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Abstract In this study we present an inversion method which provides thermal plasma population
parameters from characteristics of chorus emissions only. Our ultimate goal is to apply this method to
ground-based data in order to derive the lower-energy boundary condition for many radiation belt
models. The first step is to test the chorus inversion method on in situ data of the Van Allen Probes in
the generation region. The density and thermal velocity of energetic electrons (few kiloelectron volts to
100 keV) are derived from frequency sweep rate and starting frequencies of chorus emissions through
analysis of wave data from the Electric and Magnetic Field Instrument Suite and Integrated Science on
board the Van Allen Probes. The nonlinear wave growth theory of Omura and Nunn (2011, https://doi.org/
10.1029/2010JA016280) serves as the basis for our inversion method, assuming that the triggering wave is
originated by the linear cyclotron instability. We present 16 consecutive rising-tone emissions recorded
in the generation region between 11 and 12 UT on 14 November 2012. The results of the inversion are
compared with density and thermal velocities (parallel and perpendicular) of energetic electrons derived
from the unidirectional flux data of the Helium, Oxygen, Proton, and Electron instrument, showing a good
agreement: The normalized root-mean-square deviation between the measured and predicted values are
less than ∼ 15%. We found that the theoretical amplitudes are consistent with the measured ones. The
relation between linear and nonlinear wave growth agrees with our basic assumption; namely, linear
growth is a preceding process of nonlinear wave growth. We analyze electron distributions at the
relativistic resonant energy ranges.

1. Introduction
In recent years NASA missions such as Time History of Events and Macroscale Interactions during Sub-
storms (THEMIS), Van Allen Probes (RBSP), and Magnetospheric Multiscale advanced our understanding
of the complex interconnections of the geospace environment because of the availability of in situ data.
Some of these in situ data are the boundary conditions and parametric input to many space environ-
ment models and are critical to enable accurate nowcasts and forecast. However, a trusted operational
system would rely on continuous and long-running measurements of them. A solution for that need can be
ground-based measurements of key parameter inputs. The PLASMON project (PLASmasphere MONitoring,
an FP7-SPACE-2010-1 Collaborative Project) is an outstanding example for efforts to produce impor-
tant key parameters, like plasmasphere densities, with the use of ground-based whistler measurements
(Lichtenberger et al., 2013). As part of PLASMON, the global AWDANet network (Automatic Whistler
Detector and Analyzer Network, Lichtenberger, 2009; Lichtenberger et al., 2008)—consisting of 28 very low
frequency receiver stations—can be extended with the capability of recording whistler mode chorus emis-
sions at stations with magnetic footprint L > 4(3). In particular, we will show in this paper how rising tone
chorus emissions can be used as a proxy to estimate the in situ thermal plasma conditions, which form
the low-energy boundary condition of many of our current state-of-the-art radiation belt and ring current
models.

Coherent chorus emissions are typically observed as rising/falling tones in the frequency range of 0.1fce <

f < 0.8fce with discontinuity at 0.5fce, where fce is the electron gyrofrequency (Burtis & Helliwell, 1969; Koons
& Roeder, 1990; Santolík et al., 2003; Sazhin & Hayakawa, 1992) . These emissions are typically excited dur-
ing geomagnetic storms close to the magnetic equator in low-density plasmas near outside the plasmapause.
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Chorus emissions are known to be generated via wave-particle interactions with an anisotropic distribu-
tion of energetic electrons (few kiloelectron volts to 100 keV) injected from the plasma sheet (Anderson &
Maeda, 1977; Kennel & Petschek, 1966; Li et al., 2013; LeDocq et al., 1998; Meredith et al., 2001; Omura
et al., 2009; Santolík et al., 2010; Spasojevic, 2014). Anisotropic angular distributions of substorm injected
energetic electrons (also called source population; Jaynes et al., 2015) are able to provide free energy for cho-
rus wave excitation (Thorne et al., 2013, and references therein) and cause isotropic pitch angle distribution
in the energy range of the interacting particles. The attention of radiation belt modelers recently turned to
whistler mode chorus waves due to its role in both accelerating electrons to megaelectron volts energies in
the Earth's outer radiation belt (Horne & Thorne, 1998; Summers et al., 1998, 2002; Li et al., 2014; Reeves
et al., 2013; Thorne et al., 2013) and in pitch angle scattering of electrons into the atmospheric loss cone
(Hikishima et al., 2010; Lorentzen et al., 2001; O'Brien et al., 2004; Thorne et al., 2005). The generation
of chorus emissions is known to be driven by electron cyclotron resonance (Chum et al., 2007; Katoh &
Omura, 2007a, 2007b; Kennel & Petschek, 1966; Kennel & Thorne, 1967; Nunn et al., 1997; Omura et al.,
2008; Tsurutani & Smith, 1974).

Omura et al. (2008) and Omura and Nunn (2011) proposed a nonlinear wave growth theory for chorus
wave generation. They assumed that linear instability excites a coherent whistler mode wave which triggers
the nonlinear process. They found a relationship between measurable characteristics (frequency sweep rate
𝜕𝜔∕𝜕t, optimum wave amplitude 𝛺w0, threshold amplitude 𝛺th) of rising-tone emissions and the distribu-
tion function of energetic electrons (ratio of number densities of hot and cold electrons Nh∕Nc and their
parallel and perpendicular thermal velocity,Vt|| and Vt⟂, respectively) participating in wave-particle inter-
action. Their theory reveals the amplitude dependency of frequency sweep rate of chorus emissions at the
generation region close to the magnetic equator. During quasi-parallel propagation away from the magnetic
equator, wave amplitude of chorus emissions undergo a convective growth due to the gradient of the mag-
netic field, but 𝜕𝜔∕𝜕t is affected only by cold plasma dispersion. During its slightly oblique propagation away
from the equator, the gap at 0.5fce is formed by nonlinear wave damping via Landau resonance (Hsieh &
Omura, 2018).

The above mentioned features of the theory led the AWDANet Team to start to develop a method to derive
density and thermal velocities of energetic electrons (source population) from chorus emissions recorded
on the ground after they were projected from the ground to the equatorial generation region by a propa-
gation model. In this paper we do not discuss the propagation of chorus emissions, which would lead to a
frequency-dependent propagation group delay resulting a different frequency sweep rate. For this study, we
selected chorus emissions detected at the assumed generation region (no propagation) and leave the effects
of propagation to our follow-up paper. However, it is essential to bear the limitations of ground observations
in mind. When we developed our chorus inversion method to monitor the equatorial source population,
we took into account that the following data are available on AWDANet stations: (1) electromagnetic wave
recordings (fs = 20 kHz), (2) equatorial electron plasma number density from PLASMON, and (3) electron
gyrofrequency obtained from a chosen geomagnetic field model via the station's L value. Points (2) and (3)
assume that chorus emissions propagate with a group velocity quasi-parallel to the magnetic field.

The main objective of this study is to apply and validate the chorus inversion method, which incorporates the
methods of direct comparison of chorus measurements with the nonlinear theory of Foster et al. (2017). The
theoretical background of chorus inversion is described in section 2. In the section 3, we present the results
of our method on 16 chorus emissions selected from the Electric and Magnetic Field Instrument Suite and
Integrated Science (EMFISIS) data of RBSP spacecraft A. Then, we validate the results with simultaneously
measured Helium, Oxygen, Proton, and Electron (HOPE) data from the same spacecraft and analyze the
theoretical amplitudes and growth rates. To support the validation process, we also analyzed the changes of
total electron flux and thermal anisotropies from HOPE and Magnetic Electron Ion Spectrometer (MagEIS)
instruments. Section 4 gives a summary and conclusion.

2. Determination of Thermal Velocity and Density of Energetic Electrons
The inversion method consists of two phases (Figure 1). First we estimate the parallel and minimum perpen-
dicular thermal velocity of the source population using the relativistic solution of electromagnetic R-mode
wave instability of (Xiao et al., 1998) (first phase blue box in Figure 1). Using these thermal velocities, a
direct estimation of Nh∕Nc is obtained from the frequency sweep rate of a chorus emission using nonlinear
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Figure 1. Chorus inversion method: Inputs are from Electric and Magnetic Field Instrument Suite and Integrated
Science wave measurements (red boxes) only. As the first step, thermal momentum Ut|| and average perpendicular
velocity V⟂0 are calculated assuming that linear wave growth is the initial phase of chorus generation. The second
phase is governed by nonlinear wave growth. Here, we replace the wave amplitude 𝛺w with the optimum amplitude
𝛺opt in order to obtain Nh. For the calculation of Nh, we use the output of the first phase, Ut|| and V⟂0. At the end
of the process, we obtain the bi-Maxwellian function parameters of energetic electrons responsible for chorus
emission generation. In the green boxes we note some important assumptions.

wave growth theory (second phase blue box). For this study, the inputs are gyrofrequency 𝛺e, plasma fre-
quency 𝜔pe, frequency sweep rate of an individual chorus emission 𝜕𝜔∕𝜕t, and the mean frequency of the
assumed band of linear growth𝜔rm. Nonlinear wave growth—and the accompanying frequency increase—is
triggered by the aforesaid hiss-like emission; therefore, its frequency band is lower than the starting fre-
quency of chorus emissions. All data are from EMFISIS measurements (red boxes in Figure 1). More about
assumptions (green boxes in Figure 1) is in the descriptions of the theories mentioned above.

2.1. Relativistic Linear Growth Rate of R-Mode Plasma Waves
A band of whistler mode waves is usually present at or below the starting frequency of chorus emissions and
acts as a triggering wave for nonlinear wave growth mechanism. This band is assumed to be generated due to
relativistic whistler mode instability that is driven by temperature anisotropy of the source population, AM =
T⟂∕T||−1 = V 2

t⟂∕V 2
t||−1 in the case of bi-Maxwellian distribution function. The instability of electromagnetic

R-mode waves in a relativistic plasma was studied by Xiao et al. (1998). They expressed the linear growth
rate as

𝜔i =
𝜋𝜔2

pe𝜂rel

[2𝜔r + 𝜔2
pe|Ωe|∕(𝜔r − |Ωe|)2]

{Arel − Ac}, (1)

where 𝜂rel is the fraction of the relativistic particle distribution near resonance, which is proportional to the
ratio of hot and cold electron density, Nh∕Nc ≪1. Arel is the relativistic pitch angle anisotropy of the resonant
particles, which in the nonrelativistic limit is equal to AM . The critical anisotropy is

Ac =
1

Ωe∕𝜔r − 1
. (2)

In their paper, Xiao et al. (1998) evaluated the linear wave growth rate as a function of frequency 𝜔r , by
numerical integration along the resonance ellipse for different distribution functions, and studied the effects
of key parameter changes. In the case of bi-Maxwellian distribution, they found that the variation of Nh∕Nc
only affects the magnitude of the growth rate. Similarly, the increase of Arel is followed by increasing growth
rate; in addition, the frequency range of the instability is slightly spreading. Another important key parame-
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ter is the ratio of electron plasma and gyrofrequency𝜔pe∕𝛺e: Decreasing𝜔pe∕𝛺e shifts the maximum growth
rate to higher frequencies. Likewise, decreasing the hot electron temperature (Ut||) increases the frequency
of the maximum growth rate and also thins the unstable frequency range.

We assume that the linear growth rate takes the maximum value at the mean frequency of whistler instabil-
ity's wave band 𝜔rm, that frequency is only determined by 𝜔pe∕𝛺e and Ut||. In the chorus inversion 𝜔pe∕𝛺e
and Nc are known; therefore, those Ut|| that produce the maximum linear growth rate of the whistler-mode
instability at 𝜔rm can be the estimate for initial parallel thermal momentum of the source population. More-
over, the minimum resonant anisotropy required for instability Ac provides the minimum value of Vt⟂. At
this stage of the chorus inversion, we use an arbitrary Nh, because it does not affect the frequency of the
maximum growth rate. Nh is calculated in the second step of the chorus inversion method employing the
nonlinear wave growth theory.

2.2. Nonlinear Wave Growth Theory
Linear wave growth induces the initial amplitudes of emissions followed by nonlinear wave growth (Omura
et al., 2008; Omura & Nunn, 2011) which is responsible for the growing amplitude and rising frequency
of chorus emissions assuming parallel propagation at the generation region. Omura et al. (2009) proposed
that the formation of gap between the upper and lower bands is due to the nonlinear damping mechanism
caused by slightly oblique propagation away from the equator. The frequency sweep rate of chorus emission
is derived from the definition of the inhomogeneity ratio of the relativistic second-order resonance condition,
and its value is chosen to maximize the magnitude of the resonant current in the direction of the wave
electric field at the equator,

𝜕�̃�

𝜕t
=

0.4s0𝜔

s1
Ω̃w, (3)

where s0 = Ṽ⟂0𝜒∕𝜉, s1 = 𝛾(1 − ṼR∕Ṽg)2, Ω̃w = eBw∕(m0Ωe0), and �̃� = 𝜔∕Ωe0 is the normalized frequency. Bw
is the wave magnetic field; 𝜒2 = (1+ 𝜉2)−1 and 𝜉2 = 𝜔(Ωe −𝜔)∕𝜔2

pe; and Ṽg is the group velocity normalized
by the speed of light c. Ṽ⟂0 is the averaged perpendicular velocity of the source population. It should be noted
that the relation between frequency sweep rate and the wave amplitude has also been recently mentioned by
Demekhov et al. (2017) based on the theory of Trakhtengerts et al. (2004). The first-order cyclotron resonance
condition provides the resonance velocity,

ṼR = 𝜒𝜉(𝜔 − Ωe∕𝛾) =
�̃�2 −

√
�̃�4 + (�̃�2 + Ṽ 2

p )(1 − �̃�2 − Ṽ 2
⟂0)

�̃�2 + Ṽ 2
p

Ṽp. (4)

ṼR is dependent upon V⟂0, because we expressed the Lorentz-factor as 𝛾 = [1 − (V 2
R + V 2

⟂0)∕c2]−1∕2. Ṽp =
Vp∕c is the phase velocity.

Omura and Nunn (2011) found that the frequency change of a rising-tone chorus is due to the nonlinear
correction term in the cold plasma dispersion relation, which is proportional to the component of the reso-
nant current parallel to the wave magnetic field, JB. This gradual deviation in frequency can exist when the
triggering wave amplitude is close to the optimum wave amplitude:

Ω̃w0 = 0.81𝜋−5∕2 Q
𝜏

s1Ṽg

s0�̃�Ũt||
(
�̃�phṼ⟂0𝜒

𝛾

)2

exp

(
−
𝛾2Ṽ 2

R

2Ũ2
t||
)
, (5)

where Q represents the depth of electron hole with typical value 0.5. 𝜏 = TN∕Ttr is the ratio of nonlinear
transition time and nonlinear trapping period, where TN represents the time required for the formation of
nonlinear current. Typical range of 𝜏 = 0.25 − 1 is concluded from theory (Omura & Nunn, 2011), simula-
tion (Hikishima & Omura, 2012), and observation (Kurita et al., 2012). Ũt|| = Ut||∕c is the parallel thermal
momentum of the source population.

The threshold amplitude for the amplification of a chorus element is derived from the consideration that
the temporal growth rate should be positive at the equator (Omura et al., 2009). Waves can only grow when
the optimum amplitude is higher than the threshold amplitude and the triggering wave amplitude exceeds
the threshold amplitude,

JUHÁSZ ET AL. 4128



Journal of Geophysical Research: Space Physics 10.1029/2018JA026337

Ω̃th = 100𝜋3𝛾3𝜉

�̃��̃�4
phṼ 5

⟂0𝜒
5

(
ãs2Ũt||

Q

)2

exp

(
𝛾2Ṽ 2

R

Ũ2
t||

)
, (6)

where s2 = 1
2𝜉𝜒

{
𝛾𝜔

Ωe

(
V⟂0

c

)2
−
[
2 + Λ 𝜒2(Ωe−𝛾𝜔)

Ωe−𝜔

]
VRVp

c2

}
is the coefficient related to the gradient of magnetic

field in the inhomogeneity ratio (equation (10) of Omura et al., 2009); ã = ac2∕Ωe0 = 4.5c2∕(LREΩe0) is the
scale length of the dipole magnetic field. 𝛬 = 𝜔∕𝛺e for inhomogeneous electron density model (𝛬=1 for
constant electron density model).

The nonlinear wave growth is

ΓN =
Q𝜔2

ph

2

(
𝜁

Ωw𝜔

)1∕2 Vg

Ut||
(

V⟂0𝜒

c𝜋𝛾

)
exp

(
−
𝛾2V 2

R

2U2
t||
)
. (7)

To estimate the energetic electron density, we replace the wave amplitude in equation (3) with the optimum
wave amplitude (5):

�̃�ph = 𝜔pe

(
Nh

Nc

)1∕2

=

√√√√𝜕𝜔

𝜕t
𝜋5∕2𝜏

0.324Q
Ũt||
Ṽg

exp

(
𝛾2Ṽ 2

R

2Ũ2
t||
)

𝛾

Ṽ⟂0𝜒
, (8)

giving an upper bound of Nh. In the case of known thermal velocities, the number density of the source pop-
ulation Nh can be derived from 𝜕𝜔∕𝜕t. The relativistic linear growth rate theory provides the estimate of Ũt||
and the average perpendicular velocity V0⟂ =

√
𝜋∕2Vt⟂∕c, where we assume the bi-Maxwellian distribution.

3. Discussion
3.1. Case Studies From EMFISIS Data
On 14 November 2012, the impact of a geomagnetic storm with a minimum Dst ∼ −108 nT was observable
on RBSP A measurements. Chorus emissions were measured by RBSP A EMFISIS instrument from 10 to 13
UT (see Figure 5 a) . (Santolík et al., 2014, analyzed the fine structures of chorus emissions in the consequent
time period, 12–15 UT.) We have selected 16 full, strong chorus emissions from EMFISIS continuous burst
mode wave data (28.6-μs time resolution and ∼ 12-kHz maximum observable frequency; Kletzing et al.,
2013) between 11 and 12 UT. The RBSP spacecraft A was close to the plasmapause (L = 5.42–5.87) in the
dawn sector (MLT = 4.92–5.61) and crossed the magnetic equator (mlat = 0.755–(−0.649)◦).

At that time, the gap at half the gyrofrequency was not formed clearly, and relatively small number of emis-
sions existed. Therefore, we concluded that (a) the satellite was at the generation region and (b) wave-particle
interaction corresponding to the small number of emissions did not affect significantly the particle distri-
bution of the source population . In Figure 2a, three series of rising-tone emissions with large-amplitude ∼
0.1–0.5 nT are shown. The multicomponent wave measurement allows us to estimate the angle between the
direction of propagation and the background magnetic field 𝜃 and the ellipticity and planarity of these emis-
sions by the singular value decomposition method (Santolík et al., 2003). The waves exhibit quasi-parallel
propagation (Figure 2b), high coherence (Figure 2c), and right-hand polarization (Figure 2d). We present
our method through the analysis of the three events in Figure 3.

To estimate the parallel and minimum perpendicular thermal velocities, first we identify the band of
whistler-mode waves corresponding to the linear wave growth. The lower and upper limits of these bands
are 790–1,200, 790–1,265, and 820–1,130 Hz, respectively, indicated by white dashed lines in Figure 2a from
left to right. From EMFISIS measurement (Kurth et al., 2015) we obtain 𝜔pe∕𝛺e ∼ 5.17, 5.46, and 5.41,
respectively. Assuming arbitrary Nh, we search for Ut|| value that produces the maximum linear growth rate
at the mean frequency of the linear wave growth band 𝜔rm. In the knowledge of Ut||, a minimum estimate
for V⟂0 can be calculated from (2) and

Ac =
V 2

t⟂

V 2
t|| − 1 =

(V⟂0∕
√

𝜋

2
)2

(Ut||∕𝛾R)2 − 1. (9)
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Figure 2. Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science-A burst data recorded on 14 November 2012, 11:01:16.67 UT
(first column), 11:14:22.67 UT (second column), and 11:15:58.67 UT (third column). (a) Spectrogram of single-axis (BuBu) magnetic field. White dashed lines
contour the assumed band of linear wave growth. (b) Poynting vector angle 𝜃 with respect to the background geomagnetic field B0. (c) Planarity and (d)
ellipticity (magnetic power spectral density, is greater than ∼ 107 nT2/Hz). Black rectangles indicate the emissions we analyze in detail in section 3.

In Figure 3, we present the results of three emissions selected from Figure 2, plotting frequency sweep rates,
amplitudes, and growth rates. The top row of plots presents the spectrogram, instantaneous frequency (blue
lines), and fitted curves (dashed white lines) of rising-tone emissions. We obtain the instantaneous frequen-
cies of chorus emissions at the zero crossings of the wave magnetic field's perpendicular component with
respect to the background magnetic field. The relation between measured (yellow solid lines) and theoreti-
cal amplitudes are plotted in the middle row of Figure 3: optimum wave amplitudes (blue lines) are in the
same order as the measured amplitudes and have higher value than threshold amplitude (red solid and
dashed lines). Moreover, the observed amplitudes start to grow when they exceed the threshold amplitude.
The nonlinear chorus generation is always triggered by an existing wave, and we assumed that they start
through linear wave-particle interaction. The nonlinear wave growth takes over when the wave amplitude
exceeds the threshold amplitude. The nonlinear wave growth carries on, and the procedure is stabilized
when the amplitude reaches the optimum wave amplitude. These transitions take place within finite time
interval; this is why the amplitude is lower than the optimal one at the beginning of the excitation process.
Although we used 𝜏 = 0.25 and 0.5 for chorus inversion, the optimum amplitude is the same, because a con-
stant value of 𝜕𝜔∕𝜕t determines the product of 𝜏 and Nh∕Nc. Threshold amplitude is the function of Nh∕Nc,
which changes with 𝜏. Therefore, using 𝜏 = 0.5 and 0.25 yields a lower (red solid line) and upper (red dashed
line) estimate of the threshold amplitude. The optimum amplitude of the 14 November 2012, 11:14:24.570
UT event slightly differs from the measured one at higher frequencies: It can be due to overlapping, sepa-
rate upper-band chorus emissions or convective growth. In the bottom row, yellow dashed lines represent
𝜔rm as they cross the linear growth rate curve (dashed red lines) at the maximum. Nonlinear growth rate
(blue solid [𝜏 = 0.5] and dashed [𝜏 = 0.25] lines) is higher than linear growth rate, as it was proposed by
Summers et al. (2013). The frequency range of the linear instability is confined to ∼ 500–1,500 Hz. (We used
𝜏 = 0.25–0.5 instead of 0.25–1 in these plots; because the values of nonlinear growth rate corresponding to
𝜏 = 1 are almost 2 orders higher than linear growth rates, it is difficult to show the changes of the latter one
in the plot.)

The method of chorus inversion is sensitive to the value of 𝜔rm. To obtain the standard deviation of thermal
velocities, the frequencies of lower and upper edge of the band are used. In Figure 4, Vt|| (middle panel) and
Vt⟂ (bottom panel) of the 16 chorus elements are marked with the squares in the middle of the red bars,
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Figure 3. Chorus emissions from 14 November 2012, 11:01:17.986 UT (left column), 14 November 2012, 11:14:24.570 UT (middle column), and 14 November
2012, 11:15:59.202 UT (right column). (top row) The spectrogram, instantaneous frequency (blue lines), and the linear approximation (dashed white lines) of
the emissions. The optimum amplitudes (middle row, blue lines) are of the same order as the measured amplitude (yellow lines) and are not affected by the
change of 𝜏. Threshold amplitudes of 𝜏 = 0.5 and 0.25 are plotted by solid and dotted red lines, respectively. The threshold amplitude does not depend on 𝜏

directly. However, changes of 𝜏 modify Nh∕Nc, which affects the threshold amplitude. (bottom row) Linear growth rate (dashed red line) and wrm (yellow
dashed lines). Nonlinear wave growth rates are plotted by blue solid (𝜏 = 0.5) and dotted (𝜏 = 0.25) lines.

and the vertical extents of the bars represent the standard deviations of Vt|| and Vt⟂. The magnitude of the
standard deviation depends on the width of the linear growth rate band. As the second step, we use the
instantaneous frequencies of chorus emissions. Assuming that the frequency of the main part of the chorus
emissions is a linear function of time, we can approximate the frequency sweep rate 𝜕𝜔∕𝜕t with a constant
value.

When the derived values of Ut||, V⟂0, and 𝜕𝜔∕𝜕t are substituted into (8), Nh∕Nc can be calculated directly.
Note that the replacement of wave amplitude with optimum amplitude leads to an upper estimate of Nh∕Nc.
As we already mentioned, the ratio of nonlinear transition time and nonlinear trapping period 𝜏 could be
between 0.25 and 1; this provides an interval for Nh∕Nc. In the top panel of Figure 4, Nh∕Nc, corresponding
to 𝜏 = 0.25–1, is shown with red error bars and is typically between 0.002 and 0.012. The red square in the
middle of the error bars corresponds to 𝜏 = 0.73, which is the best fit to HOPE data (blue error bars).

3.2. Comparison of Results of the Inversion and In Situ Measurements (HOPE Data)
The HOPE Mass Spectrometer (Funsten et al., 2013) measures the fluxes of electrons and dominant ion
species in the energy range of 1 eV to 50 keV, in 36 logarithmically spaced steps (before September 2013) that
were later modified to 72 log-spaced steps, at an energy resolution 𝛥EFWHM∕E ≈ 0.15. The 4sr field of view
is attained by five polar pixels (consisting of individual detectors) and the spin of the spacecrafts; however,
HOPE data sampling is not spin synchronized. As a result, electron flux data are available as a function of
energy and pitch angle. In this section, we compare the output of the inversion [Nh,Ut||,V⟂0] with those
derived from HOPE measurements, based on the following equations (Wu et al., 2013; Goldstein et al., 2014):

N∗
h = 2𝜋 ∫

𝜋

0 ∫
vmax

vmin

𝑓 (v, 𝛼)v2dv sin 𝛼d𝛼 ≈ 2𝜋
∑
𝑗

∑
i

Ji𝑗

(
2Ei

me

)−1∕2

sin 𝛼𝑗dEid𝛼𝑗, (10)

V∗2
t|| = 2𝜋

3Nh ∫
𝜋

0 ∫
vmax

vmin

v2(cos 𝛼)2𝑓 (v, 𝛼)v2dv sin 𝛼d𝛼

≈

√
2𝜋2

me

1
3Nh

∑
𝑗

∑
i

Ji𝑗(Ei)1∕2 sin 𝛼𝑗cos2𝛼𝑗dEid𝛼𝑗, (11)
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Figure 4. Results of the chorus inversion of the selected 16 chorus emissions (referred to by their date). Nh∕Nc
obtained from HOPE measurements are shown with blue error bars. The result of the inversion for Nh∕Nc is a range
(red) given by the minimum and maximum values of this interval corresponding to 𝜏 = 0.25 and 1, respectively. (top
panel) The best fit of 𝜏 = 0.73 of the inversion to HOPE measurements with red squares. (middle and bottom panel)
Parallel and minimum estimate of perpendicular thermal velocities from the inversion (red) and HOPE (blue) with
error bars. HOPE = Helium Oxygen Proton Electron instrument.

V∗2
t⟂ = 𝜋

3Nh ∫
𝜋

0 ∫
vmax

vmin

v2(sin 𝛼)2𝑓 (v, 𝛼)v2dv sin 𝛼d𝛼

≈

√
𝜋2

2me

1
3Nh

∑
𝑗

∑
i

Ji𝑗(Ei)1∕2 sin 𝛼𝑗sin2𝛼𝑗dEid𝛼𝑗, (12)

where N∗
h , V∗

t||, and V∗
t⟂ are the hot electron density and parallel and perpendicular velocities from HOPE

measurements. f(v, 𝛼) is the hot electron distribution function in the velocity v and pitch angle 𝛼 space. This
theoretical description is substituted with measurable quantities such as flux J, mean energy E, and energy
width dEi of the specific energy channel. Indices i, j represent the given energy channels and pitch angle bin.

To identify the highest and lowest energy channel of the instrument corresponding to the relativistic res-
onance energy of given chorus emissions, namely [vmin, vmax], we employ the expression of Lorentz-factor
from Xiao et al. (1998):

𝛾R =
−1 + (ck∕𝜔r)[{(ck∕𝜔r)2 − 1}(1 + u2

⟂∕c2)(𝜔r∕Ωe)2 + 1]
{(ck∕𝜔r)2 − 1}(𝜔r∕Ωe)

, (13)

where k is the wavenumber and u⟂ is the perpendicular momentum. Here, we substitute the lowest and
half-gyrofrequency value of each chorus emission to 𝜔r , and replace ut⟂ with the average value of perpen-
dicular momentum derived from critical anisotropy and parallel thermal momentum. (Note that the use of
equation (4) gives almost identical result.) The energy range of the comparison is based on the lower band
of the selected chorus emissions.

To determine the standard deviation of N∗
h , V∗

t||, and V∗
t⟂, we consider the neighboring energy channels of

lowest and highest energy channels, altogether six channels, and we use all combinations (nine) to pick up
the minimum, maximum, and mean values.
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Figure 5. (a) Spectrogram of single-axis (BuBu) magnetic field (top panel) measured by Electric and Magnetic Field
Instrument Suite and Integrated Science on board Van Allen Probes spacecraft A between 10 and 13 UT on 14
November 2012. (b) Pitch angle anisotropy map derived from HOPE-A and MAGEIS-A measurements with resonance
energy ranges of the analyzed cases (white lines). (c) Total electron fluxes measured by HOPE-A and MAGEIS-A
(top panel). (d) AE index. HOPE = Helium Oxygen Proton Electron instrument; MagEIS = Magnetic Electron Ion
Spectrometer.

The results of Nh∕Nc
∗, V∗

t||, and V∗
t⟂ derived from HOPE measurements are plotted with light blue squares in

Figure 4; the error bars show the standard deviation. Nh∕N∗
c values derived from HOPE measurements (blue)

are in the range of Nh∕Nc (red error bars) corresponding to 𝜏 = 0.25 and 1 . The normalized root-mean-square
deviation between the HOPE (Nh∕N∗

c ,V∗
t||, and V∗

t⟂) and the theoretical (Nh∕Nc,Vt||, and Vt⟂) values are
Nh∕NcNRMS ∼ 0.13, Vt||NRMS ∼ 0.06, and Vt⟂NRMS ∼ 0.1, respectively.

To affirm our results, we further analyzed anisotropy (Figure 5b), omnidirectional flux (Figure 5c), AE index
(Figure 5d), and wave magnetic data (Figure 5a) in a longer timescale of 10–13 UT. During this time interval,
the spacecraft was flying away from the Earth to higher L shells (4–6) and was moving from the nightside
to the morning sector MLT = 4–6. The pitch angle anisotropy map in the second panel is calculated by the
method of Chen et al. (1999) using both HOPE-A (few electron volts to 50 keV) and MAGEIS-A (15–224 keV)
particle flux measurements. This method allows us to perform a least squares fit to the observed pitch angle
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distributions for a fixed kinetic energy, then calculate the anisotropy from the adjustable parameters of that
function. The anisotropy map shows two strong anisotropic bands; one starts at 100 keV and ends at∼ 35 keV
at 10:55UT, and the other starts below 10 keV and runs parallel with the previous one. In our interpretation
these anisotropic bands are the result of an injection from the plasma sheet, and the plasma was accelerated
in a convective transport from the nightside to the dayside. The more isotropic region between the two bands
is presumably due to wave-particle interaction between electrons in this energy range and chorus emissions
(see top panel). This explanation agrees with the resonance energy ranges of the analyzed chorus emissions:
the upper white line corresponds to the starting frequency of these emissions, the lower one corresponds to
half the gyrofrequency.

4. Summary and Conclusion
A new method is presented to derive Nh,Vt||, and Vt⟂ from the EMFISIS wave measurement only. To extract
these parameters from the wave data, we assumed that (a) the frequency sweep rate of the chorus elements
is proportional to the optimum wave amplitude, (b) the optimum wave amplitude is proportional to the ratio
of density of energetic electrons and cold electron density, and (c) the nonlinear wave growth generation is
anticipated by linear growth rate, which is present on the dynamic spectra as a band of whistler-mode waves
close to the starting frequency of chorus emissions in our cases. Sixteen strong chorus emissions close to
the generation region (magnetic equator) were analyzed. The output data of chorus inversion Nh,Vt||, and
Vt⟂ were compared with the same quantities derived from the HOPE measurements in the energy range of
the relativistic resonance of the selected chorus emissions, showing a good agreement (Nh∕NcNRMS ∼ 0.13,
Vt||NRMS ∼ 0.06, and Vt⟂NRMS ∼ 0.1). The measured amplitudes are consistent with the optimum and thresh-
old amplitudes of nonlinear wave growth theory; the nonlinear growth rate has positive values in the entire
frequency range of chorus emissions, contrary to the prediction of the linear growth rate theory. In the next
step, the method presented here will be extended with chorus emissions recorded on the ground, replac-
ing the in situ wave measurements. This extension requires a suitable chorus propagation model. This way,
the density of the energetic electrons can be estimated from ground data, forming a new complement or
a stand-alone source of these important data (energetic electron density and parallel and perpendicular
thermal velocities: Nh,Vt||, and Vt⟂ ).
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