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Scattering for the defocusing, cubic nonlinear wave
equation

By

Dodson BENJAMIN*

Abstract

The defocusing, nonlinear wave equation is globally well‐ posed and scattering for radial
initial data lying close to the critical Sobolev space. We also prove scattering for data lying in
a scale‐ invariant Besov space. This talk was an introduction to the papers [6], [7], and [8].

§1. Introduction

The defocusing, nonlinear wave equation

(1.1)  u_{tt}-\triangle u+u^{3}=0, u:R\cross R^{3}arrow R, u(0, x)=u_{0}, u_{t}(0, x)=
u_{1},

has the scaling symmetry

(1.2)  u(t, x) \mapsto\lambda u(\lambda t, \lambda x) , \lambda>0.

The  \dot{H}^{1/2}  \cross\dot{H}^{-1/2} norm of the initial data is preserved under (1.2). It is conjectured

Conjecture 1.1. (1.1) is globally well ‐ posed and scattering for initial dat
 (u_{0}, u_{1})  \in\dot{H}^{1/2}  \cross\dot{H}^{-1/2}.

[12] proved that (1.1) is locally well‐ posed for initial data lying in  \dot{H}^{1/2}\cross\dot{H}^{-1/2} . This
fact, combined with the fact that there are no known explicit soliton solutions or blowup

solutions, motivates conjecture 1:1.
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Also, [11] proved that (1.1) is globally well ‐ posed for  u :  R\cross  R^{4}  arrow R. [2] proved
space‐ time estimates for this solution, and then [1] proved scattering. In that case, the
 \dot{H}^{1}  \cross L^{2} norm is the critical norm. This quantity is controlled by the conserved energy

(1.3)  E(u(t))=  \frac{1}{2} |\nabla u(t, x)|^{2}dx+\frac{1}{2} |u_{t}(t, x)|^{2}dx+
\frac{1}{4} |u(t, x)|^{4}dx.
This fact represents the key difficulty in moving from dimension four to dimension three.

Indeed,

Theorem 1.1. There exists a function  f :  [0, \infty )  arrow  [0, \infty ) such that, if (1.1)
has a solution on interval  I\subset R , then for any compact  J\subset I,

(1.4)  \Vert u\Vert_{L_{t,x}^{4}(J\cross R^{3})} \leq f(\Vert u\Vert_{L_{t}^{1}} . 1/2
(J\cross R^{3})+\Vert u_{t}\Vert_{L_{t}^{1}} . -1/2(J\cross R^{3})) .

Thus if one can prove a uniform bound on  \Vert u\Vert_{L_{t}^{1}}  1/2(J\cross R^{3})+\Vert u_{t}\Vert_{L_{t}^{1}}  -1/2(J\cross R^{3}) then

scattering would follow by the results of [10] and [16].

Remark. Observe that the analogous result for  d=4 combined with (1.3) imme‐
diately implies scattering.

Here we obtain the following estimates on the growth of the critical Sobolev norm.

Theorem 1.2. For any  \epsilon  >  0 , if  u_{0} and  u_{1} are radial functions and  u_{0}  \in

 \dot{H}^{1/2}(R^{3})  \cap\dot{H}^{1/2+\epsilon}(R^{3}) and  u_{1}  \in  \dot{H}^{-1/2}(R^{3})  \cap\dot{H}^{-1/2+\epsilon}(R^{3}) , then (1.1) is globally
well‐posed.

Theorem 1.3. Suppose  u is radial and there exists a positive constant  \epsilon  >  0

such that

(1.5)  \Vert u_{0}\Vert_{\dot{H}^{1/2+\in}(R^{3})}+\Vert|x|^{2\epsilon}u_{0}
\Vert_{\dot{H}^{1/2+\in}(R^{3})} \leq A<\infty,
and

(1.6)  \Vert u_{1}\Vert_{\dot{H}^{-1/2+\in}(R^{3})}+\Vert|x|^{2\epsilon}u_{1}
\Vert_{\dot{H}^{-1/2+\in}(R^{3})} \leq A<1.

Then (1.1) has a global solution and there exists some  C(A, \epsilon)  <1 such that

(1.7)  (u(t, x))^{4}dxdt\leq C(A, \epsilon) .
 R
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Theorem 1.4. The initial value problem (1.1) is globally well‐ posed and scat‐
tering for  u_{0}  \in  B_{1,1}^{2} (R3), radial, and  u_{1}  \in  B_{1,1}^{1} (R3), radial. Moreover, there exists
function  f :  [0, \infty )  arrow  [0, \infty ) which ives a uniform bound

(1.8)  \Vert u\Vert_{L_{t,x}^{4}(R\cross R^{3})} \leq f(\Vert u_{0}\Vert_{B_{1,1}^{2}}
+\Vert u_{1}\Vert_{B_{1,1}^{1}}) .

§2. Proof of theorem 1:2

Theorem 1:2 is proved using the I‐method. The I‐ method was introduced to the

cubic nonlinear Schrödinger equation in [3]. On the wave equation side, [13] used the I
‐ method to prove global well‐ posedness for (1.1) when  s>   \frac{13}{18} and to  s>   \frac{7}{10} if  u has
radial symmetry.

The I‐ operator is the Fourier multiplier

(2.1)  \hat{If}(\xi)=\hat{m}(\xi)\hat{f}(\xi) ,

where

(2.2)  m(\xi)=  \{\begin{array}{l}
1 if |\xi| \leq N
(\frac{N}{|\xi|})^{1-s} if |\xi| >2N.
\end{array}
Then  I :  \dot{H}^{s}  arrow  \dot{H}^{1} and  I :  \dot{H}^{s-1}  arrow  L^{2} . Set  s  =   \frac{1}{2}  +\epsilon . By the Sobolev embedding

theorem,

(2.3)  E(Iu(0))<\sim\Vert u_{0}\Vert\cdot 1/2,\Vert u_{0}\Vert_{\dot{H}^{s}},\Vert 
u_{1}\Vert_{\dot{H}^{s-1}} N^{2(1-s)},

where  E(Iu(t)) is the energy (1.3). If  E(Iu(t)) was conserved by a solution to (1.1)
then the local well‐ posedness result of [12] would imply theorem 1:2.  E(Iu(t)) is called
the modified energy.

By direct computation,

(2.4)   \frac{d}{dt}E(Iu(t))= (Iu_{t}(t, x))((Iu)^{3}-Iu^{3})(t, x)dx.
This term is identically zero unless at least two terms in the quadrilinear expression

(2.4) are supported at frequency  \geq  \overline{8} . This fact implies that
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(2.5)  0  \frac{d}{dt}E(Iu(t))dt
may be well controlled by the long time Strichartz estimates. Such estimates were first

introduced in [4].

The long time Strichartz estimates were created to study almost periodic solutions to

the mass‐ critical nonlinear Schrödinger equation. Suppose for example that the set

(2.6)  \{u(t) : t\in R\}

is precompact in  L_{x}^{2} (Rd). Then at higher and higher frequencies the solution to the
mass‐ critical problem is dominated by a linear solution for longer and longer periods

of time. The proof of theorem 1:2 follows the argument of [5], proving a similar result
for the nonlinear Schrödinger equation.

First observe that by small data theory and finite propagation speed there exists  R<1

such that if  u solves (1.1),

(2.7)  \Vert u\Vert_{L_{t,x}^{4}(R\cross\{x:|x|>R+|t|\})} <1.

Next, a solution to (1.1) satisfies the Duhamel formula

 t

(2.8)  (u(t), u_{t}(t))=S(t)(u_{0}, u_{1})- S(t-\tau)(0, u^{3})d\tau,
 0

where  S(t) is the operator

(2.9)  S(t)= (_{-\sqrt{-\triangle}\sin(t-\triangle)co)} \cos(t\sqrt{-\triangle})\frac{
\sin(t\sqrt{-\triangle})}{s(t-\triangle\sqrt{-\triangle}})
The proof of the long time Strichartz estimate combines the local energy decay,

(2.10)   \sup_{R>0}R^{-1/2}\Vert\nabla_{t},{}_{x}S(t)(u_{0}, u_{1})\Vert_{L_{t,x}^{2}(R
\cross\{x:|x|\leq R\})} \sim< \Vert u_{0}\Vert_{\dot{H}^{1}}+\Vert u_{1}
\Vert_{L^{2}}.
Since  u is radially symmetric, (2.10) may be combined with the radial Sobolev embed‐
ding theorem
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(2.11)  \Vert|x|^{1/2}u\Vert_{L_{x}^{1}(R^{3})} \sim< \Vert u\Vert_{\dot{H}^{1}(R^{3})}
,
the Strichartz estimate, and (2.7), to prove that for any  M,

 ( \sup_{R>0}R^{-1/2}\Vert\nabla_{t,x}IP_{>M}u\Vert_{L_{t,x}^{2}([0,T]\cross\{x:
|x|\leq R\})})\sim<E(Iu_{0}, Iu_{1})
(2.12)  +^{\underline{\ln(T)}}( \sup_{R>0}R^{-1/2}\Vert\nabla_{t,x}IP_{>\frac{M}{8}}
u\Vert_{L_{t,x}^{2}([0,T]\cross\{x:|x|\leq R\})})\Vert Iu\Vert_{L_{t}^{1}}^{2} . 1  ([0,T]\cross R^{3})

 +\Vert|\nabla|^{\frac{1}{2}}P_{>\frac{M}{8}}Iu\Vert_{L_{t,x}^{4}([0,T]\cross R^
{3})}\Vert(1-I)u\Vert_{L_{t,x}^{4}([0,T]\cross R^{3})}^{2}.
 P>M is the Littlewood‐ Paley cutoff that restricts to frequencies  |\xi|  >M.

(2.13)  P_{>M}=j:2 \geq\sum_{j} P_{j}.
 P . is the usual Littlewood‐ Paley multiplier that restricts to frequencies  |\xi|  \sim 2^{j} . Then
assume that  [0, T] is an interval on which

(2.14)   \sup E(Iu(t)) \leq CN^{2(1-s)}.
 t\in[0,T]

Therefore,

  \underline{\ln(T)}(\sup_{R>0}R^{-1/2}\Vert\nabla_{t,x}IP_{>\frac{M}{8}}u\Vert_
{L_{t,x}^{2}([0,T]\cross\{x:|x|\leq R\})})\Vert Iu\Vert_{L_{t}^{1}}^{2} . 1  ([0,T]\cross R^{3})

(2.15)

  \leq \underline{C^{2}\ln(T)N^{2(1-s)}}(\sup_{R>0}R^{-1/2}\Vert\nabla_{t,x}
IP_{>\frac{M}{8}}u\Vert_{L_{t,x}^{2}([0,T]\cross\{x:|x|\leq R\})}) .

Then since  s>   \frac{1}{2} there exists  \delta>0 such that  2(1-s)  <   1-\delta . Choosing  M>N^{1-\frac{\delta}{2}},

(2.16) (2.15)  <C^{2} \ln(T)N^{-\frac{\delta}{2}}(\sup_{R>0}R^{-1/2}\Vert\nabla_{t,x}
IP_{>\frac{M}{8}}u\Vert_{L_{t,x}^{2}([0,T]\cross\{x:|x|\leq R\})}) .

Then arguing by induction, starting with the base case (which follows from (2.14)),

(2.17)  ( \sup_{R>0}R^{-\frac{1}{2}}\Vert\nabla_{t,x}Iu\Vert_{L_{t,x}^{2}([0,T]
\cross\{x:|x|\leq R\})}) \leq CT^{1/2}N^{1-s},
by (2.12), for  N(T) sufficiently large there exists  c(\delta)  >0 such that
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(2.18)  ( \sup_{R>0}R^{-\frac{1}{2}}\Vert\nabla_{t,x}IP_{>\frac{N}{8}}u\Vert_{L_{t,x}
^{2}([0,T]\cross\{x:|x|\leq R\})})<N^{1-s}\sim+CN^{-c\ln(N)}N^{1-s}T^{1/2}
Therefore,

(2.19)   \sup_{R>0}R^{-\frac{1}{2}}\Vert\nabla_{t,x}IP_{>\frac{N}{8}}u\Vert_{L_{t,x}
^{2}([0,T]\cross\{x:|x|\leq R\})} <N^{1-s}
Then plugging (2.19) into (2.4), by Bernstein’s inequality and the fact that at least two
terms of (2.4) are at frequency  >  \overline{8} , and making a computation similar to (2.12),

(2.20)  0 | \frac{d}{dt}E(Iu(t))|dt< \frac{1}{N}N^{4(1-s)}\ln(T) <<N^{2(1-s)}.
Then by (2.3), the bootstrap is closed. Therefore, for any  T there exists  N(T) such that

(2.21)   \sup E(Iu(t)) <N^{2(1-s)},
 t\in[0,T]

where  N is implicit in the I‐ operator (2.2). This proves global well‐posedness.

§3. Proof of theorem 1:3

The proof of theorem 1:3 uses a conformal change of coordinates. See [15] and [17]
for prior work on the wave equation using a conformal change of coordinates. Shift the

time coordinates of  t=0 to  t=1 . Also, after rescaling suppose

(3.1)  \Vert S(t)(u_{0}, u_{1})\Vert_{L_{t,x}^{4}([1,\infty)\cross\{x:|x|>|t|-\frac{1}
{2}\})} \leq\epsilon.

Then by finite propagation speed and small data arguments

(3.2)  \Vert u\Vert_{L_{t,x}^{4}([1,\infty)\cross\{x:|x|>|t|-\frac{1}{2}\})} 
<\epsilon.

If  u(t, x) is a radial solution to (1.1) then

(3.3)  v(\tau, s)=  \underline{e^{\tau}}sisnh  s_{u(e^{\tau}\cosh s,e^{\tau}\sinh s)}

solves
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(3.4)   \partial_{\tau\tau}v-\partial_{ss}v-\frac{2}{s}\partial_{s}v+(\frac{s}{\sinh 
s})^{2}v^{3}=0.
(3.4) has the conserved energy

(3.5)

 E(v(\tau))=   \frac{1}{2}  | \partial_{s}v(\tau, s)|^{2}s^{2}ds+\frac{1}{2}  | \partial_{\tau}v(\tau, s)|^{2}s^{2}ds+\frac{1}{4}  |v( \tau, s)|^{4}(\frac{s}{\sinh s})^{2}s^{2}ds.
A solution to (3.4) also has the Morawetz estimate

(3.6)  0^{\infty}v( \tau, s)^{4}(\frac{s}{\sinh s})^{2}( \frac{\cosh s}{\sinh s})s^{2}
dsd\tau<E(v) .

Since   \frac{\cosh s}{\sinh s}  \geq  1 , by a change of variables

(3.7)  1^{\infty} |x| \leq|t|^{u(t,x)^{4}dxdt\leq} 0^{\infty}v(\tau, s)^{4}(\frac{s}
{\sinh s})^{2}(\frac{\cosh s}{\sinh s})s^{2}dsd\tau.
The proof of theorem 1:3 may then be split into four steps:

1. Prove that the initial data  (v(0), v_{\tau}(0)) lies in  \dot{H}^{s}  \cross\dot{H}^{s-1} for some  s>   \frac{1}{2}.

2. Prove a long time Strichartz estimate on a solution to (3.4).

3. Prove an almost Morawetz estimate for Iv based on (3.6).

4. Prove that  E(Iv(t))  <E(Iv(0)) for all  t.

The estimates on the initial data rely on the fact that

(3.8)  v( \tau, s)|_{\tau=0}= \frac{\sinh s}{s}u(\cosh s, \sinh s) ,

combined with the fact that when  |\sin s-\cosh s+1|  \leq   \frac{1}{2} , (3.2) implies that the linear
solution dominates  u . Therefore, by the formula for a free wave equation in three

dimensions,  s\cdot v(\tau, s)|_{\tau=0} is dominated by

(3.9)   \frac{1}{2}(e^{s}-1)u_{0}(e^{s}-1)+\frac{1}{2}(1-e^{-s})u_{0}(1-e^{-s})+-1 
e^{s}-1_{u_{1}(r)rdr}. 2 1-e^{-s}

The appropriate norms may be explicitly calculated from (3.9).
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The I‐ method arguments are quite similar to the argument in the proof of theorem 1:2.

There are only two differences. The first is that the base case (2.17) does not depend
on  T , due to a bootstrap assumption on the Morawetz estimate.

The second difference is that the multiplier  ( \frac{s}{\sinh s})^{2} in the nonlinearity gives some

additional decay as  sarrow 1 , which removes the  \ln(T) that appears in (2.15).

§4. Proof of theorem 1:4

The proof of theorem 1:4 also uses conformal coordinates. Suppose  u_{0}  \in B_{1,1}^{2} and

 u_{1}  \in B_{1,1}^{1} , where  B_{p,q}^{s} is the Besov space given by

(4.1)   \Vert f\Vert_{B_{p,q}^{s}(R^{3})} =(\sum_{j}2^{jsq}\Vert P\cdot f\Vert_{L^{p}}
^{q})^{1/q}.
 P_{j} is the Littlewood‐ Paley partition of unity. This norm is invariant under the scaling

symmetry (1.2). For a radial function  u_{0} lying in  B_{1,1}^{2},

(4.2)  | \nabla u_{0}(x)|^{2}dx<\sim \frac{1}{R}\Vert u_{0}\Vert_{B_{1,1}^{2}}^{2}. |x|>R

Moreover, by the dispersive estimate

(4.3)   \Vert S(t)(u_{0}, u_{1})\Vert_{L^{1}} \sim< \frac{1}{t}[\Vert u_{0}
\Vert_{B_{1,1}^{2}}+\Vert u_{1}\Vert_{B_{1,1}^{1}}].
(4.2) and (4.3) combine to imply

 t

(4.4)  \Vert S(t-\tau)(0, \chi(\tau, x)u^{3})d\tau\Vert_{\dot{H}^{1}\cross L^{2}} <1,
 0

for  \chi  \in  C_{0}^{\infty}(R^{4}) supported away from  t  =  0 and  x  =  0 and with support in time

contained in the interval on which  u is well‐posed. More heuristically, this means that
 u is at its most singular at the origin in space and time.

After rescaling, assume that [12] implies that (1.1) has a local solution on the interval
 [0 , 1  ] . Moreover, by the radial Sobolev embedding theorem

(4.5)  \Vert u^{3}\Vert_{L_{t}^{1}L_{x}^{2}([0,1]\cross\{x:|x|>R\})} <R^{-1/2},
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and by (4.3),

(4.6)  \Vert u^{3}\Vert_{L_{t}^{1}L_{x}^{2}([R,1]\cross R^{3})} <R^{-1/2}

Again thinking heuristically, having weathered this initial “singularity storm” at the

origin, there is good reason to think the solution should be global.

By the sharp Huygens principle combined with the radial Sobolev embedding theorem,
for  t>  10R,

(4.7)   \Vert 0^{t}S(t-\tau)(0, \chi u^{3})d\tau\Vert_{L^{1}} \sim< \frac{1}{t},
where  \chi is a smooth function supported on  |x|  \leq R . This implies that  u(1)=v(1)+w(1) ,
where

(4.8)  \Vert v(1)\Vert_{\dot{H}^{1}}+\Vert v_{t}(1)\Vert_{L^{2}} \sim<1,

and

(4.9)   \Vert S(t-1)(w(1), w_{t}(1))\Vert_{L^{1}} \sim< \frac{1}{t}.
Meanwhile  v solves

(4.10)  v_{tt}-\triangle v+(v+w)^{3}=0,

so then

(4.11)   \frac{d}{dt}E(v(t))<\sim \Vert v_{t}\Vert_{L^{2}}\Vert v\Vert_{L^{4}}^{2}\Vert
w\Vert_{L^{1}}+\Vert v_{t}\Vert_{L^{2}}\Vert w\Vert_{L^{6}}^{3}.
This implies that  E(v(t)) is bounded on any compact time interval, implying global well

‐ posedness. Scattering may be proved using (3.3). Once again shift the time  t=0 to
 t=1 . Take

(4.12)  \sim(\tau, s)=  \underline{e^{\tau}}sisnh  s_{v(e^{\tau}\cosh s,e^{\tau}\sinh s)},

and
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(4.13)  \sim(\tau, s)=  \underline{e^{\tau}}sisnh  s_{w(e^{\tau}\cosh s,e^{\tau}\cosh s)}.

Recalling the conformal energy (3.5) and computing   \frac{d}{d\tau}E(\tilde{v}(\tau)) ,

  \Vert\tilde{v}_{\tau}(\tau, s)(\frac{s}{\sinh s})^{2}\tilde{v}(\tau, s)^{2}
\tilde{w}(\tau, s)\Vert_{L^{1}}
(4.14)  <  \Vert(\frac{s}{\sinh s})^{1/2}\tilde{v}(\tau, s)\Vert_{L^{4}}^{2}\Vert\tilde
{v}_{\tau}(\tau, s)\Vert_{L^{2}}\Vert e^{\tau}\tilde{w}(e^{\tau}\cosh s, 
e^{\tau}\sinh s)\Vert_{L^{1}}

 \sim<E(\tilde{v}(\tau))\Vert e^{\tau}\tilde{w}(e^{\tau}\cosh s, e^{\tau}\sinh 
s)\Vert_{L^{1}}.

By the radial Sobolev embedding theorem,

(4.15)  |e^{\tau} \tilde{w}(e^{\tau}\cosh s, e^{\tau}\sinh s)| < \frac{1}{\sinh s}.
Observe that by the sharp Huygens principle,  w is supported on  ||t-  1|  -  |x||  \leq  R,
where  R is small. Then

(4.16)  e^{\tau}\cosh s-e^{\tau}\sinh s=e^{\tau-s}\sim 1,

which then implies   \frac{1}{\sinh s}  \sim e^{-\tau} on the support of  w . Therefore,

(4.17)   \Vert\tilde{v}_{\tau}(\tau, s)(\frac{s}{\sinh s})^{2}\tilde{v}(\tau, s)^{2}
\tilde{w}(\tau, s)\Vert_{L^{1}} \sim<e^{-\tau}E(\tilde{v}(\tau)) .

Then by Gronwall’s inequality,  E(\tilde{v}(\tau)) is uniformly bounded. The error terms arising

in the Morawetz estimate (3.6) from

(4.18)  3v^{2}w+3vw^{2}+w^{3}

may be handled in a similar manner, proving scattering. A profile decomposition argu‐

ment then gives a uniform bound.
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