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Analyticity of global solutions to the non-gauge
invariant nonlinear Schrodinger equations

By

Gaku HosHINO*

Abstract

In this paper, we study the global Cauchy problem for the non-gauge invariant quadratic
nonlinear Schrédinger equations in the framework of the scale critical Sobolev space H"/?72
with the space dimensions n > 4. In particuler, we study analyticity of global solutions in the
sense of analytic Hardy space via the phase modulation operator to the non-gauge invariant
nonlinear Schrédinger equations with data which decays exponentially in spatial infinity.

§1. Introduction

In this paper, we study the Cauchy problem for the nonlinear Schrédinger equations

O+ tAu=N(u,u), (t,z)€RxR",

(1) u(0) = ¢, xr € R"”

where space dimensions n > 4, i = \/—1, 0y = 9/0t, A = Z?:l 0? /8;1:?, unknown
functions u : R x R™ — C and the non-gauge invariant quadratic nonlinearity

(1.2) N (u, @) = Mu? + pful?

with A\, u € C. In particular, main purpose of this study is to consider analyticity of
solutions in the sense of analytic Hardy space via the phase modulation operator to the
non-gauge invariant nonlinear Schrédinger equations (1.1)-(1.2) with data which decays
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exponentially in spatial infinity.

There are many papers study on the Cauchy problem for the nonlinear Scgrodinger
equations (see [2, 3, 26, 21, 30] and reference therein). In particular, the Cauchy problem
for the nonlinear Schrédinger equations in the scale critical setting has been studied in
[3, 26] (see also [2]). The analytic smoothing effect for the gauge invariant nonlinear
Schrodinger equations with data which decays exponentially has been studied in many
papers ([5, 8, 9, 10, 14, 15, 16, 17, 25, 28]), by applying the following two types of
operators

As = etD/2e5w—itA/2 5 o g
or
J =z +1itV
based on the Galilei invariant property.

On the other hand, the operators As and J do not work well for the non-gauge
invariant nonlinearity, for example:

As(u?) = (Asu)e™®Vu
where eV = F~le7¥¢F and

J(u?) = uJu + uitVu.

#0-V gives analytic continuation and the term ¢§ expands radius of con-

The operator e
vergence for large time ¢ € R.
Therefore, we assume that the data satisfy exponentially decaying condition in the

Fourier-Lebesgue type space such as

e’y'gggH < 0

sup He5'm¢”L2+ sup P

0<|ol<y 0<|y|<a+e

for some a,~y,e > 0 and to control the term tJ, we need the following cut-off function

, (t,6) € Q3,

1
IQE‘; (t,(;) — a
0, (¢,0) &

with the open set QF = {t € R, 0 < [d] <~; 0 < [td| < a} (see (1.3)-(1.4) for precisely).
Then the corresponding solutions of (1.1)-(1.2) satisfy the following property:

sup

< oo, t#0.
0<|y|<min{~t|,a} ’

eiy.Ve—i|w|2/2tu<t)H
L
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Which fact says that the corresponding solutions belong to analytic Hardy space via the
phase modulation operator e~ilal*/ 2t ¢ £ 0. Here the analytic Hardy space is defined as
(see Chapter III of [29])

HP(Q) = {<p tanalytic on R™ +4€ ||¢l40 ) = sup lo(- + i)z, < oo} , 1<p<o0
ye

for domain 2 C R™. It is difficult to obtain the analyticity in the sense of analytic
Hardy space via the phase modulation operator for solutions to the non-gauge invariant
nonlinear Schrodinger equations without exponentially decaying condition in the Fourier

space, even if data satisfy exponentially decaying condition in the real space.

The Cauchy problem and asymptotic behavior of solutions to the non-gauge invari-
ant nonlinear Schrédinger equations have been studied in many papers (see [6, 7, 18, 19,
20, 27] for instance). The analyticity of solutions in the sense of analytic Hardy space
via the phase modulation operator e=ilzl?/ 2t t # 0 to the non-gauge invariant nonlinear
Schrédinger equations, locally in time has been studied in [13]. In [11], the author has
improved method introduced in [13] and has shown analyticity of solutions in the sense
of analytic Hardy space via the phase modulation operator to a system of nonlinear
Schédinger equations without mass resonance condition. Also in [12], the author has
shown analyticity of solutions in the sense of analytic Hardy space via the phase modu-
lation operator to the non-gauge invariant cubic nonlinear Schrodinger equations. The
present paper is a sequel of studies [11, 12, 13].

LP = LP(R™) is the usual Lebesgue space for 1 < p < co. The map F : ¢ — ¢ is
the Fourier transform defined by

. 1 _
(p(f) = (27T)”/2 /Rn e 1£~$¢(x)dx, EeR”

and F~1: ¢+ ¢ is the inverse Fourier transform defined by

1 ,
P = Gmyra /R ¢ Ep(€)dE, x € R,

The homogeneous Sobolev space is defined by

;= {pe8/P; el = || (-2)7%)

< oo}
Lr

for s > 0 and 1 < p < oo, where (—A)3%/2 = F~1¢|*F. The homogeneous Besov space
is defined by

By, ={ € 8/Ps lgls;, = 177" 298] iy gy < o0}
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for s > 0 and 1 < p,q < oo, where the Littlewood-Paley’s unit decomposition n; € S
(see [2] for precisely). We use the notation B;”z = B;, shortly. We denote the open ball
with radius 7 > 0 and center at o € R" by

By (r) ={z € R"; |z — x| < r}.

The free Schrédinger propagator is defined by U(t) = e*2/2 = F=le=tlEl’/2F ¢ ¢ R.
We often denote U~1(t) = U(—t), t € R. The phase modulation operator is M(t) =
ellzl*/2t t £ (. We define an operator

As(t) = U(t)e’*U(~t), t e R
for 6 € R™, where § - x = Z;.Lzl djz;j. As has another representation
As(t) = M ()™ V M(—t), t #0
for § € R™ by the formula
U(t) = M(t)D(t)FM(t)
with dilation D(t)p = (it)~"/?¢ (3),t # 0. We define the cut-off function Ioa by

. (,0) € QF,

1
. a 6 —
() (0= 00 0) ¢ e

where the open set

(1.4) Q5 ={(t,0) € R x By(y); td € Bo(a)}.

We often denote Ina(d) = Iga(-,d), d € Bo(7y). We introduce the basic function spaces
X and Y defined by

X =L1L>(R;L?%),

v =1 (R 22 12 (R Byl 2 ) )

2n/(n—2)

We set the following function spaces:

GL? = {¢ € L% ||¢llgrz2 = sup )Heé'%nm < OO}’

5€Bo(y

Aa+€Hn/2—2:{¢eH“/2—2; @]l gwsernsoa = sup Heiy'%}lmmmo}
y€Bo(ate)
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and
G X =ue X; [ullgeny = sup HIQ (5)A5uH <o0b,
d€Bo(7) ! X
ATY =Su€eY; ||lull jarey =  sup ||eiy'quY <00 ).
y€Bo(ate)
We put
Zy=GVL* (At ">
and

Z =G X (A"Y.

Let two Banach spaces (A, ||| 4) and (B,|-||z). Then <Aﬂ6, H'HAOB) is a Banach

space with norm
Ilans =max (-4 1) -
In this paper, analyticity of functions is based on the following proposition:

Proposition 1.1 ([16, 29]). Let 1 <p < oo and 2 C R" be domain. If p € S’

satisfies

e—n-&@ cLP
for allp € Q2. Then

e Vg e Lt

for all y € Q2 and

Vo= s || B

1s analytic on R™ + €.

§ 2. Main results

We now state our main result:
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Theorem 2.1.  Assume that n > 4, a,v,e > 0. Then there exists p > 0 such
that; if ¢ € Zo satisfying ||@| gave gns2—2 < p. Then (1.1)-(1.2) has a unique solution
u € Z. Furthermore u satisfies

(2.1) sup Heiy'vM(—t)u(t)||L2 < 00
y€Bo(min{~|t|,a})

fort # 0.
We give the following some remarks:

Remark 2.2.  (2.1) is equivalent to the following property

(2.2) sup e Vut)]| , < oo
5€Bo(min{,altl~1})

for t # 0.

Remark 2.3. We do not need the smallness condition to the GYL2-norm on the
data (see also Lemma 3.1, below).

Remark 2.4.  The space F of test functions for Fourier hyperfunctions is defined

as follows (see [4] for instance):
F = {cp € C*°(R"™); there exist k, h > 0 such that;

sup el p(2)] < 0o and sup eMé|B(¢)| < oo}.
zERM £ER™

Therefore by the Holder inequality, we see that the following including relationship
FcC G'yLZ ﬂAa—i—an/Q—Q

with some a,y > 0 and € > 0. According to [22] (see also [4]), we see that the space F'
is isomorphic to the following space

P, = {(p : analytic on R" + iBy(r) for some r > 0;

sup  e*#l|p(2)] < oo for some k > 0}.
zER"+iBy(r)
Remark 2.5.  If v: R™ — C has an analytic continuation v : R” 4+ iBy(r) — C for
some r > 0. Then the complex-valued functions z +— v?(z), z — |v|?(z) and z — v*(z)

have analytic continuation to R™ 4 iBy(r), because analytic continuation of v(x) is v(Z).
On the other hand the operator

As(t) = U(t)e”*U(—t) = M(t)e™V M (—t), t #0
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act on the nonlinearity @? such as

As(t)@2(t) = M ()e™Y (M (—t)u(t))

M0 (et
(M=t M @u(®)) (e Vu(®))
- (4=

> (e—it‘s'vu(t)) .

Note also that As(—t) = U(—t)e?*U(t). However we only assume

s [ Taa (8, 9) A5(0)u(t)|

L (R;L?)
it is difficult to estimate the term
IQ% (t,8)As(—t)u(t).

Therefore, we assume that the non-gauge invariant nonlinearity A has the following

form
N (u, @) = M + plul?

with A\, u € C.

§3. Preliminaries

To show main theorem by the contraction mapping theorem, we need the following

completeness of a metric space.
Lemma 3.1.  Let a,7,e > 0. Then the metric space (Z, r,d) defined by

Zrr={u€ Z; |ullgarx < Ry [Jull garey <7},

d(u,v) = [lu = vl x A a0tey

1s a complete metric space.

Proof.  Let {u;}52, be Cauchy sequence in (Z, g,d). Then by the completeness of
X (N A*TeY, we have u € X [ A*T¢Y such that

li P — = 0.
Jim o~ gy =0
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L? is a reflexive Banach space and {e®*U (—t)u;(t) 2, is a bounded sequence in L? for

each (t,0) € R x Bo(7). There exists a sub-sequence {e’*U(—t)uy, (t)}52, such that
(Taa (1, 0)e” U (—t)ug, (1), ) = (U(—t)ug, (), Ios (t, 8)e*p)
— (U (=t)u(t), Toa (t,6)e”“p), j — oo.
Hence
(Toa (¢, 0)As(D)ur; (), ) — (Laa (t,0)As(t)u(t), @), j — o0

for all (t,0) € R x By(y) and all ¢ € C§°, where (-,-) is the scaler product in L2
Therefore

Hlm (t,8) As (t)u(t) H < liminf ngg (t,8) As (t)uy, (t)(

L2 j—oo

<R

L2
for all (¢,0) € R x By(y) and hence

sup HIQE{((S)A(SUH <R.
d€Bo(7) X

The following lemma is the Strichartz estimate.

Lemma 3.2 ([2, 23, 30, 31]).  We have

/' U(- — 5)f(s)ds

<C HfHLQ(]R;L2n/(n+2))
0

X

and

10l < Cllél s H | vt=9sas

S C||f||L2(R;Bn/2*2 )

Y 2n/(n+2)

with constant C > 0.

We use the following lemma to estimate the nonlinear term in the homogeneous
Besov spaces.

Lemma 3.3 ([1, 24]). Lets >0 andlet 1 < p,v < oo with 1/p =1/p1 + 1/ps.
Then

luwllg, < Cs (lullg, | 105 + el s Nolg, )
sV 1.V P2,V

with constant Cg > 0.
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The following lemma has an important role in the proof of main theorem.

Lemma 3.4 ([11]). Leta,v,e >0. Let 1 <p<g<oo andlet1l <r <oo. Then

sup HIQ% (5)eit‘s'vu) Y-V

d€By(7)

< Chapge SUP He u!

r(R:L1) — L7 (R;LP
Lr(R;L9) yeBo(ate) (R:L7)
where the constant Cy, qp q.c > 0 satisfying lim. 0 C, 4 p.q,c = 00.

Proof. We see that e™*Vu(t, z) = u(t, z + itd), because (t) decays exponentially.
Let (t,00) € € and zo € R". Let R = ﬁﬁ > 0 and put zg = xg + itdg. By the

mean-value theorem of harmonic functions, we have

1
u(t, xo + ’Lt(so) =

. u(t, x + iy)dxdy.
(mR?) /H;:lﬂxmyj—%,jl@}

Hence

. 1
[u(t, w0 +itdo)llLa = —zm

. u(t, z + iy)dxdy
(7TR2) /1_[?1{|5L‘j+iyj—z0,j<R}

q
L,

1 / )
< - lu(t, z + iy)|dxdy
(mR2)™ || JT15, (s +ims 20,1 <R} L4,
< 1 / lu(t, @ + iy)|ded
< u(t, r + 1y)|dxdy
(MR2)™ |1 B, (€)% Busy () Lo
z0
<1 / / (6, 2)|da||  dy
— (mR%)n Bisg (€) ||/ Bay () e T
zQ
5 o L.
= — X B (o) () |uy (t, x9 — x)|dz dy
(mR2)"™ J B, o) Il R 0 ! Le,
5 |,
= e XBo(e) * [uy ()] o Y
(TR?) Bus, (&) ” o(e) Y HL

1
= /Btw) IxBo(e) |y (D)l .y

<G [y @), dy
Bo(a+€)

with é = % + % — 1 and Bys, () C Bo(a + €) because (t,d0) € €2, where we have used

the notation w,(t,z) = u(t, z + iy). By taking L"-norm, we have
. n(l_l_1> d
Ju(t, -+ Zt(SO)”LT(R;Lq) < Ce™aw Huy(t)HLr(R;Lp) Y
Bo(a+€)

n(i_-1_ n
< Ce (G-5-1) (a+¢) sup Huy(t)”Lr(R;Lp) :
yEBo(ate)
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The right hand side of the above estimate does not depend on §y. Therefore, we have

sup HIQE, (5)6it6-vu’ iy-V

§€Bo(7)

Cnapge  SUp He u|

L7 (R;La) — yEBo(ate) L (R;LP)

with Cpapge = C’E"G*%*l)(a + &)™ > 0 satisfying lim._, Ca”(%*%*l)(a +e)" =
0. O

84. Proof of Theorem 1

We show Theorem 1, by the contraction mapping theorem. We consider the map
@ : u — Pu defined by

'
(Bu)(t) = U(t)— i / Ut — )N (u,7)(s)ds, ¢ € R
0
in the complete metric space (Z, g, d) defined as Lemma 3.1:
Zrr={u€ Z; |ullgorx < R, lJul| garey <7},
d(u,v) = |lu — UHXﬂAfH‘EY :
We see that
AsU()p = U)o, VU)o =U(-)e" Vo,
Asu? = (Asu)e®®Vu, Aslul? = (Asu)e=t5Vy
and
eiy-Vu2 _ (eiy-vu)2, eiy~V|u|2 _ (eiy-vu)m’

since As(t) = M(t)e**V M (—t), t # 0. Therefore

Loa () AsPu = Ina (6) (U(-)eé'xgb — /0- U(-—s) ()\Agu(s)ei85'vu(s) + uAgu(s)e—ZTvu(sD ds)

for 6 € By(y) and

eVVPu=U(-)e Ve — z'/o. U(-—s) ()\ (eiy'vu(s))2 + Meiy'vu(s)m> ds

for y € Bo(a + €). By the Lemma 3.2, Lemma 3.3, the embedding B;ﬁ(_vf—?) C L™ and

the Holder estimate with 1/2 =1/00 4 1/2 and (n + 2)/2n = 1/2 4+ 1/n, we have

1Pull garey < C Ol gatefrnso-2 +C sup
y€Bp(a+e)

< C 0|l gase gynszz + Clluf yasey -

A (e V) +ueiy'vue—iy'VuH .
e ()
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Similarly by using Lemma 3.4, we have

|Tos @) as0u
= ‘U(-)e‘s'mqb — Z/ U(-—s) ()\A(;u(s)eis‘s'vu(s) + uAgu(s)e—iS‘s'Vu(s)) ds
0 L= ((—a/|d],a/18]);L?)

< HngG“/L2 + Cha,p,,e ’“HGan HuHAa+€Y

for 6 € Byo(y) \ {0} and
|tos @ a0@u| = feull
<9llgrrz + Cniapge llullgan x ull gasey

for § = 0. By the above estimates, @ : u — Pu is a contraction mapping in (Z, gr,d), if
p,r > 0 and R > 0 satisfy the following conditions

H¢HG’YL2 + CRr < R, Cp+ 07“2 <r

and

N | =

where the universal constant C' > 0.
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