^{r}=2(-1)^{r} \{(\begin{array}{l}
2r
2a+2
\end{array}) - (1-\frac{1}{2^{2r}}) (\begin{array}{l}
2r
2b+1
\end{array})\},
 c_{a,b}^{\star,r}=-2 \{(\begin{array}{l}
2r
2a
\end{array}) -\delta_{r,a}- (1-\frac{1}{2^{2r}}) (\begin{array}{l}
2r
2b+1
\end{array})\},

with  \delta_{r,a} the Kronecker’s delta symbol.

Note that the above two formulas (5.1) and (5.2) are equivalent as shown in [22].
A pure algebraic proof of the equivalence is given in [15]. In this section, we want to
talk about the proof of the evaluation formula (5.1). To prove this formula, D. Zagier
considered the following two generating functions

 F(x, y)  := \sum_{a,b=0}^{\infty}(-1)^{a+b+1}  2a+2_{y}2b+1,

 \hat{F}(x, y)  := \sum_{a,b=0}^{\infty}(-1)^{a+b+1}  (^{a}!^{1}c_{a,b}^{r}\zeta(2r+1)\zeta  )  x^{2a+2}y^{2b+1}
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Then it is enough to prove that  F(x, y)  =  \hat{F}(x, y) . D. Zagier showed that these two

generating functions can be represented by special functions

(5.3)   \frac{\pi}{\sin\pi y}F(x, y)=   \frac{d}{dz}
 z=0

 {}_{3}F_{2}  (_{1+y,1-y}x,-x,z;1) ,

(5.4)   \frac{\pi}{\sin\pi y}\hat{F}(x, y)=\frac{1}{2}  [2\psi(1+y)+2\psi(1-y)-\psi(1+x+y)-\psi(1-x-y)

 - \psi(1+x-y)-\psi(1-x+y)]-\frac{\sin\pi x}{2\sin\pi y} [\psi(1+(x+y)/2)
 +\psi(1-(x+y)/2)-\psi(1+(x-y)/2)-\psi(1-(x-y)/2)

 -\psi(1+x+y)-\psi(1-x-y)+\psi(1+x-y)+\psi(1-x+y)].

D. Zagier proved indirectly that  F(x, y)=\hat{F}(x, y) . In fact, he showed that  F(x, y)
and  \hat{F}(x, y) are entire functions on  \mathbb{C}\cross \mathbb{C} , and that they have good behaviors at infinity

 F(x, y) ,  \hat{F}(x, y)=O(e^{\pi X}\log X) , X=\max(|x|, |y|)arrow\infty.

Furthermore, he showed that for any  x\in \mathbb{C} and  k\in \mathbb{Z},

 F(x, k)=\hat{F}(x, k) , F(x, x)=\hat{F}(x, x) .

And then using the fact that an entire function  f :  \mathbb{C}arrow \mathbb{C} that vanishes at all integers

and satisfies  f(z)  =  O(e^{\pi|\Im(z)|}) is a constant multiple of  \sin\pi z , he got the equality

 F(x, y)=\hat{F}(x, y) .

In [16], we gave another proof of the equality  F(x, y)  =\hat{F}(x, y) . We showed that
the right‐hand sides of equations (5.3) and (5.4) are the same. In fact, noting that

 {}_{3}F_{2}  (_{1+y,1-y}x,-x,z;1)  =   \frac{1}{2}{}_{3}F_{2}  (_{1+y,1-y}x, 1-x, z;1)  + \frac{1}{2}{}_{3}F_{2}  (_{1+y,1-y}^{1+x,-x,z};1) ,

it is sufficient to prove

  \frac{d}{dz}
 z=0

 {}_{3}F_{2}  (_{1+y,1-y}x, 1-x, z;1)  =\psi(1+y)+\psi(1-y)-\psi(1-x+y)-\psi(1-x-y)

‐   \frac{\sin\pi x}{\sin\pi y}  [\psi(1-x+y)-\psi(1-x-y)-\psi(1-(x-y)/2)+\psi(1-(x+y)/2)].

To prove the above formula, we used the transformation formula (4.1) to write the  {}_{3}F_{2^{-}}

series occurred in the left‐hand side as a sum of two  {}_{3}F_{2} ‐series, and then applied the

transformation formula (4.2) to the first  {}_{3}F_{2} ‐series. Finally, we used the summation
formula (2.4) after applying the operator   \frac{d}{dz}|_{z=0} to get the desired result. For more
details, please see our paper [16].

We finally remark that in [19], T. Terasoma proved that the Zagier’s evaluation
formula holds for the coefficients of any associator.
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