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A matrix formulation of the Cauer ladder network (CLN) method is derived using the finite element method to clarify the 
mathematical aspects of the CLN method. The CLN method directly yields orthogonal expansions of electric and magnetic fields that 
ensure the equivalence of the Cauer network to the eddy-current field. The CLN method is as exact as the Padé approximation via 
Lanczos (PVL) process but more efficiently provides the circuit parameters and the orthogonal expansion than the PVL. 
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I. INTRODUCTION 
DVANCED power control often requires detailed eddy-
current analyses of electric machines handling thin skin 

depth due to high-frequency switching. The Cauer circuit 
[1][2] is an efficient and exact representation of the eddy-
current field in magnetic sheets and cylinders for a wide 
frequency range, where magnetic and electric fields are 
optimally expanded using orthogonal polynomials.  

The Cauer circuit representation was recently extended to 
describe general eddy-current fields powered by the finite 
element (FE) method. This method is called the Cauer ladder 
network (CLN) method [3][4] and retains a clear physical 
meaning based on the orthogonal function expansion. The 
generality of the CLN method is similar to that of model order 
reduction (MOR) methods; e.g., the Padé approximation via 
the Lanczos (PVL) process [5][6]. The relation between the 
CLN method and other model order reduction methods has not 
yet been clarified because of the physics-based derivation of 
the CLN method.  

This paper derives a matrix formulation of the CLN method 
to clarify mathematical aspects of the CLN method. The 
orthogonality of function expansion is first derived to prove 
the equivalence of the Cauer network and eddy-current field. 
The relation with the Lanczos process and a comparison with 
the PVL method are then presented. 

II. MATRIX-BASED FORMULATION OF THE CLN METHOD 

A. Finite Element Form of the CLN Method  
Using the edge element w1

i and facial element w2
i [7], the 

vector potential A, electric field E and magnetic flux density B 

are represented in FE space as 
 

1 1 2, , curli i i i j ji i ja e b= = = =∑ ∑ ∑A w E w B w A  (1) 

 
where ai and ei are the line integrals of A and E on edge i, and 
bj is the surface integral of B on face j. Variable vectors are 
defined as  
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which satisfies 
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where C is the edge-face incident matrix [7]. The reluctivity 
matrix and conductivity matrix are defined as 
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where Ω is the analysis domain, μ is the permeability and σ is 
the conductivity. The eddy-current field is governed by 
 

T
0 , jω jω= = + = − = −C νb Ka σe j Ce b Ca  (5) 

 
where j0 is the discretized source current density and K is the 
coefficient matrix written as [8] 
 

T=K C vC . (6) 
 
The condition 0 Range( )+ ⊆σe j K  is required to guarantee 
the existence of the K−1 operator. If necessary, a gauge 
condition is imposed to (5). 

The CLN method is described by the recurrence formulae 
below to generate orthogonal basis vectors as 
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where a2n−1 and e2n are orthogonal basis vectors for the vector 
potential and electric field and 
 

T T
2 2 2 2 1 2 1 2 1,n n n n n nλ λ + + += =e σe a Ka . (9) 
 
A unit power source is given to start the CLN procedure. 

For example, if a unit direct voltage is given as the boundary 
condition, the initial condition is given with the electrostatic 
field e0 as  
 

1 00,− = = −a e Gφ  (10) 
 
where φ is the variable vector representing scaler potential and 
G is the node-edge incidence matrix corresponding to the grad 
operator, which satisfies CG = 0. If a unit direct current is 
given as the power input and it imposes current density j0, the 
initial condition is given as  
 

1
0 1 00, −= =e a K j . (11) 
 

For the convenience of discussion, the latter condition is 
included in the former condition by setting 
 

1 0 00,− = =a σe j . (12) 
 

B. Derivation of orthogonality 
The orthogonality of basis vectors is derived by induction as 

follows. The multiplication of (7) and (8) gives 
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From (9), (10), and (13) with n = 0 and k = 1, it holds that 
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It is supposed that 
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From (9), (13) and (15), 
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is obtained. By replacing (k, n) in (13) with (n+1, k), it holds 
that 
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From (9), (15) and (17), 

 
T
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is obtained. The orthogonality below is thus proven by 
induction: 
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where δij is Kronecker’s delta.  

C. Derivation of circuit equations 
Electromagnetic fields are expanded as 

 
2 1 2 1 2 2,n n n nn nI V+ += =∑ ∑a a e e . (20) 

 
The substitution of (20) into (5) gives 
 

2 1 2 1 2 2n n n nn n
I V+ + =∑ ∑K a σ e  (21) 

2 2 2 1 2 1jωn n n nn n
V I + += −∑ ∑C e Ca . (22) 

 
From (22), the electric field is given as 
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where VS is the source voltage. Multiplying (23) by (1/λ2k)σe2k 
and using (7) give 
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From (19) and (24), it holds that 
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Multiplying (21) by − (1/λ2k+1)a2k+1 and using (8) give 
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From (19) and (26), it holds that 
 

2 1 2 2 2 2 2 2 ( 0, 1, ...)k k k k kI V V kλ λ+ + +− = − = . (27) 
 
Equations (26) and (28) represent the Cauer circuit in Fig. 1, 
where R2k = 1 / λ2k and L2k+1 = λ2k+1. 
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Fig. 1.  Cauer circuit. 
 

D. Derivation of the CLN method from circuit equations 
The substitution of (25) and (27) into (21) and (23) results 

in 
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To satisfy (28) and (29) for arbitrary VS, V2n and I2n+1, (7) and 
(8) are required, which confirms the equivalence of the CLN 
and eddy-current field. 

E. Relation with the Lanczos algorithm 
From (7) and (8), three-term recurrence formulae for a2n−1 

and e2n are obtained as 
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where 1 is the unit matrix. By setting  
 

2 2 2 2/ , /n n n n n nλ λ′ ′= =e e j σe , (32) 
 
(31) can be rewritten as a bi-Lanczos process in the form  
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where j’i

Te’j = δij and 
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By setting  
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Fig. 2.  Square iron bar. 
 

 
Fig. 3.  Foster circuit. 

 

 
Fig. 4.  Frequency dependence of admittance Y = IS/VS per unit length. 

 
(30) can be rewritten as another bi-Lanczos process in the 
form  
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where  j”i

Ta’j = δij and 
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The CLN method thus contains two bi-Lanczos processes. In 
contrast, the PVL method consists of one bi-Lanczos process. 
A performance comparison of the CLN method with the PVL 
method is made in the following section. 

III. COMPUTATIONAL RESULTS 
Two simple but illustrative eddy-current problems are 

solved to demonstrate the efficiency and accuracy of the CLN 
method.  

A. Square Iron Bar 
An iron bar with square cross-section [Fig. 2] has 

conductivity of 2 × 106 S/m and permeability of 0.01 H/m. A 
unit electric field is imposed at the surface of the iron bar. The 
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analytical solution is given by Fourier expansion, which is 
represented by the Foster circuit shown in Fig. 3, where the (m, 
n)-th R–L pair corresponds to the (2m−1, 2n−1)-th sinusoidal 
basis function. Fig. 4 compares the frequency dependence of 
admittance per unit length, where the exact solution is given 
by the Foster circuit with 2000 × 2000 R–L pairs. The Cauer 
circuit with only three or six R–L pairs accurately reconstructs 
the wide range of the frequency dependence whereas the 
Foster circuit requires a large number of R–L pairs. 

 

  
Fig. 5.  Iron-cored inductor with dimensions given in millimeters. 
 

B. Iron-cored Inductor 
Fig. 5 illustrates the iron-cored inductor and its analyzed 

domain. A conductor bar with a square cross-section of 4 mm 
× 4 mm has conductivity of 4 × 107 S/m and permeability of 
μ0 = 4π × 10–7 H/m. A bulk-type iron core has permeability of 
1000 μ0 and conductivity of 1 × 106 S/m. The governing 
equation of the eddy-current field is  

 

0div( grad ) ( )
t

ν σ ∂
= − −

∂
AA E  (38) 

 
where E0 = (0, 0, E0) is the imposed electric field in the 
conductor bar. The coil current is given as  
 

0Scoil
( ) dI

t
σ ∂

= − ⋅
∂∫
AE S  (39) 

 
where E0 − ∂A/∂t is the electric field in the conductor bar 
whose cross-section is Scoil. Setting E0 to the unit electric field 
in the conductor, the CLN yields the admittance Y of the 
inductor of 1/4 part per unit length, which gives the relation  
 

0I YE= . (40) 
 

Fig. 6 shows the frequency response of the inductor by 
plotting Re(Y) and inductance L = Im(1/Y)/ω. In the figure, the 
label ‘nL’ means the use of n-pairs of (R0, L1), …, (R2n−2, 
L2n−1) terminated by L2n−1 while the label ‘nR’ means the use 
of n-pairs of R-L and R2n. Both are n-th order CLN 
approximations that require n-times operation of K−1. For 
comparison, the figure also plots the frequency response given 
by the time-dependent FE eddy-current analysis. The CLN 
yields the exact response with low-order approximations.  

For comparison, this subsection also obtains the admittance 
using the PVL method [5][6] setting E0 and I as the input and 

output. The computational cost of eddy-current analysis is 
roughly evaluated by the number of multiplications of K−1. 
The PVL method requires the operation of K−1 once in the first 
step for the initial setting and twice per cycle of the bi-
Lanczos procedure, which means the n-the order PVL 
approximation requires 2n − 1 operations of K−1. The number 
of operations of K−1 are indicated in the parentheses in Figs. 6 
and 7. Fig. 7 shows that the n-th-order PVL method obtains 
almost the same response given by the n-th-order CLN 
terminated with R2n. The benefits of the CLN method are as 
follows. 

(a) For the n-th-order approximation, the CLN method 
requires n operations of K−1 whereas the PVL method requires 
2n − 1 operations. 

(b) The CLN method directly yields circuit parameters 
whereas the PVL method requires an eigen decomposition to 
obtain the circuit parameters. 

(c) The CLN method also directly derives the orthogonal 
expansion (20). 
The magnetic flux distributions due to a1, a3 and a5 are shown 
in Fig. 8. Using expansions (20) with these distributions, the 
CLN method can reconstruct the magnetic and electric fields. 

The time-dependent response is next reconstructed using the 
CLN method for the input of the square waveform of E0 
shown in Fig. 9(a). Fig. 9(b) plots the current waveform, 
where the fourth-order CLN gives a good approximation and 
the eighth-order CLN achieves an exact reconstruction of the 
waveform. Fig. 10 depicts the magnetic flux lines at 10 ms, 
where the fourth- and eighth-order CLNs obtain good 
approximations and the 16-th-order CLN yields exact flux 
lines. 
 

 
Fig. 6.  Frequency dependence obtained using the CLN method: (a) Re(Y) and 
(b) inductance. 
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Fig. 7.  Frequency dependence obtained using the PVL method: (a) Re(Y) and 
(b) inductance. 
 

IV. CONCLUSION 
A matrix formulation of the CLN was derived. Involving 

two Lanczos processes, the CLN method efficiently yields a 
circuit representation equivalent to the eddy-current field. The 
CLN method is as exact as the PVL method and directly 
provides the circuit parameters and the orthogonal expansion 
of the eddy-current field with lower computational cost than 
the PVL method.  
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Fig. 8  Magnetic flux lines corresponding to (a) a1, (b) a3, and (c) a5. 
 

 
 
Fig. 9.  Time-dependent response: (a) imposed electric field and (b) current. 

 

 
Fig. 10.  Magnetic flux lines given by (a) fourth-, (b) eighth-, and (c) 16th-
order CLNs and (d) time-dependent FE analysis. 
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