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Unconditional well-posedness of fifth order KdV type
equations with periodic boundary condition

By

TAKAMORI KATO *

Abstract

This paper is announcement of the result obtained in [8] by Tsugawa and the author. We
study the well-posedness of the Cauchy problem of the fifth order KdV type equations on T.
We show the local well-posedness and unconditional uniqueness in H*(T) for s > 3/2. The
main idea of the proof is using the conserved quantities to cancel the resonant parts with a
loss of derivatives and applying the normal form reduction to the non-resonant parts to recover
derivatives.

§1. Introduction

This paper is announcement of the result obtained in [8] by Tsugawa and the
author. We consider the Cauchy problem of the fifth order KdV type equation on one
dimensional torus T = R/27Z,

(1.1) Opu 4 02u + a0, (0,1)? 4 SO, (u0?u) + 1070, (u?) = 0,
(1.2) u(0,-) = () € H*(T)
where o, 8,7 € R, u : RxT — R and ¢ : T — R. We observe some conserved quantities.
Put
=5 [ult) de, Evu(t) =5 [ (0)d
=5 Tu x, 1(u =g Tu x,

Es(u(t)) = — /Tr (02u(t))” + 5yut(t) — Bu(t) (Deu(t))’ do

Eo(u(t))
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We have conservation laws F1(u(t)) = E1(p) and Es(u(t)) = E3(p) in the formal sense
when the assumption f = 2« holds. Moreover, Ey(u(t)) = Eo(p) holds without any
assumption. In this case § = 2«, (1.1) can be regarded as the Hamiltonian PDE 0,u =
—0;V,H(u) with H(u) := Es(u). In this case («, 5,7) = (£5,£10,1), (1.1) is called
the fifth order KdV equation, which is completely integrable and the second equation
in the KdV hierarchy discovered by Lax. We remark that it is certain that the inverse
scattering theory is not applicable because (1.1) is no longer complete integrability.

In [2], Benny introduced the following equation to describe interactions between
short and long waves:

1
Opu + Oou = §8m(8mu)2 + Oz (ud?u).
There are many well-posedness results for the KdV equations on T,
(1.3) Opu 4 03u + 0, (u?) = 0.

However, known results for the fifth order KdV type equations are few. This is because
the strong singularity in the nonlinear terms make the problem difficult. To overcome
this difficulty, we obtain the main result as follows:

Theorem 1.1.  Let s > 3/2 and = 2a. Then, for any ¢ € H*(T), there ezists
T = T(||pll gs/z) > 0 such that there exists a unique solution v € C([-T,T] : H*(T))
to (1.1)=(1.2). Moreover the solution map, H*(T) > ¢ — u € C([-T,T] : H*(T)) is

continuous.

When 8 = 2a holds, we have the following global result as a corollary of Theorem
1.1 thanks to the conservation of Es.

Corollary 1.2.  We assume the same assumption in Theorem 1.1 and ¢ € H?(T).
Then, the solution obtained in Theorem 1.1 can be extended to the solution on t €
(_007 OO) .

Remark 1.1.  Theorem 1.1 and Corollary 1.2 claim that unconditional uniqueness
holds. Unconditional uniqueness means that uniqueness holds in C([0,7] : H*(T))
without intersecting with any auxiliary function space. This is a concept of uniqueness
which does not depend on how solutions are constructed. In the context of unconditional
well-posedness, refer to [7].

Main idea of the proof of Theorem 1.1 is how to deal with a loss of derivatives. Key
ingredients are how to cancel the resonant parts with a loss of the derivatives and how
to recover derivative losses in the non-resonant parts. The resonant parts does not have
any smoothing effect because the oscillation effects are canceled. (We give the rigorous
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definition of the resonant parts and the non-resonant parts in the latter part of this
section.)

When x € R, the following linear local smoothing is due to Kenig, Ponce and Vega
[10]:

. 1 a2j+1
109" || Lo 12 < Cllip] 2

We observe that this smoothing effects enables us to recover two derivatives when j = 2.
However, when = € T, the linear part does not have any smoothing effects.

Now we briefly go over recent results on the well-posedness theory of the KdV
equation (1.3) on T. Bourgain [3] proved the local well-posedness of (1.3) in L?(T),
which was improved to LWP in H~'/2(T) by Kenig Ponce and Vega [11]. Colliander,
Keel, Staffilani, Takaoka and Tao [6] proved the global well-posedness in H~/2(T) via
the I-method. It was shown in [4] that the solution map cannot be smooth in H*(T)
for s < —1/2. See [5] and [12] for the related results.

The idea of Bourgain’s result [3] is using the conserved quantity Ej to cancel the
resonant parts with a loss of derivatives and applying the Fourier restriction norm
method to the non-resonant parts to recover one derivatives. The Fourier restriction
norm method is very useful to the study of the well-posedness for nonlinear dispersive
wave equations. This method enables us to recover some derivatives in the non-resonant

parts by using the weighted space-time Sobolev space X ** whose norm (for the evolution

operator %) is given by
—td3 b~
lull o = lle™ = ull gy pry = [[(R)* (7 — &) * 67, )| 2 1
kT
where (a) = (1 + |a|) for a € R. Note that at most j derivatives are recovered by

the Fourier restriction norm method for the evolution operator e~t92""" This fact
implies that nonlinear terms of (1.1) have more derivatives than derivatives that can be
recovered by the Fourier restriction norm method unlike to the KdV equation. That
makes the problem difficult.

Babin, Ilyin and Titi [1] proved the well-posedness and unconditional uniqueness
of (1.3) in C([-T,T] : H®) for s > 0. They applied the normal form reduction instead
of the Fourier restriction norm method to recover one derivative. (We describe the idea
of the normal form reduction in the latter part of this section.) We remark that at most
one derivative can be recovered by the normal form reduction. Due to the present of
three derivative losses in the nonlinearity of (1.1), this method does not work directly.

Recently, Kwak [13] proved the well-posedness of (1.1) with 5 = 2« in the energy
space H?(T). To overcome difficulty mentioned above, he used the modified energy
method introduced by Kwon [14]. Tsugawa [17] also applied the modified energy method
to show the local well-posedness of higher order dispersive equations with smooth data.
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This result includes in the local well-posedness of (1.1) without any condition on «, /3
and v for sufficiently large s (see Proposition 6.4 below). See [9] for the related result.

In the present paper, we especially interested in the local well-posedness in low
regularity and unconditional uniqueness of (1.1)—(1.2) because the analysis of low reg-
ularity could find the specific feature of the target equation, which might be hidden
behind high regularity.

The proof of the main theorem is based on the following observation. As in [3], we
use the conserved quantities Fy and E; to absorb the resonant parts with derivative
losses into the linear terms. Thus (1.1) with 8 = 2a can be rewritten into the following
equation:

(1.4) Opu 4 02u + BEo(9)03u 4 307 E1 (p)0pu = Jy(u) + Jo(u)

where

1
J1(u) = —307(u2 ~ 5 /TUQ da;) Oz,

Jo(u) = —g@x(&ru)z — B@w{ (u — %Audm)@iu}.

™

We need to apply the normal form reduction three times to (1.4) to recover derivative
losses since at most one derivative can be recovered by using this method once. However,
there are the cubic terms with two derivative losses appearing from J(u) by the normal
form reduction. We need to cancel those resonant parts with derivative losses to repeat
the normal form reduction. Note that we can give the explicit formula of the resonant

2 o) - 3 [ i)'}

(1.4) can be rewritten into the following equation because this resonant parts can be

parts as follows:

absorbed into the linear parts thanks to the conserved quantities Fy and F1:
(1.5) Owu + 0%u + BEy(¢)02u + K (0)0pu = Jy(u) + Jo(u) + J3(u)

where

J3(u) = — %{(%/T?f d:z:) — (%/Tu d:z:)Q}amu,

K() = (307~ 2 ) (o) + T 200

Ja(u) and J3(u) have no resonant parts with derivative losses. This implies that (1.1)
has the symmetric structure. In this way, discovering the symmetric structure and
cancellation properties are new ingredients in this paper.
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When u € C([-T,T) : H>?(T)) and 8 = 20, the conservation laws Eo(u(t)) =
Eo(p) and E7(u(t)) = F1(e) hold in the rigorous sense. We only need to show the
local well-posedness of (1.5)—(1.2) because (1.1) with 8 = 2« is equivalent to (1.5). We
consider the integral form of (1.5)—(1.2):

(1.6) u(t):U¢(t)go+/0t (t—t) ZJJ )) dt’

where U, (t) := F,, ! exp(t¢,(k))F. and ¢, (k) := —ik®+iBEy(¢)k® —iK (¢)k. We apply
the normal form reduction three times to obtain the nonlinear terms with no losses. We
use only C([-T,T] : H*(T))-norm to control all nonlinear terms obtained above when
s > 3/2. As a result, from the contraction argument, the local well-posedness and
unconditional uniqueness in C([~T,T] : H3/?(T)) can be obtained at the same time.

Remark 1.2. Due to the present of 9,(9,u)? in (1.1), solutions cannot be defined
in the distribution sense. This implies that the threshold is s = 1 in the sense of
unconditional well-posedness. We expect to combine a gauge-like transformation and
cancellation properties found in the present paper to obtain unconditional LWP in
HY(T) (in the forthcoming paper by Tsugawa and the author).

In the following, we give the rigorous definition of the resonant parts and the non-
resonant parts and describe the idea of the normal form reduction briefly. Before doing

so, we introduce some notations. We write k; ;41,... ; to mean k; + kjy1 + --- + k; for

(V)

integers ¢ and j such that ¢« < j. For N € Nand k € Z, I';,"’ are denoted by

T = {(k1, ko, kn) €ZY 5 k=ki + ko + -+ kn}.
Now we consider the integral equation as follows:

t
u(t) = Uy(t)p + / Uy(t — t’)P(N)(u, Oz, 8§u, 8§u)(t’) dt’
0

where P(N) is homogeneous polynomials of degree N. We apply the change of coordi-
nate: v(t) = U,(—t)u(t). Then v satisfies the following equation:

N
(1.7) 3(t, k) = / S e m ™ ky k) [T O Ke) dt!

(™

where m®) is the N-multiplier corresponding to P(N). The phase function <I>§0N) is
defined by

N
‘I)EON) = ¢<p (k1 ,2, Z
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The nonlinear terms corresponding the parts satisfied CIDEON) = 0 are called resonant
parts and the nonlinearities corresponding to the parts satisfied CIDEDN) = 0 are called the
non-resonant parts.

When @pr) # 0, we can integrate the Duhamel term of (1.7) by parts. If the

multiplier m™®) is symmetric, we have

Z e —t'el") (N)Hvt ki) dt’ ——[ Z e tq)(N)Z((N))Hvt k}

<1>(N>7£0 a0
(1.8) . oo N ) N—1
+N Z et % —5 H 0(t' k) Opo(t k) dt’.
0 (I)EPN);éO @@ =1

We substitute the differential form of (1.7) into 0;v(t, kn). This procedure is called the
normal form reduction (see [16]).

In (1.8), both terms have CIDEDN) (# 0) in the denominators, and this provides smooth-
ing. Indeed, when only one variable (|ky|) is the largest, ]@EON)| is grater than |ky|? (see
Lemmas 2.1-2.3 below). This property enables us to recover one derivative by applying
the normal form reduction to (1.6) because d;v has three derivatives in (1.6). Since the
resonant parts with derivative losses are removed from (1.6) as mentioned above, we
can apply the normal form method three times to (1.6) to eliminate derivative losses.

Finally, we give some notations. We will use A < B to denote an estimate of the
form A < CB for some constant C' and write A ~ B to mean A < B and B < A. For
a Banach space X, we define B, (X) = {f € X |[|fl|x <r}. The rest of this paper is
planned as follows. In Section 2, we introduce some notations and preliminary lemmas.
In Section 3, we rewrite (1.6) by the normal form reduction. In Section 4, we give a
variant of the Sobolev embedding theorems. In Section 5, we establish an appropriate
upper bounds of the multipliers corresponding to nonlinear terms appearing from (1.6)
by the normal form reduction. In section 6, we give the proof of the main theorem.

8§ 2. notations and preliminary lemmas

In this section, we prepare some lemmas and propositions to prove the main theo-
rem. First, we give some notations. For a (2m)-periodic function f and a function g on

Z, we define the Fourier transform and the inverse Fourier transform by

Foh) = F = = [ pa)da, (o) @) = 3 el
keZ
Then, we have

@)= FED, Il = (5 /Tldex)l/z = (Z|ﬂ2dk>1/2

keZ
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We give some estimate on the phase function CDEPN) defined as
N
M) = (k1 2, | Z (k;) for N €N,

which plays an important role to recover some derivatives when we estimate non-

resonant parts of nonlinear terms. A simple calculation yields that <I>§f1) =0,

9. 6
(2.1) (I)Sv2) = —§2k17€2k1,2 (k% + RS+, - gﬁEo(f)>a
9. 6
(2.2) (I)ch) = —§2k1,2k2,3k3,1 <k%2 + k3 s+ k5, — 35E0(f)>-

From these identities, we obtain the following lemmas.

Lemma 2.1.  Assume that f,g € L*(T), k2| 2 |k1|, |k2| = |BEo(f)| and kikzk1 2 #
0. Then, we have

1P| 2 min{ k), [kr.2 |} k2|,

(2.3) L1 |BlE(Sf) — Eo(g)]
off P17 kPl

Lemma 2.2.  Suppose that f,g € LX(T). If [ks| > k| 2 lkal, [ks| 2 [BEo(f)|
and k12 # 0, then we have

0] > [y oIk,

(2.4) 11 BlE) — Eolg)]
3 3 ~ 3 '
o o s 2| @3]

If |ks| ~ |k2| > |k1|, |ks| Z |BEo(f)| and ka3 # 0, then we have

o
L1 BB - Eolg)]
o a2

%,

We need to estimates similar to (2.3) and (2.4) for N > 4 to recover derivative losses.

However @;N) cannot be factorized exactly when N > 4. In general, the following does
not hold:
857 2 2,5/ Rl

when |ky| 2 [BEo(f)] k123 # 0 and

(2.5) [Fal > [ks| Z ko] Z [k
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In fact, we easily check that
11017 4 1) = (012)7 = (1 4t = (a1 = (ont 1))
~ ’fl39 < ‘k4|4

when ks = n'2, ks = n'' +n*, ko = —n'', k; = —n? + 1 and n is sufficiently large.
Thus, we need the slightly stronger assumption (2.6) or (2.7) instead of (2.5) in the
following lemma.

Lemma 2.3.  Assume that f,g € L*(T), |kn| 2 |BEo(f)|, k12.... n—1 # 0 and

(2.6) En| > [kn 1] > [kn—2| Z -+ 2 |kl
or
(2.7) kx| > o1 2 kn—a| 2+ 2 |kal.

Then it follows that

0] 2 kg, vl |,

(2.8) ‘ L1 BlEL(Sf) — Eo(g)l
N N) |~ N ’
A 125"

Proof. A direct computation shows that
(2.9)

N
5 5
Jj=1

- ‘5k1,2,.. Y R 107 SAIIY s ATy SN 1 EY.) - SV S o kj?(

2 k12, no1llkn|* = Clen—1 /.

Note that a simple calculation yields that

(2.10) k2, No1llkn |t 2 en—1llkn]* > [kyv—a
when (2.6) holds. Moreover, it follows that
(2.11) k2, noallbn | > Jkn]* > Tky ]

when (2.7) holds. Collecting with (2.9)—(2.11), we obtain

N
|‘I>(N)|—‘—Z k’1,2, N—Zk?>+i5E0( k12 N Zk‘?"
i—1

Zlk12, n-1llkn|* = Clkn—1]> — C|BEy(f )WfN!B'

>lk1o... N_1|kn]*.
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Form the above inequality, we obtain

L1 BB — Eo()l|K s, v — S5 K
ot el oo}
< IBIIE(f) = Eo(@)llkn® _ |BIIEo(f) — Eo(g)l
[y [N R R I V1T Y]

O
Lemma 2.4. Fizt € R and (ky,--- ,kn) € F,(CN). For f,g € L*(T), we have

(N) ()
e ™ | =1 and |[e "7 — et | = 0 when Eo(f) — Eolg).

()
Proof. Since Re @;N) = 0, we have ]e_tcbe | = 1. Note that

o) — oN) = iB(Eo(f) — Eo(9)) (K} 5. n st

A simple calculation yields that

|€_tq>§°N) — e_t¢§N)| = |e_tq>5fN)||1 — e_t(q)(gN)_q);N)”

N
< CIH]II1Bo(f) = Bo(@)l[kz,... x = D_K§| =0

when Ey(f) — Eo(g). O

Definition 1. For f € L'(T) and an N-multiplier m™) (ky,--- , ky), we define a
N-linear functional ASCN) by

A§N><m<N>,61,--~ o) (t, k)

PRy = m
-~y O N (g k) o(kr) - - O ()
(k1,-- ,kN)el"iN)

where Uy, --- ,Un are functions on ZV. A;N)(m(N),@, v,---,0) may simply be written
AM (m™, 7).

Definition 2. We say an N-multiplier m®) is symmetric if
m(N)(kla T 7kN) = m(N)(kU(1)7 T 7kJ(N))

for all o € Sy, the group of all permutations on N objects. The symmetrization of an
N-multiplier m™®) is defined as

[ (N)]L(slgyraz(kﬂh ’ Z m o(1)s” 7kO'(N))'

: ocESN
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We define the (N + j)-extension operators of a N-multiplier m¥) by

[m(N)]ggi}Lj)(kl, k) = m (kb1 ke N,
™D (k- k) = mN kg, k)

for j € N.

A simple calculation yields that it follows that

AD (D 5, 5, A0 (m, 7)) = ATHD ([T 05 5)
i NG+ —1 D(i+1—1)7 GHI-1) ~
= AT ([ mP) 05010 5,
for any symmetric multipliers m(7), m,(kl).
Let N,l € N such that N >2and 2 <[ < N . For L > 0, we define multipliers to

restrict summation regions in the Fourier space as follows:

() _ 1, when maxi<j<n{|k;|} <L ) 1, when maxi<j<n{|k;j|} > L
=k 0, otherwise ’ “h 0, otherwise
) Lwhen |kn| ~ [kn—1] ~ - ~ |kn_i1| > maxi<j<n—i{|k;]}
m 0, otherwise ’
mg\? - l,When |/{3N| Z 2N maxlgiSN_l{\kﬂ} ,
0, otherwise
mg)z _ 1, when |k1|/4 < |ko| < 4]k ]| |
0, otherwise
(2) l,When kll{fgl{?l’g 7é 0 (3) l,When kl,gkg,gl{?g,l 7é 0
MR = , MyR = ,
0, otherwise 0, otherwise
m%\{) _ 1,whenkis.. n—1 =0 m%\;) _ 1, whenkikg---kny =0
0, otherwise 0, otherwise
mgg — 1,Whenk1=—]€2=k3 mgz) . 1,Whenk1 =k2="'=l€N:0
0, otherwise 0, otherwise
@ 1,when |ks|%/* Z |ka| > |ks| ~ |ka| Z [F1], K123 #0
15 0, otherwise ’
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Put
02 = —iki o (k2 + k2 + ki o), ) =ikizs QY = gqéz),
3 (3 3 B 3 3 3
Q5" = a5 {10y + - [ (1= i)l — 1093m i35,

Then, we have the following proposition.

Proposition 2.5. Let N € N,5s >0, m"N) be a symmetric and v € C([-T,T) :
H*(T)) satisfy (1.6). Then, it follows that v := F, '(e7t**Wa(t, k)) € C([-T,T) :
H*(T)) and v(t, k) satisfies

t t
N N) =~ _ N N N) =~
AN (™, 5) ()| _/ AN (=eMm™ ) (¢')

0 0
: N+1) <
(2.12) +A((PN+1)([[Nm(N)]£JLJ{1)[_ §2)m5\2[}%]21;—51)]iym )7 ()
N+2
AN ([N ) N2 QPN ) 5wy ar
n [-T,T).
Proof. First, we will prove (2.12) with N = 1,m() = 1:
t t
@13) o)) = /0 A (= QP 5(t)) + AP (- Q9 5(t')) .
From the definition of U,, we have
(2.14) e e W F, [u(t) — Up(D)g] = [0,
(2.15) e e OV F (U (t — ') J;(u(t)] = e W F, [ J; (u(t'))].

Clearly, we have

et [ - g@m((ﬁxuf) — B0y (ud?u)]

and

2
e—t'0u (k) 7 [; /Tu dxaiu} — Z e—t'<1>fp2>Qg2)[2 gf]g} H o(t', kj)

m
1—\22) j=1
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Note that mg\?%% =1- [2m§§1)]§2y)m + m(z) and Q(z)mgi = 0. Thus we obtain

2
. _+p®2 3
e t %(k)Fw[Jz(u(t'))] — Ze e (_Q?))(l — [ngi gi)m H’U t k
J=1

r
(2.16) & it
=3 e " QPym, T ot ky)
r =1
2),,2) &
Since
1 (3) -
_ ¢! = 3 3 y
e tW(k)fm[%/quxazu] :Ze By q( ) g%i g:;)m o(t', ky)
T 1“;3) J=1
and

3
, 1 2 /
ot d)w(k)]:"”[(%/qFde) 3xu] :Ze—t ¢;3>q§3) (3) g @ H{;t k;)
J=1

r
we obtain
@, (2 -
4! —t 3 3 3 ~
e e WF [a(u(t)] = e (= S mig) (1 = mEDIS, [T ot k)
(2.17) r =
@ B @ ® ONON
= A(p (_ EQQ [le(]' _mRQ)]SyTrNU(t ))
and
(2.18)
3
e W F [N ()] = 3 e (<109)g7 (1 - [BmE] D)) Lo k)
r® =1
(3) -
_ 3 3 3 ~
= > e (<10)a” (mT — BRI Lo k)
r® j=1

= AD) (—107¢5m G 0(t)) + AL (107457 3] E) L o(1'))

sym?

In the second equality, we used mg\,%% =1- [3m§§’1)]§;%n+ [3m§§’§]§§1n +m(3) and q(g)mg’i

0.
Therefore, collecting (2.14)—(2.18), we have (2.13). We differentiate (2.13) to obtain

2 3
d
(219) ot k) =D e (=QPm{ H@tk +3 e () [T ot &

(2) (3) i=1
r, Ly
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On the other hand, we use the Leibniz rule to have

t

A t N
AL 0]y = [ A2 (= @m0, o0 a
(2.20) N_1

—tel" Ny N)iAt’kitk dt'
o [T o6 ko) ot )
F(N> =1
Substituting (2.19) into (2.20), we obtain (2.12). O

§3. The normal form reductions

In this section, we will remove the nonlinear terms with derivative losses from (1.6)
by the normal form reduction.
First, We rewrite (1.6) by the normal form reduction.

Proposition 3.1. Let s >0 and u € C([-T,T]: H*(T)) be a solution of (1.6).
Then, it follows that v(t) = F;, ' [e='®«®a(t, k)] € C([-T,T): H*(T)) and

(3.1) [v(t') + FoL(w(t)], = /0 Gop,L(v(t)) dt’

where

2
ﬁ)=ZA§f) L(2) (2) ) +ZA(3 L(3) (3) A)+A(4)(L(4) (4) ?),

7% >L’ J,p >7 1<p >Lo

2

Gy (D) = ZA@)(L@)@ mf; 0 +ZA(3) L(3)<I>(3 mf’g,a) + AW (L ot >m<<4;,a)
7j=1
= 3) -~ (4) )
3 3 4 4) o 5 6 (6) ~
AP O+ S AL, S AP O+ AT )

Here, for j, N € N, the multipliers Egﬁ? and M;Z) are symmetrization of Lgf\; ) and
M;g) respectively. These multipliers are defined as follows:

1? = —QPm@2m® /2@, LY = QP mPm /s,

Lgi)o —1Ofyq(3) (3}%3771 /®(3)
L(3) _ [QLEQ())](?’) — SQ)m(Q) [2m (2)](2) ](3) m (3)(1 (3)>/(I)(3)

extl My symlext2
3 2 2)1(3 2 2 2)1(3 3
L3, = I QP m Dm0

3)7(4 2 2 2 (3) 4 4 4
L“) BESY [ - QP m&2m'2,1P 2m ) (1 — mG) (1 — mi) /a0

exrtl sYymlext2
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and

(3.2)
(3.3)
and

(3.4)

TAKAMORI KATO

2
MY = 1090 3 = = m Bl - i),
8% 3 3

M%) = a5 (10ymiT (1 = Bmig)]) ) + Zomigl (1= m)(1 = mig)

3 2 2)7(3) 2 2 2 (3) 3
M( ) [2[;5_30 (>}j ea:t1|: :(l )mg\f)R[Qm([-I)l]g?}n} t2(1 - Qm( ))

3 2 2 2)71(3) 2 2 2 (3) 3
Mé,; (L, - Lm0 [ - QP mTpl2miD] )] ) 2mis),

3 2 2)1(3) (2 2 2 (3) 3
M) = [=2L3mE)] 7 [ - QP mGk2miD] 2] o 2mis),

3 =(2)71(3) 2 2 2 (3) (3) 3
Mé,é/)J |:2L( )j|ext1|: g ) ( ) [2 g{)l]g?;)’n’b} e:ct22 g%i’

3 ~(2)71(3) 2 2 2)7(3) 3
M8(,; [2[/& ()):| extl |: - g )mg\fg% g‘[%] emt2(1 - (17[)2)7

3 2 =(2 2)7(3) 2 2 3)71(3) 3
M7 = [2(E5), = Lm0 [ = QP mgemid] oot

(3) (2, (2)703) (2), (2) 1(3)
MlO o |:2L2 4,0 >Lj| extl |: 1 NR} ext2’

4 2 2 2)1(4) 3)71(4)

M( ) = [Q(L( ) +L( )) (>%/:|ext1[_ g)}eth’

4 3 3 3) 1 (4 2)  (2) (4
M“ BELEL + L) m ) QP m ) e,

4 3 3) 1 (4 2) (2 2 4 4
M” BLSm ) [~ QP m R 2m 2, e (1 = 2mip)),
M<4> BLE), — LS mE ) G QP m G 2m 2,1 2mss)

4 3)  (3)(4 2) (2 2 4 4
M” [=3L5m ) ) [~ QP mi R 2mi] 21 s 2miy),

4 3)+(4 2) (2 2 4 4
M” B [~ QP m SR 2m )21 2m mG),

4 3)+(4 2) (2 2 4 4 4

” = BLSY) A [-QP migp[2mi) @), 2mip mb)

4 3 3) 1 (4 2) (2 2),(4

” =3 é; o = m G mi) o,

5 3)1(5) 3)1(5

( ) ZLMO (>1): emtl[ é)]iw)t?’

(5) (4) (4)1(5) (2), (2) 1(5)

M [4L1 <P >L:| extl’ [ w1 NR:| ext2’

(6) 4) (4) (6) (3)7(6)
M [4L1<p >L}e tl[ 1 }extQ'
Proof. Obviously, we have

~ 2 2) (2 2
2,00 ni) + L202mE) = -0 miZem ).
~(2 2 2 2 2) (2 3
Lé,?p‘bff) (2) +L§,;<I>§f)m(§£ _ ( ) EV}%mEH%

]\21(3%)?%_]\;[2(?;)7 M(3) —|—L(3)q>(3) (3) +L(3)q)(3) :_Q§3).

).
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Since

(3.5) 2m12), +mb) =1,

and Proposition 2.5 with m(? = f)?clm(j)L and N = 2, it follows that

t
| AP EDSEmEL 5w) e+ (A (Em 5]
3

9
/ AG (S M Z L9 e®me) +Z E9e®mS) 5(t) ar
j=4

=2
2 2)1(4 3)1(4 4) ~
+ /0 A ([REmEL ) [=Q57 1] gy ()

= L(Q) () and N = 2, we have

Following (3.5) and Proposition 2.5 with m(® = L7 m_)

t
| AP E202mE) o)) dt + (A (LE)m ) (e)],

msps 2,0M> 1>
(3.6) o
~(3) ~ 2 2) 1(4 3)1(4) 1(4)  ~
AL (g, 0() + AL (L35 m =@ ] () dt

From (3.5) and Proposition 2.5 with m(3) = (L(3) + L(S)) (31): and N = 3, we have

t
3,
3.7y 7°

t
4 3 3)1(5 3)1(5) 7(8) ~
= / AD (M5, 0(¢) + AD ([BLEm )0 Q515 ), D)) '

Following (3.5) and Proposition 2.5 with m®) = Légg)o (>3124 and N = 3, we have

t
| AL ELL 0@, o) ar + (A (E55mE 5]

0 msr» 2@ >L»
8
(3.8) / AD (ST M) + L eWm) + L eDm) 5(t)) dt’
7j=3

3)  (3)1(5 3):(5) 1(5) ~
" / AG([BLE,m® I, -1, D) o) ar'

From (3.5) and Proposition 2.5 with m(%) = Lﬁ)p (>4)L and N = 4, we have

4 R F(4) (4) ~ t
[ A9 00, 50) e + 5D (S, 7)),

(3.9)
/ AP (M), 5(t)) dt’ + / AD® (M%), 5(t)) dt.
0 0

t
/ AD(EE) + L8)0@m) o)) dt' + AL (LE), + I)m®), 5(t)]"
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Collecting (3.2)—(3.4) and (3.6)—(3.9), we obtain (3.1).

§4. multilinear estimates

In this section, we establish a variant of the Sobolev embedding theorems to esti-
mate the nonlinear terms in (3.1).

We define the dyadic projection { Py, } as

Prryv = Fi X kgt 0(K)]

where {M;} are dyadic numbers. For simplicity, vps; denotes Pps;v.
We present the multilinear estimates controlling the terms in Proposition 3.1. With-
out loss of generality, we assume that ¥ is nonnegative in the following.

Lemma 4.1. Let s>3/2, N >2,0<a<1 and an N-multiplier M) satisfy

N—1
a (N

(4.1) (M| < T el omyy-

i=1
Then, it follows that

N

4.2 Hf*l M TT o (ks H < ||V,
(42) k; ITot)] . <l

k

(4.3) |7 > <ﬂ@(ki) - ﬂw(ki)) | S (olle + lwllze) " o = il

rM i=1 i=1
k

Proof. We only (4.2) since (4.3) follows in a similar manner. By the Sobolev
embedding theorem, we have

J > it Lot
=1

(N)
Fk

N-—1
D DI | NICAEM

M; <My i=1

Sllvligsszllvla:.

Hs

r>=|[{0z) vy || L2
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Lemma 4.2. Let s >3/2, N >2,1<1< N and an N multiplier M®) satisfy

(4.4) M| < k|,
Then, we have (4.2) and (4.3).

Proof. A simple calculation yields that

N

s — N s — N

(4.5) (k1. N) |k:N]l lmng) < H (k;) /1+( 1)/lm§ql)~
j=N—I+1

From (4.5), we use the embedding theorem and the Hélder inequality to have

it > e I,

(™
N
S IT  160a) /D |
M;<M;~Mpn 1=1 Jj=N—-Il+1
S HUHH1/2+”UHH5/Z+3(Z 1)/2L5

which shows (4.2) since s > 3/2. In the similar manner as above, we obtain (4.3).

Lemma 4.3. Let s > 3/2, N >3 and an N multiplier M®) satisfy
(4.6) |MM| < (k1o n) " Een[2m'DY).
Then, we have (4.2) and (4.3).

Proof. A simple calculation yields that
(4.7) (k1 N k1 kn | my < ey ikn ]2 2m0).

From (4.7), the embedding theorem and the Hélder inequality show that

it e Lo,

(™

SN2 S 102 2onry sl 00)*/*H 20nry | s
My _1~Mp

S HUHH1/2+HU”H9/2+3/47

which implies (4.2) for s > 3/2. Similarly, we have (4.3).

O



122 TAKAMORI KATO

§ 5. pointwise upper bounds

In this section, we give pointwise upper bounds on the multipliers defined in Propo-
sition 3.1.
Combing the lemmas constructed in the previous section, we obtain the appropriate

bounds for the nonlinear terms in (3.1). Here we set

={(2,1),(2, 2),(3,1),(3,2),(3,3),(4,1)},
={(3,2),(3,7), (4,6},
={(3,lh), (4, lg) (5,1),(5,2),(6,1) [l =1,---,10, I =1,--- ,8} \ L.

Lemma 5.1. Letr >0, L > r and f € B,.(L*(T)). Then there exists a > 0
such that

=(N) (N —a
(5.1) LMmY| < L.
for (N,j) € I.
Before we describe the proof of Lemma 5.1, we remark that

N) 3)
[ 0] S 1M

sym sym’

for any N-multiplier MN). Thus it suffices to show the appropriate bounds for L( )
and M](’f) in Lemma 5.1 (and Lemma 5.2 below).

Proof of Lemma 5.1. From Lemmas 2.1 and 2.2 , we obtain

(5.2) LCmC] < e mim G,

(5:3) [L8mEL] S g it L

(5.4) LN & o e

(5.5) LEm G| S e M (=m0 - mim
(5.6) ‘L:(a?)} ) <ﬁm%m§%(1—m(3)) m).

From Lemma 2.3, we have

4 4 4 4
|0 [m{ (1 = mGD) (A = mihm) > [k asllkal*mif) (1 — mGD) (1 — mhym).

Thus, it follows that

1 4 4 4 4 4
|3m§f1<1 mia)) (1 —mi) (1 —mygym{).

(4),(4)
(5.7) |LismSp| S ks
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Lemma 5.2. Letr >0, L 27 and f € B.(L*(T)). Then MJ(]J\Z) with (N, j) € I3
satisfies the condition (4.1), (4.4) or (4.6).

From (5.5), we have

4 kal (1), (a 4 A
9 L €

Thus M. 7(’4}

see the original paper [8].

satisfies (4.1). In this way, Lemma 5.2 follows by Lemma 5.1. For the details,

Lemma 5.3. Letr >0, L > and f,g € B.(L*(T)). Then there exists C > 0
such that

S(N)  F(N)y. (N [Eo(f) — Eo(9)], 7 (v
(5.8) (LYY — LMymY| < ¢ . £V

4,9
for (N,j) eI, and

(5.9) M) — M| < C|E(f) — Eo(g)|[MLY)]

7:9 7,9

for (N,j) € Is.

Proof. From Lemmas 2.1-2.3, we obtain (5.8) immediately. Following (5.8) and
the definition in Proposition 3.1, we have (5.9). O

We will show that the resonant parts corresponding to MQ(?’(; + MS; and Méi; are
canceled out. Put

3 3 3 3 4 4 4 4
il =m0 i), it =m0~ it

The following proposition implies that the resonant parts with a loss of derivatives aris-

ing from ASOZ)(— éQ)mg\?}%pmg)l] gi)m, 0) by the normal form reduction can be canceled
by the resonant parts corresponding to M2(3g2

Proposition 5.4. [t follows that

“r(3 “r(3
(5.10) M)+ 1) = .
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Proof. From (2.1), we have

(2)
M [ Pa @ 2m (212 }<3> - B (Pm@ 2m @) ](3> N CINNC)

2 @(2) Hllsym]extl 4 1 symJegt2 Mpg1Mp1

B 99® @ @10 ¢ ®

= Z[q)(g)m B ent1 [T TN ] cqa™ 1 M A1

B2 d? e e @ B 1 2 013 (3)
- Z [(P(Q)]emtl [ql ]ethmHR - _Fz[klké]extl [k1’2(k1 + klkz + k2):| ethmHR

0
B2 k3 + koks + k3 (3 32 k3. (3

N S O

Here we used ky + k2 = 0 when mg’}% # 0. Thus, we have

2 k2
M+ M) = iy — by +,:> B~ Lt amiy
B 3)

:_Ez(k +k: ) Mur

We notice that mg%(kl, ko, k3) = mg%%(kg, k1, ks3). By this symmetry, we obtain

e 5 k2 :
Mfil + M7(,3<; = _1_02[(]{?1 + kl) (3) RT (k + k,S) g}i} i?m
B2 (3) B2 k1 +k (3)
B+ gl - S g o

O

It seems that a loss of derivatives exists in the resonant parts corresponding to
Méi;. However, the following proposition claims that derivative losses are excluded in
this resonant parts thanks to the algebraic structure.

Proposition 5.5. [t follows that

(5.11) MY S 1

Proof. We put mgqg\,R mg)l(l—mg)(l—mg%). Then, we have mgg\,R(kl, ko, k3) =

mgg\,R(k:g, k1, ks). We use this property to obtain

52, k1—|—k‘2 kz—f—k k3+k33 3 (3)
[_1_0Z( ]{?1]{?2 k§+ k = 2) SV}{R]

F®e) _
2,070 k?l k‘g ]{31 kg
_ P 4 ()

sym
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where
2
3) (3 B% ki1 + k2 3
If )(IDL() ) — __102—k1k2 kgmngR,
3) (3 ~(3) x (3 ~(3) = (3
el = LYol — Ve,
We set
4 =(3)7(4) 2 2 2 (4) 4 4
I = B, [ - QP m B em N, | 2mhh,
4 =(3)7(4) 2 2 2 (4) 4 4
KV = B, [ - QO m@hlom @1, 2mBm

Obviously, j1(4) + j2(4) = Méi;. From

(5.12) 1B [mN 5 = kol ks *m 5

by (2.2), |J2(4)] is bounded. Clearly, it follows that

(5.13) TS 1 S ISP, S 1.

sym sym ~
We use (2.2) to have
367 ki4 ke k3 (3
- i MyR
10 klkg (I)és)
B 363 k1 + ko (k4 — k172)3
10 kike EII

extl

3)\1(4) 8. 2) 1(4) 4 4
(1= m)] o [Gikr2 (kT + ks + B3 )Mk a2 Mind

5=

(0 + kb + Kt = (8 + 783

where

W 36° k1 + ko (kg — k1 2)? 2, (4)
LU0 Kk @)@ A" HR

extl

4 4 4
U
We apply (5.12) to obtain

4 4
(5.14) YD S I, S 1.

sym syml ~>
It suffice to show the multiplier |j1(f11) | is bounded. Here we set
S18 = —ilkD g0 — {6 + K3 + (k1 — kn.2)°},

4 .
S8 = —i[k 554 — (K3 + kS + (ks — ka,3)}],
S = <[k 554 — (K + K+ (ks — k13)}].
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We introduce the multiplier K §4I) as

oy B 4
K = Tokimg{)l%(

k1o(ky — k12)® n ko,3(ka — k23)° n k13(ks — k1:3)3>
klkgng k2k33$§ k1k38§2

We notice that [Kﬁ) ]2% = [J1(41) ]g@n since
S (ky, ko, ks, ko) = mDs (ko s, ko, k) = mS (s, ey, Ko, k).

A direct computation yields that there exists a sequence of polynomial functions
{fj (K1, ko, k3)}jLo such that

ko _ B K mirh
1,1 —
U 10 e koks ST S5 S
x {folk, ko, ka)ki® + f1(k1, ko, k3)ki® + -+ fi1(k1, ko, k3)}.

where f;(ki, k2, k3) satisfy
fo(ky, ko, k3)mbth, = 25ky 5 skikoksm's), = 0
and
£ (ke s o iy < koks| mase {1 P} Bl *mig e
for 1 < j <11. Following
[kikzks ST 955351 3Imiry 2 KT R3KS R My,

we have |K£41) | < 1. From [K £41) ]g?,)m = [J1(41) ]g,%, it follows that

4 4 4
(5.15) 1] = RG] S DK NG, S 1
Collecting (5.13), (5.14) and (5.15), we obtain (5.11). O

Propositions 5.4 and 5.5 shows that the resonant parts with derivative losses are
excluded from the nonlinear terms F, 1, and G .

§6. Proof of the main theorem

In this section, we prove the main theorem by the contraction argument.
We apply a variant of the Sobolev embedding theorems Lemmas 4.1-4.3 to the
pointwise upper bounds obtained in Lemmas 5.1 and 5.2 to have the following lemma.
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Lemma 6.1.  Let s > 3/2 and r > 0. Then there exist C > 0 and a,b > 0 such
that the following estimates hold for any L 2 r, v,w € H*(T) and f € B.(L*(T)):

17 A LY mY o)) |y < CL7ll

msps Hs»
(6.1) 17 (AP (L5 mlY o) = APV (LS mTY )] [

< CL™*(Jollas + llwllz)™ v — wl g
where (N, j) € I; and

17 AN @2, )]y < CLO 013

Jif
(6.2) 1% [A‘N)(M(ff)f) AP (L )]

< CL(|lvllzs + lwllz)™ o =

where (N, j) € Is.

Remark 6.1 We remark that My, M{®) and M) do not depend on initial data

. From Propositions 5.4 and 5.5, we have the follovvlng for any v € H*(T), f,g € L*(T):

AL + N1, 5) = 0 and [AD (310, 5)] < [AL (1,0)].

7(,0’ ag7

Proposition 6.2.  Let s > 3/2 and r > 0. Then, there exist C >0 and a,b >0
such that the following estimates hold for any L 2 r, v,w € H*(T) and f,g € B,.(L*(T)):

[Fr2.(v) = Fy p(w)llz= < L7(1+ o]
|Gr.L(v) = Gy r(w) 5. < L1+ ]

we +llwllae)? (Cllv = wll = + Cilvlla-),
me + [wlme)? (Cllo — wllzs + Cillv] )

2

where Cy is a constant depending only on |Eo(f)— Eo(g)|, C1 — 0 when Ey(f) — Eo(g)
and C1 = 0 when Eq(f) = Eo(9g).

Proof. We only prove (6.4) since (6.3) follows in a similar manner. A direct
calculation yields that

N
A}N) (M;,]}[), A) A(N) (MJ(I;])’ A) _ Z(e—tcbf _e—tCIJQ)MJa]}[) H@(k
IR ‘

J:9 7 J:9 7

N
4 Ze—tq> M(N M(N)) H@(k) (A(N)(M(N) A) A(N)(M(N) A))

il
s
~
I
A

=: J1 (k) + Jo (k) + J3(k)

Here we consider the case (IV,j) € I3. From Lemma 2.4 and (6.2), there exist b > 0
and C7 > 0 such that

(6.5) [Fe A B)] ] e < CLLP 013,



128 TAKAMORI KATO

Cy — 0 when Ey(f) = Ep(g) and C1 = 0 when Ey(f) = Eo(g).
Following Lemma 5.3 and (6.2), we have

(6.6) |t [J2(k)] < CLY Eo(f) — Eo(9)|||vII §--

-

(6.2) shows that

(6.7) 1F5 [T )] [| 7o < CLY(l0llse + wllzz) ¥ Hlv — wllar-.

Iz

Collecting (6.5)—(6.7), we have

|7 AV LY, 0) = AP (L )]

(6.8) , o
< CL(|[vlls + llwllzz=)™ " (Cllv = wllg= + Culv] <)
for (N, j) € Is. Following (6.8) and Remark 6.1, we obtain (6.4). O

From the above proposition, we immediately obtain the following corollary.

Corollary 6.3.  Let s > 3/2 and r > 0. Then, there exist C >0 and 1 >6 >0
such that the following estimate holds for any 1 > T >0, ¢1,p2 € B.(H*(T)) and any
solution uy; € C([=T,T] : H*(T)) (resp. uy € C([-T,T]: H*(T))) to (1.6) with initial
data o1 (resp. @3):

(6.9 lur = usllge s <[lor — @ollars + TO(1 + l[urll o grase + uall o prase)®

X (Cllur —u2llrgems + Crllwallogems),
where Cy is a constant depending only on |Ey(p1) — Eo(e2)|, C1 — 0 when Eg(¢1) —
Eo(p2) and C1 = 0 when Ey(p1) = Eo(p2)

By the standard argument and Corollary 6.3, we can prove the local well-posedness
of (3.1). However, it is not clear whether the solution to (3.1) satisfies (1.6) or not. To
overcome this difficulty, we use the following proposition.

Proposition 6.4. Let m € N be sufficient large. Then, (1.1)-(1.2) is locally
well-posed in H™(T) on [—T,T] without any condition o, 3 and . The existence time
T depends on only ||| gm -

This result is a part of the paper of fifth order dispersive equations by Tsugawa
[17]. His proof is based on the modified energy method developed by S. Kwon [14].
Following Corollary 6.3 and Proposition 6.4, we obtain the following result.

Proposition 6.5. Let s > 3/2 and = 2a. Then, for any ¢ € H*(T), there
exists T = T(||¢llgs/2) > 0 such that there exists a unique solution v € C([-T,T] :
H*(T)) to (1.6). Moreover the solution map, H*(T) > ¢ — u € C([-T,T] : H*(T)), is
continuous.
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We omit the details of the proof of this proposition. For the details, refer the

original paper [8].

Note that Eg(u) and E;(u) are conserved in the rigorous sense when u € C'([-T,T7 :

H3/2(T)) satisfies (1.1) with 3 = 2a. Therefore, we obtain the local well-posedness of
(1.1)-(1.2) in the sense of Proposition 6.5.
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