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Remarks on the global dynamics for solutions with
an infinite group invariance to the nonlinear
Schrodinger equation

By

Takahisa INUT*

Abstract

We consider the focusing mass-supercritical and energy-subcritical nonlinear Schrodinger
equation (NLS). The global dynamics below the ground state standing waves is known (see
[6, 1, 9]). Recently, the author [12] gave the global dynamics above the ground state standing
waves for finite group invariant solutions. In the present paper, we are interested in the global
dynamics for the solutions with an infinite group invariance.

§1. Introduction

§1.1. Background

We consider the following nonlinear Schrodinger equation:

(NLS) i0pu + Au + [ulP~lu =0, (t,7) € R x RY,
u(0,x) = up(z), r € RY,

where d e Nand 1+4/d<p<1+4/(d—2). Weregard 1+4/(d—2) as o if d =1, 2.
It is well known that (NLS) is locally well-posed in H!(R%) and the energy, the mass,
and the momentum are conserved (see [8] and the standard texts [2, 18, 14]). Here, the
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energy, the mass, and the momentum are defined as follows:

1 ) 1 o
(Energy) B i= 5 IVullfs = 5 lullh
2
(Mass) M (u) := [lullz-
(Momentum) P(u):=Im [ wu(x)Vu(x)dz.
Rd

Since a pioneer work by Kenig and Merle [13], many researchers have studied
the global dynamics for (NLS). For the 3d cubic Schrédinger equation, Holmer and
Roudenko [10] obtained the following two statements if the initial data ug € H?! is
radially symmetric and satisfies the mass-energy condition M (ug)E(ug) < M(Q)E(Q),
where () is the ground state solutions.

o |luoll 2 [[Vuoll 2 < |Ql 2 IVQ] ;2 = the solution scatters.
o |[ugll 2 [[Vuoll 2 > Q]2 IVQ] 2 = the solution blows up in finite time.

For the non-radial solutions, Duyckaerts, Holmer, and Roudenko [5] obtained the scat-
tering result and Holmer and Roudenko [11] proved that the solutions in the above
blow-up region blow up in finite time or grow up at infinite time. Fang, Xie, and
Cazenave [6] proved the scattering result and Akahori and Nawa [1] and Guevara [9]
proved both the scattering and the blow-up result for (NLS).

These results mean that the ground state standing waves are thresholds to classify
the scattering and blow-up. However, if we consider odd solutions, the ground state
standing waves are no longer thresholds since they are not odd. More generally, we
expect that we can classify the solutions with a symmetry above the ground state
standing waves to scatter or blow up.

Recently, the author considered the global dynamics for group invariant solutions
to (NLS) in [12]. To state this result, we introduce some notations.

Let O(d) denote the set of d x d orthogonal matrices. Let G be a subgroup in
O(d). We only consider the subgroups in R/27Z x O(d) denoted by {(0(G),G) : G € G}
for some group homomorphism 6 : G — R/27Z. We denote this subgroup by G for
simplicity although this is determined by G and 6. And we also use the notation G
without confusion to denote not only a matrix but also an element of a subgroup G in
R/27ZxO(d). For a subgroup G of R/27ZxO(d), we say that a function ¢ is G-invariant
(or with G-invariance) if ¢ = Gy for all G € G, where Gp(z) := e ¥ (po G71)(z) =
e (G lz) for G = (0,G) € R/27Z x O(d). We define the Sobolev space with G-
invariance by

H = {pc H'(R?Y) : o = Gp,VYG € G}.

If the initial data ug belongs to H}, then the corresponding solution to (NLS) also
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belongs to H}, since the Laplacian A is invariant for group actions by R/27Z x O(d)
and (NLS) is gauge invariant.
Let w be a positive number. We define the action S, by

Sulp) = Elp) + 5 M(p).

Moreover, let K denote the functional which appears in the virial identity, that is,

2 p—1
K(p) == 02(Su(¥™)|r=0 = p IVel|7. — 1 [ g

where ©*(z) 1= e*p(ei*z). For a subgroup G of R/27Z x O(d), we consider the
restricted minimizing problem

I = inf{S.(p) - ¢ € HG \ {0}, K (p) = 0}.
We say that the solution u to (NLS) scatters if there exist o+ € H'(R?) such that
|u(t) — eimgpi”Hl — 0 as t — £o0,

where e®? denotes the free propagator of the Schrédinger equation.
In [12], we prove the following theorem.

Theorem 1.1 ([12]).  Letw > 0, G be a subgroup of R/27ZxO(d), ug € HE(R?)
satisfy S.(ug) < IS, and u be the solution of (NLS) with the initial data ug. Then, the
following statements hold.

(1) We assume either that (i) G is a finite group or (ii) G is an infinite group such
that the embedding HE, — LPTY(R?) is compact. Then, if K(ug) > 0, the solution
u scatters.

ug) < 0, then the solution u blows up in finite time or grows up at infinite
2) If K 0, then the soluti bl p in finite ti g D at infinit
time. More precisely, one of the following four cases occurs.
(a) u blows up in finite time in both directions.

(b) u blows up in positive finite time and u is global in the negative time direction
and limsup,_, _ . [|[Vu(t)| ;. = oo.
(¢) u blows up in negative finite time and u is global in the positive time direction

and limsup,_, o [|Vu(t)| ;. = co.
(d) u is global in both time directions and limsup,_, | o ||Vu(t)| . = cc.
If G is the unit group, then Theorem 1.1 coincides with Theorems 1.1 and 1.2 in

[1]. We remark that the blow-up result does not require any assumptions for the group.
We need to assume the finiteness or the compactness of embedding to prove scattering.
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We are interested in the global dynamics for G-invariant solutions when G is in-
finite and the embedding H, é < LPTY(RY) is not compact. For example, we treat an
embedded vortex solution in 3D. See Section 5 (2). (See Fibich’s textbook [7, Section
15] for vortex solutions in 2D, which can be treated by Theorem 1.1.) In the present
paper, we will give global dynamics for solutions with an infinite group invariance.

§1.2. Main result

For k € {0,1,2,--- ,d} and subgroups M C O(k) and N C O(d — k), we define a
group M x N in O(d) by

MxN::{<M O):MEM,NEN}.
0 N

Let G be a finite subgroup in O(d — k). We consider the subgroup in R/27Z x O(d)
denoted by {(0(G),G) : G € O(k) x G} for some group homomorphism 6 : O(k) x G —
R/27Z. As stated before, we denote this subgroup by O(k) x G. And we set Gy, :=
O(k) x G for simplicity. Then Gy is infinite and the embedding Hg, < LPT(R?) is
not compact when d > 3 and k € {2,--- ,d — 1}. Then, we have the following main
theorem for the GG-invariant solutions.

Theorem 1.2. Letd > 3 and k € {2,--- ,d— 1}, and w > 0. Let G be a
finite group in O(d — k) and Gy be the subgroup in R/27Z x O(d) defined above. Let
ug € HY, and u be the solution of (NLS) with the initial data ug. Then, if S, (ug) < IS
and K (ug) > 0, then the solution u scatters.

Remark.

(1). If k= 0,1, or d, then the scattering result follows from Theorem 1.1 since Gy,
is finite if £ = 0,1 and G4 = O(d).

(2). If ug € HY,, satisfies S, (ug) < IS* and K (up) < 0, then the solution u blows
up in finite time or grows up at infinite time by Theorem 1.1.

(3). See Section 5 for the applications of Theorem 1.2.

To show Theorem 1.2, we prepare a proposition. Before stating the proposition,
we introduce some notations.

For a subgroup G in R/277Z x O(d), we define subsets Q%/G?%w in H'(R?) by
Ao = {p € HE : Sulp) <15, K(p) > 0},
A =1{p € HE = Su(p) <15, K(p) <0},

and we say that a subgroup G’ of G satisfies (k) if there exists a sequence {x,} C R¢
such that
{x,, — G'z,} is bounded for all ¢’ € G,
{\xn—gxn]%ooasn%oo, forall G € G\ G'.
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For a subgroup G in R/27Z x O(d), we define a critical action for the data with G-

invariance by
SY :=sup{S € (—00,15] : Vp € f/“i/Gwa, Su(p) < S
= the solution to (NLS) with the initial data ¢ belongs to L*(R : L"(R%))}.
See (2.3) below for the definition of o and r. We remark that v € L*(R : L"(R%))

implies that the solution u scatters (see Proposition 2.5).
For a finite group G C O(d — k), we denote the subgroup {Z;} x G of Gj in

R/277Z x O(d) by G for simplicity, where Z, is the k x k identity matrix. We define

#G <A

mCr = min S,
G’ CG satisfying () #G

where #X denotes the number of the elements in a set X.

Proposition 1.3. Letd >3 and k € {2,---,d— 1}, and w > 0. Let G be a
finite group in O(d — k) and Gy be the subgroup in R/27w7Z x O(d) defined above. Let
uo € HY, and u be the solution of (NLS) with the initial data uo. If S.(ug) < mS* and
K (ug) > 0, then the solution u scatters.

To prove Theorem 1.2, we combine Proposition 1.3 with the Neotherian induction
argument. The proof of Proposition 1.3 is based on the method of Kenig and Merle [13].
However, we need to improve Linear Profile Decomposition (LPD). In [12], we obtained
LPD for the finite group invariant data (see Proposition 4 in [12]). To obtain the LPD
for Gp-invariant data, we combine the proof of LPD for the finite group invariant data
with that of LPD for the radial data. See Proposition 3.1. Once getting LPD for G-
invariant data, the construction of a critical element and the rigidity argument work in
the similar way to those in [12].

The rest of the present paper is organized as follows. In Section 2.1, we reorga-
nize variational argument for the data with G-invariance for general subgroup G in
R/27Z x O(d) and we also refer to the blow-up result. We prepare some lemmas to
prove scattering in Section 2.2. Section 3 is devoted to prove Theorem 1.2. In Section
3.1, we give LPD for partially radial data Proposition 3.1, which is a key ingredient. In
Section 3.2, we show Proposition 1.3 by constructing a critical element and the rigidity
argument. In Section 3.3, we derive Theorem 1.2 from Proposition 1.3 by the Noethe-
rian induction argument. We collect some lemmas in Section 4. In Section 5, we state

the applications of Theorem 1.2.

8 2. Variational structure and Preliminaries

This section is same as that in author’s paper [12]. However, we give some proofs
for the reader’s convenience. Let G denote an arbitrary subgroup in R/277Z x O(d) in
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this section.

§2.1. Variational structure

We discuss the variational structure and refer to the blow-up result.

Lemma 2.1. If K(p) > 0, then we have

(2.1) Su(p) < —||W||Lz +5 ||<pHL2 < %

Su ()

Proof. The left inequality is trivial. We show the right inequality. We have
0 < K( ) = (5 — 221 V|32 + (p — 1)E(p). Adding w(p — 1)M(p)/2, we obtain
(B —2) HV<,0HL2 + 5 —1)M(p) < (p—1)S,(p). Therefore, we get

(p=1=3) {5Iveli + 500001} < - DSu0)

This completes the proof. O

Lemma 2.2. Ifug € %wa, then the corresponding solution u(t) belongs to Ji/Gwa
for all existence time t. Moreover, if ug € %wa, then the corresponding solution u(t)
belongs to K, for all existence time t.

Proof. We prove the second statement. Let ug € . Since the energy and the
mass are conserved and the solution belongs to H},, we have u(t) € %wa Usg,, forall
existence time ¢. We assume that there exists t; > 0 such that u(t;) € Ji’Gwa. By the
continuity of the solution in H!(RY), there exists to € (0,%1) such that K(u(ty)) = 0.
By the definition of I, if u(ty) # 0, then we see that

16 > BE(up) + ;M(uo) = BE(u(ty)) + %M(u(to)) > G

This is a contradiction. Thus, u(tp) = 0. By the uniqueness of the solution, u = 0 for
all time. However, this contradicts ug € % . Thus, we see that u(t) € %, for all ¢.
The first statement follows from the same argument (see also Lemma 2.2 in [12]). O

By Lemmas 2.1 and 2.2, we get an apriori estimate and thus the solution to (NLS)
exists globally in time if the initial data uy belongs to Ji’Gwa.

Lemma 2.3.  Let p € H}, satisfy S.(¢) < 1S. Then, one of the following holds.

(2:2)  K(p) = min{4(IS - S.(9))/d. 8 |VelL2}, or K(p) < =45 = Su(p))/d,

for some 6 > 0.
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Proof. 'We give the sketch of the proof. See Lemma 2.3 in [12] for details. We may
assume that ¢ # 0. Let s(\) := S,,(¢*), where p*(2) = e*p(ea*). Then, s(0) = S,,(p)
and s'(0) = K(y). By direct calculations, we have s” < 4s’/d. First, we consider the
case of K < 0. Then, there exists Ay < 0 such that s'(A\g) = 0 since K < 0. Integrating
s" < 4s'/d on [Ag, 0], we obtain s'(0) — s’'(Ag) < 4(s(0) — s(Ag))/d. This completes the
proof in the case of K < 0. Next, we consider the case of K > 0. Then, there exists A\;
such that s” (A1) +4s (A\1)/d =0 and s”(\)+4s'(N\)/d < 0 forall A > A\;. If \; > 0, then
we obtain K (¢) > & |[Ve|/3. where § := 2(p—1—4/d)/{d(p—1+4/d)}. If A\, <0, then
s"(N) < —4s'(N)/d for X € [0, \g], where we note that Ay > 0 since K > 0. Integrating
the inequality s”(\) < —4s’(\)/d on [0, o], this completes the proof. O

By Lemmas 2.2 and 2.3, if ug € %, then the solution u satisfies K(u(t)) <
—4(1S — S,,(up))/d < 0 for all existence time ¢. Therefore, the blow-up result (Theorem
1.1 (2)) follows directly from Theorem 2.1 in [4].

§2.2. Preliminaries

We show some basic lemmas, which are used to prove scattering. Their proofs can
be found in [6] and [12]. Let

. 2(p=1)(p+1) B = 2(p—1)(p+1) . 2(d+2)
Y= Im@ -1 T -2 rd-p-D-4 T T d
(2.3)
. 4(p+1 — . d 2
q._dg_l;, r:=p+1, si=§— 353

Let 8" and r’ denote the Holder conjugate exponents of the exponent 5 and r, respec-

tively.

Lemma 2.4 (Strichartz estimates).  The following estimates are vaild.

(2.4) HeimQOHLq(R:Lr) + HeitASOHLW(R:LW) S el
(2.5) HeitASOHLa(R:LT) S el
t
(26) e 2 g Sl ey
0 Le(I:L7)

where I is a time interval and the implicit constant is independent of I.
See Theorem 2.3.3 and Proposition 2.4.1 in [2].

Proposition 2.5.  Let ug € H'(R?) and u be the solution to (NLS) with the
initial data ug. If the solution u is positively global and u € L¥((0,00) : L"(R%)), then
the solution scatters in the positive time direction. Moreover, the same statement holds
i the negative case.
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See Proposition 2.3 in [3] and Theorem 7.8.1 in [2] for the proof.

Proposition 2.6.  There exists €54 > 0 satisfying the following. If ug € H*(R?)
and HeimuoHLa((O 00): L") < €54, then the solution u of (NLS) with the initial data ug is

positively global and we have

(2.7) HUHLa((o,oo):Lr) S €sd-

In particular, if ||uol|| g1 < €sd, then the solution u is global and we have

(2.8) [l o ey + 1l o erry + 0l oo ey S llol g -
See Proposition 2.4 in [3] or Proposition 4.3 in [6].

Lemma 2.7.  If € HY satisfies |V||5. /2 +wM (1) /2 < IS, then there exists
a global solution Uy to (NLS) such that Uy(0) € Q%/GJTW and ||Uy(t) — 29| ;1 — 0 as
t — o00. Moreover, the same statement holds in the negative case.

Proof. We may assume that ¢ # 0 since the statement is true if ¢» = 0. It is
known in [17, Theorem 17] (see also [16, Theorem 8]) that there exist 7' € R and a
unique solution U, € C((T, 00) : H*(R?)) of (NLS) such that

(2.9) |U4(t) — eitAz/)HHl — 0 as t — oo.

The uniqueness and the assumption that v is G-invariant imply that the solution U
is also G-invariant. By the triangle inequality, the Sobolev embedding, (2.9), and
Heimem+1 — 0 as t — oo (see [2, Corollary 2.3.7]), we have

U@ posr S U+ (E) = 29| ga + [|€29]| s = 0,

as t — oo. Therefore, by the conservation laws and the assumption, we obtain

Su(U4) = Jim Su(U (1) = 3 Vol + 5 M) <16

and 5
) 2
lim K (UL () = 59632 >0,

Thus, U, (t) belongs to %wa for large t > T. This statement, Lemmas 2.1, and 2.2,
imply that U is global in both time directions and U, (0) € %wa. O

Lemma 2.8 (Perturbation Lemma).  Given A > 0, there exist ¢(A) > 0 and
C(A) > 0 with the following property. If u € C([0,00) : HY(R?)) is a solution of (NLS),
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if i € C([0,00) : HY(RY)) and e € L}, ([0,00) : H=Y(R?)) satisfy i0,t+ Aa+ |a|P~1a =
e, for a.e. t >0, and if

(2.10) Iall Lo o,000:m) = 4,
(2.11) ||€||LB'([O,oo)' T') < e(4),
itA
(212) ¢4 ((0) = @O o g0 .1y < = = 2(A),

then u € LY((0,00) : L"(R%)) and ||u — | o (0,00): 17y < CE.

See Proposition 4.7 in [6] for the proof.
§3. Proof of Scattering

§3.1. Linear Profile Decomposition for Gy -invariant functions

In this section, let G be a finite group in O(d — k). We recall that G}, denote the
subgroup {(0(G),G) : G € O(k) x G} in R/277Z x O(d) for some group homomorphism
0 : Ok) x G - R/2rZ. We assume that d > 3 and k € {2,3,---,d — 1}. We
prove a linear profile decomposition for G-invariant functions. Let 7,¢(x) = ¢(z — )
throughout this paper. We note that Gr,¢ = 7g,G¢p for all y € R? and G € O(d).

Proposition 3.1 (Linear Profile Decomposition).  Let {¢y, }nen be a bounded se-
quence in Hé Then, after replacz'ng a subsequence, for 7 € N there exist a subgroup

G’ of G, 7 € Héj ,AWIYC H GJ At} CR, and {z2} C RY such that

(3.1) o= Z wa g It L dad

Jj= gedG geG

for every J € N, and the following statements hold.
(1) For any fized j, {t}} satisfies either tJ, =0 or t} — +00 as n — oo,

(2) For any fived j, {x)} satisfies that 1st, 2nd, ---, and kth components of xJ are
zero for all n,j and that x), = GxJ, for all G € G7 and |z}, — Gxl| — oo for all
G € G\ G’. In other words, x), = GxJ for all G € Gi and |z, — Gzl | — oo for all
GeGp\GY

(8) We have the orthogonality of the parameters: for j # h,

lim |t} —t" =00 or lim |Gz? — G'zl| = oo for all G,G' € G.
n— 00

n—oo
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(4) We have smallness of the remainder:

i gw,/
it A Z #G

ged@

limsup ||e — 0 as J — o0.

n—oo

Le(R:L7)

(5) We have the orthogonality in norms: for all A € [0,1],

J 2 2
G(7,597) Gw,/
2 Ty n
(3.2) lenllz =D 1. e ||t > el + on(1),
j=1llgeGc A Gea A
J p+1 p+1
(83)  lealfits =D ™23 W ) Z +0a(1
. Pnllpp+1 = On( )
Jj=1 ged Lp+1 ged Lp+1

and, in particular,

o Q.
”M“ ”M“
= —

(3'4) Sw(‘:pn)

thA Tm%w )+S ( ;z]> 1)
(2 I
J

(”’AZ > K(Z g#?é?)-i-on(l).

Ggeq@ Geq

(3.5) K(pn) =

This lemma can be obtained by combining an induction argument and Lemma 3.2
below. We only give the proof of Lemma 3.2 and omit the proof of Proposition 3.1 (see
[12, Proposition 4] and [6, Theorem 5.1] for details).

Remark.  An anonymous referee gave me another simple proof. In the proof,
the linear profile decomposition for general functions, which is obtained by [6, 1], is
applied to the group invariant setting. In the present paper, for beginners, we show
Proposition 3.1 by repeating the usual proof of the linear profile decomposition under
group invariant setting, which may be lengthy for experts.

Lemma 3.2.  Let a >0 and {p,} C HE, satisfy limsup,, . [[onll g1 < a < co.
If HeitAgonHLoo(R:LpH) — A as n — oo, then there exist a subsequence, which is still
denoted by {¢n tnen, a subgroup G' of G, ¢ € Hcl;;c; sequences {tynen C R, {Tp}nen C
R?, and {W, }nen C Hé; such that

(3.6) _etnay Y Tw” Z

geG geG

and the following hold.

(1) e A r_go @n — G/ (#G/#G') in H'(RY) and e " 1_g, W, — 0 in H'(R?)
for all G € G, where W,, := > gec GWn/#G.
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(2) The sequence {t,} satisfies either t,, =0 ort, — oo as n — oo.

(3) The sequence {x,} satisfies that 1st, 2nd, ---, and kth components of xJ, are zero
for alln,j and that G'x,, = x, for allG' € G" and |x,,—Gx,| — oo for allG € G\G'.

(4) We have the orthogonality in norms:

2
xX Wn
||90n||?p - Z —g(;éw) - Z Q#G — 0 as n — oo,
GeG gx  llgea 2
forall0 < X< 1.

p+1 p+1
lnll? i — et”AZW > iy — 0 as n — oo.

GeaG Lp+1 geG Lp+1

(5) We have

— 2 _
HwHH1 > VA2(/1\(121\A) o 2/(3(&/\/\) |

where A = d(p — 1)/{2(p + 1)} € (0,min{1,d/2}) and the constant v > 0 is
independent of a, A, and {¢n}nen-

(6) If A =0, then for every sequences {t,}nen C R, {xp}neny C RE, and {W,}nen C
HY(RY) satisfying (3.6) and (1), we must have 1 = 0.

Proof. Let X € C°(R?) satisfy x(¢) = 1if [£] < 1, X(€) = 0 if [¢] > 2, and
0 <x <1. Given p > 0, we set x,(§) := X(§/p). Since A < d/2, we have

(3.7) Ixp *xu(z)| < ﬁp% |w||ga for any u € H'(R?),

where « is a constant independent of p and wu.
First, we consider the case of A > 0. Then, we have, for large n,

S

. 72 A
(38) HeltA(Xp * SOTL)HLOO(]R;LM) 2 (2a)_d2AA (Z)

(See Lemma 4.1 in [12] or Lemma 5.2 in [6] for proofs of (3.7) and (3.8).) Therefore,
there exist {T},},,en C R and {X, },en C R? such that

(3.9) e A (xp # 0n) (X)| 2 (4a) ™28 (é) "

for large n.
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We show that {X,}, C RF is bounded, where X,, = (X!, X2,---, X*) and X}
denotes a jth component of X,,. We suppose that {Xn}n C R* is unbounded. By
taking a subsequence, we may assume that |X,| — oo as n — oo. Since {p,}, is
bounded in H?!, there exist ¢ € H &, and ¢ € H'(R?) such that

e_"T”AT_X;L ©n — 1 weakly in H!,

—iTnAT

e _ %, T-x1,Pn — ¢ weakly in H!,

where we regard X, as (X},---,X* 0---,0) e R?and X/, = (0---,0, XF+! ... X9).
For R > 0, we define a cylinder set by CF := {(#,2') € RE x R?=F : |2/| < R}. It follows
from Lemma 4.2 that e ™27_x, ¢, — ¢ in LP*(CF) for any R > 0. On the other

_iT"AT_X.nT_X;Lgpn — 1) in LPT1(BgR), where Bp is the
ball of radius R centered at the origin. Therefore, we obtain

hand, for any R > 0, we have e

T S _
R -
T —iThA —iT A _
SHT,X,LT/) e "TT_g T-X!Pn L o) |e= T_ %, T—X.,%n lDHLpH(BR)
) — e~ iTndA T, A _
SH@b—e "TT_X1 Pn LPH(CR)‘F”@ T % ToX,¥n leLpH(BR)

— 0.

— 0. Combining them, we

Since |X,| — oo as n — oo, we have HT_ o
LP+1(BR)

%, 9]

obtain

Xn

1l o) < |72, 9 =¥

+ HT_ .
L?(BR) Lr(BrR)

This means that ¢» = 0. On the other hand, it follows from (3.9) and e """ 27_x ¢, — 9
weakly in H' that

0 < (1a) =7 (é) SCION

This is a contradiction. Thus, {X,}, C R* is bounded. By taking a subsequence, we
may assume that {X,}, converges.

We consider the following two cases.
Casel {T),},en C R is unbounded.
Case2 {T),}nen C R is bounded.

Casel: Since {7}, }nen C R is unbounded, we may assume T,, — +o00 as n — oo taking
a subsequence. Let ¢, := T,,. Taking a subsequence and using Lemma 4.3, we obtain
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a subgroup G’ of G such that a subsequence, which is still denoted by {X,,}, satisfies
that

X, —-GX, = Tg asn— oo,VG' € G,
| X, —GX,| 2 o00casn—o00,VGeG\G,

for some Zg: € R?. Using Lemma 4.4 and the convergence of { X,,}, we obtain a sequence
{z,} such that

Tp —G'x, =0, VG e &,
|zy, — Gxy| > 00asn — o0, VGeG\G,
(wl,22,--- ,2%) =(0,0,---,0) for all n € N,

rr'n

and there exists zo, € R? such that
Ty — Xy — Too AS L —> OO.

Since ||y || ;1 is bounded, there exists 1 € H'(R?) such that, after taking a sub-
sequence, e~ A1, — /(#G/#G') in H'(R?) as n — oo. Here, we note that
Y is G} -invariant since ¢, is Gp-invariant and z, = G'z, for all G’ € G). We prove
(5). Now, we have e" 127 _x ¢, — 7,1 /(#G/#G’) in H'(R?) as n — co. Since
e™® commutes with the convolution with x,, we find that e="n2(y, * ¢,)(X,,) =
Xp * (e A7 5 ©,)(0). By (3.7) and (3.9), we have

d
(4@)_(15/%/\ (%) A <

Taking p = (4C’a/A)ﬁ, we obtain the statement (5). We set W,, := ¢, — e*n®7, 1.
Since ¢, is Gg-invariant, we see that

Xp*¢(_xm) d—2A H¢’|HA d—2A Hw”Hl

4CIHC ‘S“p T RGHC =" Roe

_ Z Gon _ Z g(eitnATxnw+ Wn) _ Z eitnAg(Txnw) + Z GWi

n #G #G GeG #G ged #G '

gea geG

This is the statement (3.6). Moreover, W, is G/-invariant since ¢, and 7, 1 are
G/ -invariant. We check the statement (1). The first statement e~ *"27_g, ¢, —
Gy /(#G/#G') in HY(R?) follows from the definition of 1 and the Gj-invariance of
©n. We prove the second statement e~ 27 g, W, — 0 in H'(R?) for all G € G,

where we recall that W, = Y ocec GWn/#G. Let {gm},ﬁi{#G' be the set of left coset
representatives, that is, we have

#G/#G'
G= )  GunG.
m=1
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Since W, is G'.-invariant, we find that

#G/#G'

QW GmW,

-2 #G/#G"

geGG m=1

Let G = GG’ for some | € {1,2,--- |#G/#G"'} and G’ € G'. Then, by the definition of
W,, and the first statement in (1), we obtain

—itp A ¥ —itp A #L TG+ Gy I
e T gy Wy =€ " TG0 on — mz:l Z#G/;;Ct”
N N 7 L
#G/#G  #G[FHG T
where we note that | — Gz, + Gan| = | — 2 + gl—lgmxn| — 0o since gl—lgm Z G’

1f m 7é [. Thus, we get the second statement in (1). Next, we prove (4). We set
ZQEG " BG (1, )/#G We have
2 (6, W),
X

=

wn wn

lonlF = !

where (-,-)z» denotes the inner product in H>*. We calculate (1@“ On — 1/~Jn) " Since
H

Tz, ¥ is Gl -invariant, we observe that

#G/#G'

T €0 Y) R )
wn - 9262; #G N m=1 #G/#G/ .

By this observation, we have
(¢na§0n - ¢n>H>\
G/#G G/#G .
_ (# ) I e“”AQMM)
A

#G/HG HGH#G

=1

m=1

#G/#G' #G/#G'

1 zt A itn A
T (#G/#G)? mzl Z Gin (7o, ), 00 — €2 Gi(72,¥)) a
1 #G/#G' N . .
~ (#G/#G) mzljl {(€" 2 Gm (7, 0), ) x = (€172 G (72, ¥), €2 G170, 1)) 1 }
For the first term, we find that, for all m € {1,2,--- | #G/#G'},
oA Il
(3.10) ("2 Gm (Ta, ), 0n) ga = (€770 Gl on) a — BC/4CT
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since ¢, is Gy-invariant and e~ 27, weakly converges to ¢/ (#G/#G’) asn — oo
in H!'(R%). For the second term, we obtain

(3.11) (eitnAgm (Te, ), eitnAgl(Tmn¢))HA = (¢7 Tz, g;qlgl(Txnw))Hx
= (4.7 s gmrgrn, G G10)

J28)
. { [l i m =1,
0, if m # 1.
Combining (3.10) with (3.11), we get
#G [#G'
> (€ G () 0n) ga — (€72 Gn (T2, 1), €2 G (70, 0)) 1 }
m,l=1
- #Gfg e #%G/ [l =0
o GG e T T
This implies the first statement of (4). We set
T (= TN A P

Since we have
21 + 22 PTh — |21 [P — |2 PP < Claallz2] (|22 P71 + [22P7),

for z1, 2y € C, letting g, = | |P~1 4+ [W,|P~1, we get

Fo 2 C [ [in@)] @) (oo
#C/HC it A
€' 2Gm (T2, ) (@) | |15

e, 2. g ||V le)de
#G/#G' | )

<C Y [ e, @) (o) 90 ()
m=1 R4
#G/#G

S DN O | A e
m=1

Note that, by the triangle inequality and the Sobolev embedding,

N Y R Y I
~ p—1 ~ p—1 <7 p—1 ~ p—1
= ||¥n Lp+1 + HWn Lp+1 ™ "(ﬂn H! + HWn H1

Sl + IWallpn <C
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where we use {W,,} is bounded in H' since {¢,,} is bounded. And Hr_xn Q,,;an‘

|17
Lp+1
2.3.7 ]). Therefore, by the Holder inequality, we get

Lr+1

< C. Now, “eit’LAw“Lp+l — 0 as n — oo since t, — +0o (see [2, Corollary

fo SN2 i |72, Gon' W

-1 it A
Gl sy S €20 0
This means the second statement of (4).
Case2: Since {T},}nen C R is bounded, we may assume T,, — ¢ € R as n — oo taking
a subsequence. Let t,, := 0 for all n. Minor modifications imply the statements, (1)—(3)
and the first statement of (4). See the argument below (5.22) in [6] for the second

statement of (4) .
A

T—mnSO”HLPH o
He SOnHLpﬂ < “e*itAQDn“LOO(R:Lp+1) — 0. On the other hand, if e"#27_, ¢, —

Y/ (#G/#G') as n — oo in HY(R?), then e A1, 0, — /(#G/#G') as n — oo
in LPTY(BR) for any R > 0 by a compactness argument. Combining them, we get
1 = 0. O

At last, we consider the case of A = 0. Then we have He*“"
—itn A

Lemma 3.3. Let G be an arbitrary subgroup of R/2n7Z x O(d). Let m be a
nonnegative integer and ¢; € H for j € {1,2,--- ,m} satisfy

Sw(Z;n:1 pj) < lf — 0, SW(Z;-L ©j) = 2721 Sw(pj) — &,
K(Z;ﬁ:l ©j) = —¢, K(Z;n:l pj) < Z;nzl K(pj) +e,

for 8, e satisfying (1 + d/2)e < . Then we have 0 < S, (¢;) < 1S and K(p;) > 0 for
all j € {1,2,--- ,m}. Namely, we see that ¢; € Q%/G?tw forall j € {1,2,--- ;m}.

Proof. We assume that there exists j € {1,2,---,m} such that K(y;) < 0. Let
Jw =S, — dK/4. Since we have

1§ =inf{J.(p) 1 o € H;\ {0}, K(p) < 0}

and J,, is positive, we obtain

m m m d
1<) Julei) =D Suley) =) 15 (e5)
j=1 j=1 j=1
m d m
< Su Zgoj —1—6—1 K Zgoj —€
j=1 j=1
G d G
Slw —5+€+§€<lw
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for all j € {1,2,---,m}. Moreover, for any

This is a contradiction. So, K(g;) > 0
— J(p) + 4K (p;) > 0 and

j € {1727 T 7m}7 we have Sw(QDJ)
<Y Sule) S Su | D e | +e<i§—d+e<iS
j=1 j=1
This completes the proof. O

Lemma 3.4.  Let {x,} be a sequence, » € H', and U be a solution of (NLS)
with the initial data . Then, we have

t
Un(t) = €270, 9 + Z/ IR (|Un ()P~ Un(s)) ds,
0
where U, (t,z) :=U(t,z — x,,).
Lemma 3.4 follows from the space translation invariance of the equation (NLS).

Lemma 3.5.  Let {t,} satisfy t, — do00, {x,} be a sequence, ¥ € H, and U be
a solution of (NLS) satisfying

||Ui(t) — eitAszHl — 0 ast— +oo

Then, we have

t
Ui n(t) = eftBeitnBr, o) + z/ DA UL, (8) [P UL n(5))ds + ex (1),
0
where Uy, (t,x) :=Ux(t +t,,z —x,) and Hei’nHLQ(R:LT) — 0 as n — oo.

Proof. Since Uy ,, is a solution of (NLS) with the initial data 7, Ui (t,) by the

time and space translation invariance, we have

t
exn(t) = Uppn(t) — BB, p—i [ D2 (UL,(5)|P UL n(s))ds
0

— eitATmn U:I: (tn) . eitAeitnATmn'dJ.
By the Strichartz estimate,
Hei,nHLa(R:Lr) S HU:I:(tn) — eit”AwHHl — 0 as n — oo.

This completes the proof. O

§ 3.2. Construction of a critical element and Rigidity

By the definition of S, we have 8¢+ < [¢*. Lemma 2.1 and Proposition 2.6
give SG* > 0. We prove SGk = min{mG*,1¢*} by contradiction argument so that we
suppose S¢ < min{mS&* Gk},
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Proposition 3.6.  Assume SG* < min{m&* IS*}. Then, there exists a global
solution u® to (NLS) with G-invariance such that S,,(u®) = S& and [l o (girry) = 0©-

We call u¢ a critical element.

Proof. By the definition of S¢ and the assumption of S&* < min{m&* (S+},
there exists a sequence {p,} € ‘%/Gt,w satisfying S&* < S, (¢n) < min{m&* 15*},
So(pn) \« S&*, and u,, & L*(R : L"(R%)), where u,, is a global solution with the initial
data ¢,. Since {p,} is bounded in H!(R%), we apply the linear profile decomposition
with G-invariance, Proposition 3.1, to the sequence {p,,} and then we obtain

where we recall that )] = Y gea e”iAg(waﬂ')/#G and W/ = >ogea W /#G. We

also see that

=28 (94) + 5 () + 000,

=1

iK( 93) + K (W) +o(1),

Jj=1

<.

where o(1) — 0 as n — oo. By these decompositions, we have

S. (pn) < 1S+ =6,

i (54) +5. () -2
K (pn) 20>
>

K(@Eﬁ;) +K<W,{> +e

for large n where § = IS* — S,,(p1) and & > 0 satisfies (1 + d/2)e < 6. Therefore, 3.3
gives us that @L € E%/Gt’w for all j € {1,2,---,J} and V~V;L] € ’%/Gt,w' Thus, for any J,

we obtain

J
S = lim S, (p,) > ZlimsupSw (1&%)

n—oo

We prove SC¢ = limsup,, .. Sw(xzﬁb) for some j by a contradiction argument. We
suppose that SG* = limsup, .. S, (¥) fails for all j. Namely, we assume that
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limsup,,_,.. S.(3) < SG* for all j. By reordering, we can choose 0 < J; < Jo < J
such that

1<j<Ji: ti =0, Vn
J1+1<53< Ty limn_m)t%:—oo,
Jo+1<53< J: limnﬁoot%:—koo.

Above we are assuming that if a > b then there is no j such that a < j <b.

For j € [0,J1], by the assumption of the contradiction argument and t = 0, we
have 0 < limsup,,_,, Su(Xgeq G(7,397)/#G) < SCr. By the choice of {2J} and
Lemma 4.5,

#G P : " .
v (garpe) =tmaws. (Z ><Sf <ms

geG

Therefore, S, (V7 /(#G/#G7)) < SS?“. By the definition of Sgi“, the solution U’ to
(NLS) with the initial data 17 /(#G /#G7) belongs to L*(R : L™(R?)).
For j € [J1 + 1, J3], we have
# > 8Ck > limsup S, (1&%)

n— oo

2 2

1 G(7, ) w G(1,597)
— Iim | = RTINS Zr R ” S
Jim | 3 QZG a QZG G|
. AZ ) [
L T 2
p‘f‘ln—)OO ged # Lp+1
2 w 'lbj 2
#Gﬂ H#G/#GJ NS (Erreymer I

where we use ||e“"A¢>HI.ﬁ+1 — 0 as n — oo (see [2, Corollary 2.3.7]) and Lemma 4.5.

This inequality implies that 7/ (#G/ #_Gj) satisfies the assumption of Lemma 2.7 as

G = sz where we note that SQG){“ < lg{“. Thus, we obtain the global solution U’ to
(NLS) such that U? (0) € %/Gt and

koW

) J

U’ (t —eitA¢—. —0ast— —o0.

o) - g

Moreover, U7 belongs to L*(R : Lr(Rd)) by the definition of SS * since we have

< 8¢

H #G/#G” H #G/#GJ

L2
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For j € [Jo + 1, J], by the similar argument, we obtain a global solution U ﬂr such
that U7.(0) € ), , UL € L*(R: L"(R?)), and
7w

j N
‘UJr(t)—e —#G/#Gj ” —0ast— oo.

We define

Ul ifj =1,

U= U if j e [2,J,], and UJ (t,x) == U’ (t + ),z — x)).

UL, if j € [Jo+1,J],

Moreover, we define
#G[H#G
wy = G
j=1 m=1

where {gﬁﬂﬁ}jﬁﬁ{#@ be the set of left coset representatives. Then u’ satisfies

. p—1
i0pu? + Aud + ‘uﬁ ul =e,

n

. J #G/#G o

ST S S el
j=1 m=1

Moreover, we have

g

I #G/HG | i
o _ (9) WwA_ Y TTI(4] 77
) -0 =3 > 6 (e g Tl ) + W
To apply the perturbation lemma, Lemma 2.8, we prove the following inequalities hold
for large n.
J
(3.12) HunHLa(R;L’“) < 4,
J
(313) HenHLﬁl(R:[ﬂ'/) S 5(14.)7
(3.14) Heim(un(O) - u;{(O))HLQ(R:U) <e(A).
We prove (3.12). By the definition of U}, we have
J #G/#G
wup =) > GYUIW
j=1 m=1
Ji #G/#G Jo  #G/#GI

TS s Y et

j=J14+1 m=1
J #HG/#G

+ >N GV, UL+ ).

j=J2+1 m=1
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Let v}, denote Y29 # G (7, Ui () when 1 < j < Ji, SHEC#S 60 (7, U7 (t+1)
when J; +1 < j < Js, and Zii{#GJ (J)(T j U’ (t—i—tj)) when Jo +1 < j < J. Thus,

we have
J _ J
u, = E vl.
j=1

By (5) in Proposition 3.1 and Lemma 4.5, we have

o HW"

—|—on(1).

2 37
HQOnHHl Z #G] #G/#G]

Therefore, sup,,cy lonll? 71 < oo implies that there exists a finite set _# such that
HQN/(#G/#;EGJ')HH1 < esq for j & #, where €44 is a constant appearing in Proposition
2.6. Thus, we get

J
lim sup ||| o s, .y = Hnsup |37 0
=1l pe®aLr)
< lim sup Z vl + lim sup Z vl
n—oo . n—oo .
I€S Nlpe:Lr 1€ oL

< lim sup Z ”Un”La(R L) —Hlmsup Z vl
" jes 127 lpa.Lr)

Using it —th| — oo or |Gzl — G'zl| — oo for all G,G' € G if j # h and |g,(ﬂ;)x{1 —
g, () 4o | — oo if m # [, the first term is estimated as follows.

(3.15) lim sup Z Hv HLQ(R Ly = Z ||U HLa BLr) < Ay < o0.

Next, we estimate the second term. By the Gagliardo—Nirenberg inequarity ||f|,;, <
ClIVrlie ||f||m , where = n?/4 — n(n +2)/{2(p + 1)} and it satisfies 1 —n > ~v/a,
and the Sobolev embedding || f||,, < C||f|| 41, we obtain

(3.16) 1l e ey < C AL E gy 11 @iz -
We have
.
lim sup Z vl < lim sup Z Hvﬁ'LHZW(R:LW)
oo J€/ LW(R:LV) nTeo j

+ Cylimsup Z / [vd ||l YL dadt
n—00 i¢ 7, i#h RxR4
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By Proposition 2.6 and v > 2, we get

: ; : 2
hg;sogpj; (AP h;ffogpj; 07 E) [y < Cesa.

And we have

/ vl |[o" P~ dadt — 0 as n — oo,
RxR?

where we use [t! — t!| — oo or |Gzl — G'z"| — oo for all G,G' € G if j # h and
G wi — QI(J)xZJ — oo if m # 1 (See [6, Lemma 4.5 and (6.38)]). Thus, we obtain

lim sup vl < C < 0.
g PR

€7 Al Lv(®:Lv)

Moreover, we have

2

lim sup Z vl < limsup Z HU%HZl
n— oo g7 Loo(ReE1) n— oo ig s
+ 2 lim sup Z <U%,Uﬁ>H1
n—o00 i, 2k

The second term tends to 0 as n — oo and, by Proposition 2.6, the first term is estimated
as follows:

lim sup Z ||ng||§11 < Cegg.

And thus, we get

lim sup vl < C < o0.
paved POR

387 Lo (r:HY)

Therefore, by (3.16), we have

3.17 lim su vl < Ay < 00.
(3.17) msup || 3 2

127 lpa®.Lr)
Combining (3.15) and (3.17), we get
lim sup ||u;{||La

n— oo

(R:L7) <A+ Ay =1 A < .
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We prove (3.14). By the triangle inequality, the Strichartz estimate, the definition of
U7, (4) in Proposition 3.1, and Lemmas 3.4 and 3.5, we have

e n(0) = 6O
LA itA 179 (49 A W itATTrJ

Sj_zl ;l e (Tm;U (t,) — €'t Tw%#G/#Gﬂ) LQ(R:LT)%—’e 3
L AL 3 (4 ith A 37 AT

S; > TR UIE) — € H1+(e Wn‘La(R:LT)

<e<e(4),

for large n and J. We prove (3.13). In general, the following inequality holds.

p—1

J J J 1
PRI BEED W i R S
j=1 j=1 j=1

1<j#h<J

This implies that

He;{bHLﬁ’(R:LT’) <Cy Z H‘Ug‘p_”UTFLLmLﬁ'(R:LT')'
1<j#h<J

An approximation argument and \tj —th| — oo or |Gl — G| — oo for all G, G’ € G if
j # h and also use |Q(j) (3 al| = oo if k # 1 give us |||UF|P~ 1’Uh’HLﬁ'(R:LT’) -0
as n — o0o. Thus, we obtain (3.13). Applying Lemma 2.8, we conclude that u,, scatters.
However, this contradicts the definition of {¢,}. Therefore, there exists j such that
SGr = limsup,, ., S.,(17). We may assume j = 1. The linear profile decomposition as

J =1 and VV1 € Ji/er imply HW1 ) — 0 as n — oo by Lemma 2.1. Therefore,
Lo (R:H
we see that
i H — 0,
Lo (R:H?)
SGr = lim S, (¢}).
n—oo

We assume that there exists G' C G such that 2! = Glzl for all G! € G! and |z} —
Gxl| — oo for all G € G\ G*. Let U be a global solution of (NLS) with the initial data
P /(#G/#Gl) 1f tl = 0 or the final data ! /(#G/#G") if |tL| — co. Then, by the
definition of SG*, U belongs to L*(R : L"(R%)) since we have, by Lemma 4.5,

lim S,(¢)}) = lim ﬂsw (eimﬁ;@l) = SCk <« m&r < igls
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By Lemma 2.8 again, this contradicts that u,, does not belong to L*(R : L"(R%)). Thus,
G' = G. This means that 1! and W} are Gy-invariant, z} = Gzl for all G € Gy, and
we see that

ith A 1 1
on =€ T Y + W

Let u¢ be a global solution of (NLS) with the initial data ! if 1 = 0 or the final data
P if [t;] — co. Then, u® is Gy-invariant. We prove [[u®|| pa g,y = 00. Suppose that
[ 0] (g ry < 00- We observe that ¢, — 7,1 uc(ty,) = e“}mATx}Lwl — T ul(t),) + W, so
that we have

Heim (¢n — Ta?}Luc(tiL))HLa(R;LT) — 0 as n — 0.

By Lemma 2.8, we see that u,, € L*(R : L"(R)) for large n, which is absurd. Thus, we
get [|[u’ll po(r.rry = 00. Moreover, we have S, (u) = limy, o0 S, (eitnapl) = SCx. Thus,
we get a critical element u°. Ol

We say that the solution u is a forward critical element if u is a critical element
and satisfies [|u[| ;o 00).r,ry = 00- In the same manner, we define a backward crit-
ical element. We only prove extinction of the forward critical element since that of
the backward critical element can be obtained by the similar argument based on time
reversibility. The extinction contradicts Proposition 3.6.

Lemma 3.7. Let u be a forward critical element. There exists a continuous
function x : [0,00) — R such that Gx(t) = x(t) for all G € Gy and {u(t,- — z(t)) : t €
[0,00)} is precompact in H'(R?).

The above lemma can be obtained by the same argument as in [5, Proposition 3.2]
noting u is Gg-invariant and {z}}, which appears in the profile decomposition, satisfies
Gzl =zl for all G € Gy.

Lemma 3.8.  Let u be a solution to (NLS) satisfying that there exists a contin-

uous function x : [0,00) — R? such that {u(t,- — x(t)) : t € [0,00)} is precompact in
HY(RY). Then, for any e > 0, there exists R = R(g) > 0 such that

(3.18) / |Vu(t,z)|* + |u(t, ))* + |u(t, z) [P i dz < & for any t € [0, 00).
|z+z(t)|>R

It can be obtained by using directly the argument of [5, Corollary 3.3].

Lemma 3.9.  Let u be a forward critical element. Then, the momentum must
be 0, i.e. P(u)=0.
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Proof.  First, we prove GP(u) = P(u) for all G € Gi. By the Gy-invariance of u,
we see that

P(u) = P(G 'u) = Im , eu(Gx)V{eu(Gr) da
=GIm y u(Gx)Vu(Gz)dr = G Im g uw(z)Vu(z)dr = GP(u).

Therefore, the Galilean transformation
ug, (t,3) 1= eSOy (1 1 — 218y,

where { = —P(u)/M (u), conserves the Gy-invariance of the solution. The rest of the
proof is same as in [5, Proposition 4.1] and [1, Proposition 4.1 (iii)]. O

We use the following lemma to prove the rigidity lemma, Lemma 3.11.

Lemma 3.10.  Let u be a solution to (NLS) on [0,00) such that P(u) = 0 and
there erists a continuous x : [0,00) — R? such that, for any ¢ > 0, there exists R =
R(e) > 0 such that

/ IVu(t,z)|? + |u(t, z)|> + |u(t,z)|PTde < € for any t € [0, 00).
o+ (0)|> R

Then, we have

t
?—)0 as t — oo.

This follows from [5, Lemma 5.1], [6, Proof of Theorem 7.1, Stepl].

Lemma 3.11 (Rigidity). Let G be a subgroup of R/277Z x O(d). If the solution

u with G-invariance satisfies the following properties, then u = 0.
Z-UOEEKEMV
2. P(u) = 0.

3. There exists a continuous x : [0,00) — R such that Gx(t) = x(t) for all t € [0, 00)
and G € G and, for any € > 0, there exists R = R(e) > 0 such that

/| o |Vu(t,z)|* + [u(t,))* + |u(t,z) P dx < e for any t € [0, 00).
z+z(t)|>R

For the proof of Lemma 3.11, see [5, Theorem 6.1] and [6, Theorem?7.1].
Combining Lemmas 3.7, 3.8, and 3.9, the forward critical element satisfies the
assumption (1)—(3) in Lemma 3.11. The result by Lemma 3.11 contradicts S, (u) =
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G

Gr |Gk} which completes the proof of Proposition

SC¢ > (0. Thus, we get S¢* = min{m
1.3.

§3.3. Proof of Theorem 1.2

First, we prove the following lemma.

Lemma 3.12.  Let G’ be a subgroup of a finite group G in O(d — k) satisfying
(). Then, we have
G < G 61
w = #G/

Proof. By the definition of sz ;“, for large N € N, there exists Qy € H (1% such that
/ G, 1 /
Sw(@Qy) =" + N and K(Qy) = 0.

And there exists a sequence {x,} C R? such that

{x,, — G'z,} is bounded for all ¢’ € G,
|z, — Gxp| — 00 asn — oo, forall G € G\ G'.

We define
(72, Q) L1VQ.13
ONE AU LR W—— .
e HE 20D 1@, 15

Then, K(A\,@,) =0 and \,,Q,, is Gi-invariant. Moreover, Lemma 4.5 implies that

#G #G
#G' #G'

where s = 0, 1. Therefore, we obtain \,, — 1 as n — oco. This implies

2 2 +1 +1
1@l — QN e and |Qull7,e: — QN ot s

#G (¢ 1
Sw()‘nQn) — M (lw + N) .

This means that G < #GIS* /#G. O

Next, we prove S&* = [+ by the Noetherian induction argument.
w w Py

Proof of Theorem 1.2. {O(k)x G : G is a finite group in O(d—k)} is well-founded
by the binary relation C and the minimal element is O(k) x {Z4—x}-
Stepl. By Proposition 1.3, we have S& =15 if G = O(k) x {Zy_}-
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Step2. Let G be a finite subgroup in O(d — k). We assume that SS;“ = lg;‘“ for
any subgroup G’ of G. Then, by Lemma 3.12, we get
. G q,
mE = g
min #G lff /
G'CG satisfying () #G’
> 16k,

Therefore, by Proposition 1.3, we obtain SG* = min{m&* 1G*} = [S*. Thus, Noethe-
rian induction implies that SG* = [G* for any finite group G in O(d — k). This means
that Theorem 1.2 holds. 0

§4. Lemmas

We denote the Sobolev exponent by

o ifd=1,2,

24 ifd >3,

2=

We define cylinder sets by

(z,2") e R* x R"F : |Z| < R},
(Z,2") € R* x RT™% : |2'| < R},

Cr:=A{
CcR.={

for R > 0 and we denote the complement of Cr by C%.

Lemma 4.1 (partially radial Sobolev inequality). Let d > 2, k € {2,3,--- ,d},
2 < q <2 We assume that f € H'(RY) is O(k) X {Zq—k }-invariant. Then,

_ )(q (k=1)(¢g—2)
[fllLace) S R [PAlrR

holds for R > 0.

Proof. The radial Sobolev inequality is well known if £ = d. We only consider
the case of k € {2,3,---,d — 1}. Since |f| is radial for & € R*, we have the following
inequality (see [15, Radial Lemma 1]).

~ k=1 1/2 1/2
F@ 2] S 127 G2t 1) ey

Therefore, we get

(k=1)(g—=2) 1)(q 2)

[f(@)|*7* < 2]~ LG ) ey -
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Multiplying | f(z)|? and integrating on C%, we get

| @rde s |1 S e @)

R

(k= 1)(4 2)
<R LU s @)

_(k=1)(g=2) B B
=R 2 / Hf( )HHl (RF) (/ ‘f(a:)x/)ﬁdx) dx’
Rd—k Rk
_(k=1)(g=2)
<R ) sy

By the Minkowskii integral inequality, we obtain
/Qdk”fﬂ’wq“%wﬁﬂ‘“¥::jglk(”fﬁvxﬁﬂiqRﬂ)gdx’
= [ (I gy + MMy
SQA;_k(HV@vaquL%RH'+Hf07quL%Rﬁ)qdml
<27 / V2 £ o) T gy + 1G22 ey da”
S [ I sy 7 10 gy

q
< HHV:EfHLq(Rd—k) L2

NS

1 [ .

We note that 2 < ¢ < 2}_,. Indeed, when d — k = 1,2, we have 2);_, = oo > ¢ and
when d — k£ > 3, we have

2d — k) 4 4
= - = RN —:2* .
S sy B ey s RS R g

Moreover, by the Sobolev embedding, we get

[Nz sy N~ (25 vy o
S [T PP S [ vt
S 1A% e
and
q q
(171 [ 2 gy (1501 o e

g [Ty

q
+ 192 £l o

L2(RF) L2(RF)

S gy -
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Therefore, we have

_(k=1)(g=2)
[ r@lrde s R SE 1 .

c
R

This completes the proof. O

Lemma 4.2. Letd > 2, k € {2,3,---,d}, 2 < q < 2, and R > 0. Let
{vn} C H(l)(k)x{zd,k} and v € H(l)(k)x{Id,k}' If v, — v weakly in H', then Up,; —> VN
Li(CE) by taking a subsequence.

Proof. Since v,, — v weakly in H', we have M := sup, ||v,||;1 < oo. Using a
diagonal argument and the Rellich-Kondrashov theorem, we can take a subsequence
{vn,} such that v,, — v in LY(By) for all N € N. We have

||Uni — Un, HLq(CR) < anz - Unj”Lq(BN) + ani B U”J'HLQ(C]CV/Z)

< ome = vn oz + 1onilliaes, ) + lonllzaes

for sufficiently large N € N such that N > R. Take ¢ > 0 arbitrarily. By Lemma 4.1,
there exists N. = N(e) € N such that for large N > N., we have

_(k—=1)(g—2)
2q

(k=1 (g—2)

<MN™ "

IN

9
HU’I’L]‘HLq(C’Icv/2) ~ anjHHl Z

for any j € N and

||U”LQ(CJCV/2

On the other hand, for fixed IV, there exists J. = J(e, N) € N such that for i,j > J.
we have

<€
) = 4

3
[0, _””Lq(BN) <35

Therefore, for large i,j > J(e, N:), we obtain

[on, — UHL‘I(CR) < |[on; — UHLQ(BNE) + [|vm, HLq(Cg\,E/2) + ”U“Lq(cfvs/z)

<€+€+€_€
-2 4 4

This means that v,, — v in LI(CF). O
The proof of the following lemmas can be found in [12, Appendix A].

Lemma 4.3.  Let G be a (possibly infinite) subgroup of R/2n7Z x O(d) and {Z,}
be a sequence. Then, there exists a subgroup G' of G such that the sequence {Z,, —G'Z}
is bounded for all G' € G’ and |Z, — GZp| — 00 asn — oo for allG € G\ G'.
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Lemma 4.4. Let k € N and A be a kd x d-matriz. We assume that a sequence
{2,} C RY satisfies that there exists T € R* such that I%, — A%, — T where T is a
kd x d-matrix such that

1y
Zq
="\
Zq
Then, there exist {x,,} C R% and xo, € RY such that
Az, =Tx,,
Ty — Ty — Too-

Lemma 4.5. Let G be a finite group in R/2xZ x O(d) and G' be a subgroup of
G. Let f € H} and {z,} satisfy |z, — Gxp| — 00 asn — oo for G € G\ G'. We have
the following identities.

2
G
(4.1 ‘Zg(mf)‘ — 2 I#C I + o(0),
GeG A
p
(4.2) G (7, ,H#GVHp+0()

where A € [0,1], p > 1 and o(1) — 0 as n — oco. In particular, the following identity
holds for any w > 0.

S (ngnf)) Zg, w (#G'f) +o(1).

GeG

8§ 5. Concluding remarks

(1) Our method can be applicable to the case of O(k1) x O(kz) x --- x O(k,) X G
where G is a finite group in O(d — k) and k :== > | k; < d and k; > 1 for all
i€{1,2,---,n}.

(2) We show some applications of Theorem 1.2.
e Let d = 3. For m € Z, we define

cosf —sinf0
G = mé, | sinf cosf 0 : 0 €[0,2m)
0 0 1

By Theorem 1.2, if ug € H},, satisfies S,,(ug) < 1G" and K (ug) > 0 then the
solution u scatters.
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e Let d = 3. For m € Z, we define

cost —sinf 0 cos —sinf 0
G? = mb, | sinf cosf 0 , | =m0, | sinf cosf 0 10 €10,27)
0 0 1 0 0 -1
By Lemma 3.12 and an easy observation, we have ZSQ = QZSI. Therefore,

by Theorem 1.2, if ug € Hég satisfies Sy, (ug) < ZZUC}Y1 and K (ug) > 0 then the

solution wu scatters. We note that lfl > Z;{,Id} liId}

, Where is the mass-energy of
the usual ground state standing wave so that Theorem 1.2 means that we can
determine the global behavior of the solutions above the ground state standing

waves by the sign of the functional K when we assume the group invariance.
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