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Abstract In the stable marriage problem, we are given a set of men, a set of
women, and each person’s preference list. Our task is to find a stable match-
ing, that is, a matching admitting no unmatched (man, woman)-pair each of
which improves the situation by being matched together. It is known that any
instance admits at least one stable matching. In this paper, we consider a nat-
ural extension where k(≥ 2) sets of preference lists Li (1 ≤ i ≤ k) over the
same set of people are given, and the aim is to find a jointly stable matching,
a matching that is stable with respect to all Li. We show that the decision
problem is NP-complete for the following two restricted cases; (1) k = 2 and
each person’s preference list is of length at most four, and (2) k = 4, each
man’s preference list is of length at most three, and each woman’s preference
list is of length at most four. On the other hand, we show that it is solvable
in linear time for any k if each man’s preference list is of length at most two
(women’s lists can be of unbounded length). We also show that if each woman’s
preference lists are same in all Li, then the problem can be solved in linear
time.
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Linear time algorithm
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1 Introduction

In this paper, we focus on the stable marriage problem (Gale and Shapley,
1962) with incomplete preference lists (SMI). An instance I of SMI is a triple
I = (U,W,L), where U and W are the sets of men and women, respectively,
such that |U | = |W |(= n), and L is the set of 2n preference lists, one for each
person. A person p’s preference list in L is denoted by L(p). Each person’s
preference list strictly orders a subset of the members of the opposite gender.
If a person p is included in L(q), we say that p is acceptable to q. If p is
acceptable to q and vice versa, (p, q) is called an acceptable pair.

A matching is a set of acceptable (man, woman)-pairs in which no person
appears more than once. For a matching M , a man m, and a woman w, if
(m,w) ∈ M then we write M(m) = w and M(w) = m. If there is no w
(respectively, m) such that (m,w) ∈ M , we say that m (respectively, w) is
single or unmatched in M . For a matching M , if (i) (m,w) is an acceptable
pair, (ii) m is single in M or prefers w to M(m), and (iii) w is single in M
or prefers m to M(w), then we say that (m,w) is a blocking pair for M in L,
or (m,w) blocks M in L. If there is no blocking pair for M in L, then we say
that M is stable in L. It is well-known that any SMI instance admits at least
one stable matching (Gale and Shapley, 1962).

In this paper, we consider an extension of SMI where two or more sets of
preference lists are given. An instance I of the Stable Marriage problem with k
Incomplete lists (SMkI) is a (k + 2)-tuple I = (U,W,L1, L2, . . . , Lk), where U
and W are the same as above, and each Li is a set of preference lists. It asks if
there exists a matching M that is stable in every Li. We call such a matching
M a jointly stable matching. Let a and b be positive integers. The restriction
of SMkI where the lengths of preference lists of men are at most a and those
of women are at most b is denoted by (a, b)-SMkI. If a (respectively, b) is
∞, it means that the lengths of men’s (respectively, women’s) preference lists
are unbounded. By symmetry of men and women, we assume without loss of
generality that a ≤ b. Note that, since the number of stable matchings grows
exponentially in the size of the input (Irving and Leather, 1986; Gusfield and
Irving, 1989; Thurber, 2002; Karlin et al, 2018), an algorithm of enumerating
all the stable matchings for each Li and computing their intersection is not
polynomial-time bounded.

Besides its theoretical interest, the problem has several applications: Con-
sider a scenario of assigning medical residents to hospitals, where each resi-
dent needs to take training in three fixed clinical departments, e.g., surgery,
pediatrics, and internal medicine, at an assigned hospital. A resident r ranks
hospitals according to her preference, but her ranking of hospitals may differ
depending on clinical departments. As a result, she has three (possibly dif-
ferent) preference lists over hospitals, L1(r) for surgery, L2(r) for pediatrics,
and L3(r) for internal medicine. On the other hand, each clinical department
may have its own criteria for ranking residents, so each hospital h has three
independent preference lists over residents, L1(h) from surgery, L2(h) from
pediatrics, and L3(h) from internal medicine. Clearly a blocking pair in some
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Li may cause dissatisfaction to the corresponding resident and department, so
we want to avoid such an assignment. Another example is a match making of
Judo team competition. Suppose that there are five different weight classes,
and one team consists of five players, one from each class. As a personal pref-
erence, a player p of team T who belongs to the weight class C is interested
in only the players of the same class C, who are potential candidates for
p’s opponent. Therefore, each team has five preference lists corresponding to
weight classes, and a matching avoiding blocking pairs in any class is desirable.
Precisely speaking, the first and the second examples may be suitable to the
Hospitals/Residents and the stable roommates, respectively, but we consider
in this paper the stable marriage model as a first step.

1.1 Our Results

On the negative side, we show that (4, 4)-SMkI for k ≥ 2 and (3, 4)-SMkI
for k ≥ 4 are NP-complete. On the positive side, we show that (2,∞)-SMkI
is solvable in time O(kn) for any k. These results leave the complexities of
(3, 3)-SMkI for k ≥ 2 and (3, ℓ)-SMkI for ℓ ≥ 4 and k = 2, 3 open.

We also show that SMkI (with unbounded-length preference lists) is solv-
able in polynomial time if L1(w) = L2(w) = · · · = Lk(w) holds for every
woman w. This can be thought of as a case where each woman has only one
preference list, and one of its interpretations is a modification of the previous
example of assigning residents to hospitals, where each resident has three pref-
erence lists as above, but each hospital has one preference list determined by
e.g., a personnel director of the hospital, rather than three independent lists
coming from each clinical department.

1.2 Related Work

After publication of the conference version of this paper, we came to be
aware of two closely related works. Aziz et al (2016) consider problems of
finding a matching with the highest stability probability under uncertain cir-
cumstances. Among several problems they consider, the problem “ExistsCer-
tainlyStableMatching”, which asks to determine whether there is a matching
with stability probability 1, under the joint probability model is equivalent to
our SMkI. They focus on complete preference lists and show that SMkI is NP-
complete for k ≥ 16. Their reduction implicitly bounds the length of preference
lists to be at most four; hence they essentially show the NP-completeness of
(4, 4)-SMkI for k ≥ 16. Chen et al (2018) consider similar problems to ours,
where multiple preference lists are given as an input. They introduce three
stability notions and investigate their time complexities. One of their prob-
lems called the globally stable matching problem is equivalent to our SMkI,
and they prove NP-completeness of SMkI (with unbounded-length preference
lists) for k ≥ 2.
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Weems (1999) has introduced the bistable matching problem; given an in-
stance I of the stable marriage problem (where preference lists are complete),
let Î be the instance obtained by reversing the ordering of each preference list
of I. A matching is bistable if it is stable in both I and Î. This is a special case
of SM2I where all the preference lists are complete and L1(p) is a reversed
order of L2(p) for every person p. Weems showed an O(n2)-time algorithm
to find a bistable matching or to report that none exists. Sethuraman and
Teo (2001) showed that the bistable roommates problem can also be solved in
polynomial time. See pages 293–296 of (Manlove, 2013) for a brief survey.

2 NP-completeness

In this section, we show two hardness results.

Theorem 1 For k ≥ 2, (4, 4)-SMkI is NP-complete.

Proof It is easy to see that (4, 4)-SMkI is in NP. In the following, we show
that (4, 4)-SM2I is NP-hard. To show the NP-hardness for general k, one may
simply set L2 = L3 = · · · = Lk in the reduction.

We give a polynomial-time reduction from the well-known NP-complete
problem 3CNF SAT. The definition of 3CNF SAT is as follows. Let x be a
binary variable that takes 1(true) or 0(false). A literal is a variable x or its
negation x. A clause is a disjunction of literals, and a Conjunctive Normal
Form (CNF) formula is a conjunction of clauses. A 3CNF formula is a CNF
formula in which each clause contains at most three literals. An instance of
3CNF SAT is a 3CNF formula f and it asks if there exists an assignment to
variables that makes f true. We may assume without loss of generality that
each clause contains exactly three literals. (If a clause contains less than three
literals, then repeat the same literal.)

Let f be an instance of 3CNF SAT, with variables x1, x2, . . . , xn and clauses
C1, C2, . . . , Cm. We construct an instance I of (4, 4)-SM2I. For each i (1 ≤ i ≤
n), let si be the number of occurrences of the variable xi. For the jth literal of
the variable xi (1 ≤ j ≤ si), we introduce two men ai,j and bi,j and two women
ci,j and di,j . We call them literal men and literal women. For each clause Cℓ,
we introduce nine men ui

ℓ (1 ≤ i ≤ 9) and nine women viℓ (1 ≤ i ≤ 9). We call
them clause men and clause women. Note that there are 15m men and 15m
women in total.

The preference lists of literal people and clause people are given in Figs. 1
and 2, respectively. (Here, for example, the notation “a : b c d” represents
person a’s preference list, where b, c, and d are the first, the second, and the
third choices of a, respectively.)

It might be helpful to see a high-level idea of the reduction before getting
into the full construction of preference lists. For the four literal people
corresponding to the jth literal of xi, we have two choices of matchings,
namely M1

i,j = {(ai,j , ci,j), (bi,j , di,j)} and M0
i,j = {(ai,j , di,j), (bi,j , ci,j)}.

Choosing M1
i,j (M0

i,j , respectively) corresponds to setting the jth occurrence
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L1
ai,j : ci,j di,j ci,j : bi,j ai,j

bi,j : di,j Vi,j ci,j di,j : ai,j Ui,j bi,j

L2
ai,j : ci,j ci,j−1 di,j ci,j : bi,j ai,j+1 ai,j

bi,j : di,j di,j+1 ci,j di,j : ai,j bi,j−1 bi,j

Fig. 1 Preference lists of literal people corresponding to the jth occurrence of the variable
xi (1 ≤ j ≤ si)

L1

u1
ℓ : v1ℓ v2ℓ Dℓ,1 v3ℓ v1ℓ : u2

ℓ u3
ℓ Bℓ,3 u1

ℓ

u2
ℓ : v2ℓ v3ℓ v1ℓ v2ℓ : u3

ℓ u1
ℓ u2

ℓ

u3
ℓ : v3ℓ v1ℓ v2ℓ v3ℓ : u1

ℓ u2
ℓ u3

ℓ

u4
ℓ : v4ℓ v5ℓ Dℓ,2 v6ℓ v4ℓ : u5

ℓ u6
ℓ Bℓ,1 u4

ℓ

u5
ℓ : v5ℓ v6ℓ v4ℓ v5ℓ : u6

ℓ u4
ℓ u5

ℓ

u6
ℓ : v6ℓ v4ℓ v5ℓ v6ℓ : u4

ℓ u5
ℓ u6

ℓ

u7
ℓ : v7ℓ v8ℓ Dℓ,3 v9ℓ v7ℓ : u8

ℓ u9
ℓ Bℓ,2 u7

ℓ

u8
ℓ : v8ℓ v9ℓ v7ℓ v8ℓ : u9

ℓ u7
ℓ u8

ℓ

u9
ℓ : v9ℓ v7ℓ v8ℓ v9ℓ : u7

ℓ u8
ℓ u9

ℓ

L2

u1
ℓ : v1ℓ v4ℓ v2ℓ v3ℓ v1ℓ : u2

ℓ u3
ℓ u7

ℓ u1
ℓ

u2
ℓ : v2ℓ v3ℓ v5ℓ v1ℓ v2ℓ : u3

ℓ u8
ℓ u1

ℓ u2
ℓ

u3
ℓ : v3ℓ v1ℓ v2ℓ v3ℓ : u1

ℓ u2
ℓ u3

ℓ

u4
ℓ : v5ℓ v7ℓ v6ℓ v4ℓ v4ℓ : u4

ℓ u5
ℓ u1

ℓ u6
ℓ

u5
ℓ : v6ℓ v4ℓ v8ℓ v5ℓ v5ℓ : u5

ℓ u2
ℓ u6

ℓ u4
ℓ

u6
ℓ : v4ℓ v5ℓ v6ℓ v6ℓ : u6

ℓ u4
ℓ u5

ℓ

u7
ℓ : v9ℓ v1ℓ v7ℓ v8ℓ v7ℓ : u9

ℓ u7
ℓ u4

ℓ u8
ℓ

u8
ℓ : v7ℓ v8ℓ v2ℓ v9ℓ v8ℓ : u7

ℓ u5
ℓ u8

ℓ u9
ℓ

u9
ℓ : v8ℓ v9ℓ v7ℓ v9ℓ : u8

ℓ u9
ℓ u7

ℓ

Fig. 2 Preference lists of clause people corresponding to the ℓth clause

of xi to 1 (0, respectively). For the 18 people corresponding to the clause Cℓ,
we have three choices of matchings,
M1

ℓ = {(u1
ℓ , v

3
ℓ ), (u

2
ℓ , v

1
ℓ ), (u

3
ℓ , v

2
ℓ ), (u

4
ℓ , v

4
ℓ ), (u

5
ℓ , v

5
ℓ ), (u

6
ℓ , v

6
ℓ ), (u

7
ℓ , v

8
ℓ ), (u

8
ℓ , v

9
ℓ ), (u

9
ℓ , v

7
ℓ )},

M2
ℓ = {(u1

ℓ , v
2
ℓ ), (u

2
ℓ , v

3
ℓ ), (u

3
ℓ , v

1
ℓ ), (u

4
ℓ , v

6
ℓ ), (u

5
ℓ , v

4
ℓ ), (u

6
ℓ , v

5
ℓ ), (u

7
ℓ , v

7
ℓ ), (u

8
ℓ , v

8
ℓ ), (u

9
ℓ , v

9
ℓ )},

and
M3

ℓ = {(u1
ℓ , v

1
ℓ ), (u

2
ℓ , v

2
ℓ ), (u

3
ℓ , v

3
ℓ ), (u

4
ℓ , v

5
ℓ ), (u

5
ℓ , v

6
ℓ ), (u

6
ℓ , v

4
ℓ ), (u

7
ℓ , v

9
ℓ ), (u

8
ℓ , v

7
ℓ ), (u

9
ℓ , v

8
ℓ )},

depicted in Figs. 5, 6, and 7, respectively, in Appendix A. Choosing M1
ℓ ,

M2
ℓ , and M3

ℓ , respectively, corresponds to satisfying Cℓ by its first, second,
and third literal. Note then that main conditions for CNF SAT are (1) the
jth occurrence of xi must have the same value for all j, and (2) each Cℓ is
satisfied if and only if at least one of its literals is true. To simulate these
conditions by (4, 4)-SM2I, we connect gadgets using some men and women in
such a way that if some illegal choices of partial matchings are made, then
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there arises a blocking pair. The persons at the second position of L2 in Fig. 1
exist for condition (1). They come from the literal gadgets corresponding to
the (j − 1)th and the (j + 1)th occurrences of the same variable xi, and play
a role of connecting literal gadgets like a chain, so that if M1

i,j1
and M0

i,j2
are chosen for some j1 and j2, then there arises a blocking pair. Two persons
Vi,j and Ui,j in L1 of Fig. 1 and six persons Dℓ,t and Bℓ,t (t = 1, 2, 3) in L1

of Fig. 2 exist for condition (2). They are placed in such a way that if (i)
we attempt to satisfy Cℓ by its tth literal (i.e., M t

ℓ is chosen), but (ii) the
assignment to this literal is 0 by the choice in the literal gadget side, then
there arises a blocking pair.

Now we formally explain how to construct preference lists. In ai,1 and di,1’s
preference lists of L2 in Fig. 1, ci,j−1 and bi,j−1 are null; hence their preference
lists are of length two. Similarly, in bi,si and ci,si ’s preference lists of L2, di,j+1

and ai,j+1 are null. We then explain Ui,j and Vi,j in Fig. 1. Suppose that the
jth occurrence of xi is the tth literal of the clause Cℓ. If this literal is positive,
then Ui,j is null and Vi,j = v4ℓ if t = 1, Vi,j = v7ℓ if t = 2, and Vi,j = v1ℓ if t = 3.
If it is negative, then Vi,j is null and Ui,j = u1

ℓ if t = 1, Ui,j = u4
ℓ if t = 2,

and Ui,j = u7
ℓ if t = 3. Finally, we explain Bℓ,1, Bℓ,2, Bℓ,3, Dℓ,1, Dℓ,2, and Dℓ,3

in Fig. 2. Suppose that, for t = 1, 2, 3, the tth literal of the clause Cℓ is the
jth occurrence of xi. If this literal is positive, then Dℓ,t is null and Bℓ,t = bi,j ;
otherwise, Bℓ,t is null and Dℓ,t = di,j . Now the reduction is completed. It is
not hard to see that the reduction can be performed in polynomial time and
each person’s preference list is of length at most four.

We then proceed to the correctness proof. Suppose that f is satisfiable and
let T be a satisfying assignment. We will construct a jointly stable matching
M for I. For each i, if T (xi) = 1, then we let M1

i,j ⊆ M for all j, and if

T (xi) = 0, then we let M0
i,j ⊆ M for all j. For each ℓ, suppose that the clause

Cℓ is satisfied by its tth literal (if there are more than one true literal, choose
one arbitrarily). Then we let M t

ℓ ⊆ M . We next show that M is jointly stable.

Lemma 1 The matching M constructed as above is jointly stable.

Proof Consider literal people corresponding to xi, namely ai,j , bi,j , ci,j , and
di,j (1 ≤ j ≤ si). If T (xi) = 1, then all the men are matched with their
first choices in both L1 and L2. Similarly, if T (xi) = 0, then all the women
are matched with their first choices. Therefore, no blocking pair arises within
literal people corresponding to the same variable. Since literal people corre-
sponding to different variables are unacceptable to each other, no blocking
pair occurs between them.

As for the 18 people corresponding to the clause Cℓ, we can easily verify
that, in any of M1

ℓ , M
2
ℓ , and M3

ℓ , no blocking pair arises among them by inves-
tigating Figs. 5, 6, and 7. Also, since clause people corresponding to different
clauses are unacceptable to each other, no blocking pair occurs between them.

Finally, we consider a possibility of a blocking pair between a literal person
and a clause person. Consider a clause Cℓ. First, suppose that M

1
ℓ is chosen as

a part of M . By construction of M , this means that the clause Cℓ is satisfied
by its first literal. Suppose that this literal is the jth occurrence of xi, and
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that it is a positive literal. Then by construction of preference lists, Dℓ,1 is null
and Bℓ,1 = bi,j , so only the possible blocking pair is (bi,j , vℓ,4) in L1. However,
since Cℓ is satisfied by the first literal, it must be the case that T (xi) = 1. By
construction of M , M1

i,j ⊆ M and hence bi,j is matched with his first choice
woman in L1, so he cannot form a blocking pair. Now suppose that the first
literal of Cℓ is the jth occurrence of xi and it is a negative literal. Then Bℓ,1

is null and Dℓ,1 = di,j , so only the possible blocking pair is (uℓ,1, di,j) in L1.
However, since Cℓ is satisfied by the first literal, we have that T (xi) = 0 and
hence di,j is matched with her first choice man in L1, so di,j cannot form a
blocking pair. For the other two cases, that is, the case that M2

ℓ is chosen and
that M3

ℓ is chosen, we can show that there is no blocking pair by a similar
argument. □

Conversely, suppose that I admits a jointly stable matching M . We con-
struct a satisfying assignment T of f . First, we see basic properties of M .

Lemma 2 For each i, either M1
i,j ⊆ M for all j, or M0

i,j ⊆ M for all j.

Proof We first show that, for each i and j, either M1
i,j ⊆ M or M0

i,j ⊆ M .
Suppose not. Since ci,j and di,j are the only acceptable men to ai,j and bi,j in
L1 and L2 in common, at least one of ai,j and bi,j , say mi,j , is single in M .
For the same reason, at least one of ci,j and di,j , say wi,j , is single in M . Then
(mi,j , wi,j) blocks M (in both L1 and L2), a contradiction.

Now suppose that the statement of the lemma is false. Then there are i and
j (1 ≤ j ≤ si − 1) such that (i) M1

i,j ⊆ M and M0
i,j+1 ⊆ M or (ii) M0

i,j ⊆ M

and M1
i,j+1 ⊆ M . In case of (i), (ai,j+1, ci,j) blocks M in L2, while in case of

(ii), (bi,j , di,j+1) blocks M in L2, a contradiction. □
Lemma 3 For each ℓ, either M1

ℓ ⊆ M , M2
ℓ ⊆ M , or M3

ℓ ⊆ M .

Proof Suppose that there is a man mℓ ∈ {u1
ℓ , u

2
ℓ , u

3
ℓ} who is not matched with

any of v1ℓ , v
2
ℓ , and v3ℓ in M . Note that Dℓ,1 is a literal woman (if not null),

who is not acceptable to u1
ℓ in L2. Hence it must be the case that mℓ is single

in M . By a similar argument, there is a woman wℓ ∈ {v1ℓ , v2ℓ , v3ℓ} who is single
in M . Then (mℓ, wℓ) blocks M in L1 and L2, a contradiction. Therefore, u1

ℓ ,
u2
ℓ , and u3

ℓ are matched with v1ℓ , v
2
ℓ , and v3ℓ in M . There are six possible ways,

namely,

X1
ℓ = {(u1

ℓ , v
1
ℓ ), (u

2
ℓ , v

2
ℓ ), (u

3
ℓ , v

3
ℓ )}, X2

ℓ = {(u1
ℓ , v

2
ℓ ), (u

2
ℓ , v

3
ℓ ), (u

3
ℓ , v

1
ℓ )},

X3
ℓ = {(u1

ℓ , v
3
ℓ ), (u

2
ℓ , v

1
ℓ ), (u

3
ℓ , v

2
ℓ )}, X4

ℓ = {(u1
ℓ , v

1
ℓ ), (u

2
ℓ , v

3
ℓ ), (u

3
ℓ , v

2
ℓ )},

X5
ℓ = {(u1

ℓ , v
2
ℓ ), (u

2
ℓ , v

1
ℓ ), (u

3
ℓ , v

3
ℓ )}, and X6

ℓ = {(u1
ℓ , v

3
ℓ ), (u

2
ℓ , v

2
ℓ ), (u

3
ℓ , v

1
ℓ )}.

It is easy to see that X4
ℓ is blocked by (u3

ℓ , v
1
ℓ ), X

5
ℓ is blocked by (u2

ℓ , v
3
ℓ ), and

X6
ℓ is blocked by (u1

ℓ , v
2
ℓ ) in L1. Therefore, only X1

ℓ , X
2
ℓ , and X3

ℓ can be a part
of M . The same argument applies to u4

ℓ , u
5
ℓ , u

6
ℓ , v

4
ℓ , v

5
ℓ , v

6
ℓ and u7

ℓ , u
8
ℓ , u

9
ℓ , v

7
ℓ ,

v8ℓ , v
9
ℓ , implying that only

Y 1
ℓ = {(u4

ℓ , v
4
ℓ ), (u

5
ℓ , v

5
ℓ ), (u

6
ℓ , v

6
ℓ )}, Y 2

ℓ = {(u4
ℓ , v

5
ℓ ), (u

5
ℓ , v

6
ℓ ), (u

6
ℓ , v

4
ℓ )},

Y 3
ℓ = {(u4

ℓ , v
6
ℓ ), (u

5
ℓ , v

4
ℓ ), (u

6
ℓ , v

5
ℓ )}, Z1

ℓ = {(u7
ℓ , v

7
ℓ ), (u

8
ℓ , v

8
ℓ ), (u

9
ℓ , v

9
ℓ )},

Z2
ℓ = {(u7

ℓ , v
8
ℓ ), (u

8
ℓ , v

9
ℓ ), (u

9
ℓ , v

7
ℓ )}, and Z3

ℓ = {(u7
ℓ , v

9
ℓ ), (u

8
ℓ , v

7
ℓ ), (u

9
ℓ , v

8
ℓ )}
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Matching BP Matching BP Matching BP

X1
ℓ ∪ Y 1

ℓ ∪ Z1
ℓ (u7

ℓ , v
1
ℓ ) X2

ℓ ∪ Y 1
ℓ ∪ Z1

ℓ (u5
ℓ , v

8
ℓ ) X3

ℓ ∪ Y 1
ℓ ∪ Z1

ℓ (u5
ℓ , v

8
ℓ )

X1
ℓ ∪ Y 1

ℓ ∪ Z2
ℓ (u7

ℓ , v
1
ℓ ) X2

ℓ ∪ Y 1
ℓ ∪ Z2

ℓ (u8
ℓ , v

2
ℓ ) X3

ℓ ∪ Y 1
ℓ ∪ Z2

ℓ –

X1
ℓ ∪ Y 1

ℓ ∪ Z3
ℓ (u4

ℓ , v
7
ℓ ) X2

ℓ ∪ Y 1
ℓ ∪ Z3

ℓ (u5
ℓ , v

8
ℓ ) X3

ℓ ∪ Y 1
ℓ ∪ Z3

ℓ (u5
ℓ , v

8
ℓ )

X1
ℓ ∪ Y 2

ℓ ∪ Z1
ℓ (u7

ℓ , v
1
ℓ ) X2

ℓ ∪ Y 2
ℓ ∪ Z1

ℓ (u1
ℓ , v

4
ℓ ) X3

ℓ ∪ Y 2
ℓ ∪ Z1

ℓ (u1
ℓ , v

4
ℓ )

X1
ℓ ∪ Y 2

ℓ ∪ Z2
ℓ (u7

ℓ , v
1
ℓ ) X2

ℓ ∪ Y 2
ℓ ∪ Z2

ℓ (u1
ℓ , v

4
ℓ ) X3

ℓ ∪ Y 2
ℓ ∪ Z2

ℓ (u1
ℓ , v

4
ℓ )

X1
ℓ ∪ Y 2

ℓ ∪ Z3
ℓ – X2

ℓ ∪ Y 2
ℓ ∪ Z3

ℓ (u1
ℓ , v

4
ℓ ) X3

ℓ ∪ Y 2
ℓ ∪ Z3

ℓ (u1
ℓ , v

4
ℓ )

X1
ℓ ∪ Y 3

ℓ ∪ Z1
ℓ (u7

ℓ , v
1
ℓ ) X2

ℓ ∪ Y 3
ℓ ∪ Z1

ℓ – X3
ℓ ∪ Y 3

ℓ ∪ Z1
ℓ (u2

ℓ , v
5
ℓ )

X1
ℓ ∪ Y 3

ℓ ∪ Z2
ℓ (u7

ℓ , v
1
ℓ ) X2

ℓ ∪ Y 3
ℓ ∪ Z2

ℓ (u8
ℓ , v

2
ℓ ) X3

ℓ ∪ Y 3
ℓ ∪ Z2

ℓ (u2
ℓ , v

5
ℓ )

X1
ℓ ∪ Y 3

ℓ ∪ Z3
ℓ (u4

ℓ , v
7
ℓ ) X2

ℓ ∪ Y 3
ℓ ∪ Z3

ℓ (u4
ℓ , v

7
ℓ ) X3

ℓ ∪ Y 3
ℓ ∪ Z3

ℓ (u2
ℓ , v

5
ℓ )

Table 1 27 matchings and corresponding blocking pairs in L2

are valid.
Therefore, there are 27 possible combinations. Note that M1

ℓ = X3
ℓ ∪ Y 1

ℓ ∪
Z2
ℓ , M

2
ℓ = X2

ℓ ∪Y 3
ℓ ∪Z1

ℓ , and M3
ℓ = X1

ℓ ∪Y 2
ℓ ∪Z3

ℓ . We show that the remaining
24 matchings are unstable in L2. Table 1 shows 27 matchings in “Matching”
columns and corresponding blocking pairs of 24 matchings in “BP” columns.
This completes the proof. □

By Lemma 2, either M1
i,j ⊆ M for all j or M0

i,j ⊆ M for all j holds. In the
former case, we set T (xi) = 1, otherwise, we set T (xi) = 0. We show that T
satisfies f . Suppose not, and let Cℓ be an unsatisfied clause. For t = 1, 2, 3, let
the tth literal of Cℓ be the jtth occurrence of the variable xit . We will show
three claims:

Claim 1. M1
ℓ ̸⊆ M . Consider the first literal of Cℓ. Suppose that it appears

positively in Cℓ. Then by construction of the preference lists, the lists of bi1,j1
and v4ℓ in L1 are as follows:

bi1,j1 : di1,j1 v4ℓ ci1,j1 v4ℓ : u5
ℓ u6

ℓ bi1,j1 u4
ℓ

Since Cℓ is unsatisfied, T (xi1) = 0 and so by construction of T , M0
i1,j1

⊆ M ,

i.e., M(bi1,j1) = ci1,j1 . If M
1
ℓ ⊆ M , then M(v4ℓ ) = u4

ℓ and hence (bi1,j1 , v
4
ℓ )

blocks M in L1, a contradiction.
Next, suppose that the first literal of Cℓ is negative, i.e., xi1 . Then by

construction, the preference lists of di1,j1 and u1
ℓ in L1 are as follows:

u1
ℓ : v1ℓ v2ℓ di1,j1 v3ℓ di1,j1 : ai1,j1 u1

ℓ bi1,j1

Since Cℓ is unsatisfied, T (xi1) = 1 and so by construction of T , M1
i1,j1

⊆ M ,

i.e., M(di1,j1) = bi1,j1 . If M
1
ℓ ⊆ M , then M(u1

ℓ) = v3ℓ and hence (u1
ℓ , di1,j1)

blocks M in L1, a contradiction. Therefore, we can conclude that M1
ℓ ̸⊆ M .

Claim 2. M2
ℓ ̸⊆ M . Consider the second literal of Cℓ, and first suppose that

it is a positive literal, i.e., xi2 . Then by construction, the preference lists of
bi2,j2 and v7ℓ in L1 are as follows:
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bi2,j2 : di2,j2 v7ℓ ci2,j2 v7ℓ : u8
ℓ u9

ℓ bi2,j2 u7
ℓ

Since Cℓ is unsatisfied, T (xi2) = 0 and hence by construction of T ,M0
i2,j2

⊆ M ,

i.e., M(bi2,j2) = ci2,j2 . If M
2
ℓ ⊆ M , then M(v7ℓ ) = u7

ℓ and hence (bi2,j2 , v
7
ℓ )

blocks M in L1, a contradiction.
Next, suppose that the second literal of Cℓ is xi2 . Then by construction,

the preference lists of di2,j2 and u4
ℓ in L1 are as follows:

u4
ℓ : v4ℓ v5ℓ di2,j2 v6ℓ di2,j2 : ai2,j2 u4

ℓ bi2,j2

Since Cℓ is unsatisfied, T (xi2) = 1 and by construction of T , M1
i2,j2

⊆ M , i.e.,

M(di2,j2) = bi2,j2 . If M
2
ℓ ⊆ M , then M(u4

ℓ) = v6ℓ and hence (u4
ℓ , di2,j2) blocks

M in L1, a contradiction. Therefore, we can conclude that M2
ℓ ̸⊆ M .

Claim 3. M3
ℓ ̸⊆ M . Consider the third literal of Cℓ. First, suppose that it

is a positive literal xi3 . Then by construction, the preference lists of bi3,j3 and
v1ℓ in L1 are as follows:

bi3,j3 : di3,j3 v1ℓ ci3,j3 v1ℓ : u2
ℓ u3

ℓ bi3,j3 u1
ℓ

Since Cℓ is unsatisfied, T (xi3) = 0 and thus by construction of T , M0
i3,j3

⊆ M ,

i.e., M(bi3,j3) = ci3,j3 . If M
3
ℓ ⊆ M , then M(v1ℓ ) = u1

ℓ and hence (bi3,j3 , v
1
ℓ )

blocks M in L1, a contradiction.
Next, suppose that the third literal of Cℓ is negative, i.e., xi3 . Then by

construction, the preference lists of di3,j3 and u7
ℓ in L1 are as follows:

u7
ℓ : v7ℓ v8ℓ di3,j3 v9ℓ di3,j3 : ai3,j3 u7

ℓ bi3,j3

Since Cℓ is unsatisfied, T (xi3) = 1 and by construction of T , M1
i3,j3

⊆ M , i.e.,

M(di3,j3) = bi3,j3 . If M
3
ℓ ⊆ M , then M(u7

ℓ) = v9ℓ and hence (u7
ℓ , di3,j3) blocks

M in L1, a contradiction. Therefore, we can conclude that M3
ℓ ̸⊆ M .

From Claims 1, 2, and 3, none of M1
ℓ , M

2
ℓ , and M3

ℓ can be a part of M ,
but this contradicts Lemma 3. Hence we conclude that T satisfies f , which
completes the proof of Theorem 1. □

By modifying the reduction in the proof of Theorem 1, we can show the
NP-completeness of another restricted case.

Theorem 2 For k ≥ 4, (3, 4)-SMkI is NP-complete.

Proof We assume that the readers have read the proof of Theorem 1, and give
only a proof sketch. It is easy to see that (3, 4)-SMkI is in NP. It suffices to show
the NP-hardness of (3, 4)-SM4I, and to achieve this, we give a polynomial-time
reduction from 3CNF SAT.

Let f be an instance of 3CNF SAT, consisting of variables x1, x2, . . . , xn

and clauses C1, C2, . . . , Cm. We construct an instance I of (3, 4)-SM4I. For
each i (1 ≤ i ≤ n), let si be the number of occurrences of the variable xi. For
the jth literal of the variable xi (1 ≤ j ≤ si), we introduce two literal men ai,j
and bi,j and two literal women ci,j and di,j . For each clause Cℓ, we introduce
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Lk(1 ≤ k ≤ 3)
ai,j : ci,j di,j ci,j : bi,j ai,j

bi,j : di,j V k
i,j ci,j di,j : ai,j bi,j

(when the jth literal of xi is positive)

Lk(1 ≤ k ≤ 3)
ai,j : di,j ci,j ci,j : ai,j bi,j

bi,j : ci,j V k
i,j di,j di,j : bi,j ai,j

(when the jth literal of xi is negative)

L4
ai,j : ci,j ci,j−1 di,j ci,j : bi,j ai,j+1 ai,j

bi,j : di,j di,j+1 ci,j di,j : ai,j bi,j−1 bi,j

Fig. 3 Preference lists of literal people corresponding to the jth occurrence of the variable
xi (1 ≤ j ≤ si)

three clause men ui
ℓ (1 ≤ i ≤ 3) and three clause women viℓ (1 ≤ i ≤ 3). Note

that there are 9m men and 9m women in total.

The preference lists of literal people are given in Fig. 3. As in the
previous proof, their lists restrict a part of stable matchings to M1

i,j =

{(ai,j , ci,j), (bi,j , di,j)} and M0
i,j = {(ai,j , di,j), (bi,j , ci,j)}. The structures of

L1 through L3 depend on whether the corresponding literal (i.e., the jth oc-
currence of xi) is positive or negative. If it is positive, then selecting M0

i,j

matches the man bi,j to the worse partner, which yields the risk of bi,j form-
ing a blocking pair with V k

i,j , while if it is negative, then selecting M1
i,j does

so. Suppose that the jth occurrence of xi is the tth literal of the clause Cℓ.
Then V k

i,j is defined as v1ℓ if k = t and it is null if k ̸= t. L4 is the same as L2

in Fig. 1, whose role is to ensure that for each i, either M1
i,j ⊆ M for all j, or

M0
i,j ⊆ M for all j, as was shown in Lemma 2.

The preference lists of clause people are given in Fig. 4. The role of L4

is to restrict a part of stable matchings to M1
ℓ = {(u1

ℓ , v
1
ℓ ), (u

2
ℓ , v

2
ℓ ), (u

3
ℓ , v

3
ℓ )},

M2
ℓ = {(u1

ℓ , v
2
ℓ ), (u

2
ℓ , v

3
ℓ ), (u

3
ℓ , v

1
ℓ )}, and M3

ℓ = {(u1
ℓ , v

3
ℓ ), (u

2
ℓ , v

1
ℓ ), (u

3
ℓ , v

2
ℓ )}. Sup-

pose that, for t = 1, 2, 3, the tth literal of the clause Cℓ is the jth occurrence of
xi. Then Bℓ,t is defined as bi,j . Now the reduction is completed. It is not hard
to see that the reduction can be performed in polynomial time and each man’s
(woman’s) preference list is of length at most three (at most four, respectively).

Finally, we briefly explain the correctness of the reduction. Suppose that f
is satisfiable and let T be a satisfying assignment. We will construct a jointly
stable matching M for I as follows: For each i, if T (xi) = 1, then we let
M1

i,j ⊆ M for all j, and if T (xi) = 0, then we let M0
i,j ⊆ M for all j. For each

ℓ, if the clause Cℓ is satisfied by its tth literal, then we let M t
ℓ ⊆ M . It is not

hard to see that M is jointly stable.

Conversely, suppose that I admits a jointly stable matching M . We con-
struct a satisfying assignment T of f in a straightforward manner. That is,
we know that for each i, M1

i,j ⊆ M for all j, or M0
i,j ⊆ M for all j. In the
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L1

u1
ℓ : v1ℓ v2ℓ v3ℓ v1ℓ : u2

ℓ u3
ℓ Bℓ,1 u1

ℓ

u2
ℓ : v2ℓ v3ℓ v1ℓ v2ℓ : u3

ℓ u1
ℓ u2

ℓ

u3
ℓ : v3ℓ v1ℓ v2ℓ v3ℓ : u1

ℓ u2
ℓ u3

ℓ

L2

u1
ℓ : v3ℓ v1ℓ v2ℓ v1ℓ : u3

ℓ u1
ℓ Bℓ,2 u2

ℓ

u2
ℓ : v1ℓ v2ℓ v3ℓ v2ℓ : u1

ℓ u2
ℓ u3

ℓ

u3
ℓ : v2ℓ v3ℓ v1ℓ v3ℓ : u2

ℓ u3
ℓ u1

ℓ

L3

u1
ℓ : v2ℓ v3ℓ v1ℓ v1ℓ : u1

ℓ u2
ℓ Bℓ,3 u3

ℓ

u2
ℓ : v3ℓ v1ℓ v2ℓ v2ℓ : u2

ℓ u3
ℓ u1

ℓ

u3
ℓ : v1ℓ v2ℓ v3ℓ v3ℓ : u3

ℓ u1
ℓ u2

ℓ

L4

u1
ℓ : v1ℓ v2ℓ v3ℓ v1ℓ : u2

ℓ u3
ℓ u1

ℓ

u2
ℓ : v2ℓ v3ℓ v1ℓ v2ℓ : u3

ℓ u1
ℓ u2

ℓ

u3
ℓ : v3ℓ v1ℓ v2ℓ v3ℓ : u1

ℓ u2
ℓ u3

ℓ

Fig. 4 Preference lists of clause people corresponding to the ℓth clause

former case, we set T (xi) = 1, whereas in the latter case, we set T (xi) = 0. In
a similar way as the proof of Theorem 1, we can observe that T satisfies f . □

In the above reductions, we have exploited existence of pairs that are ac-
ceptable in some Li but not in Lj (j ̸= i). Then one may be curious about
whether SMkI is solvable in polynomial time if the set of acceptable pairs is
the same in all Li. However, this is unlikely, as shown in the following corol-
lary. Let SMk denote the special case of SMkI where all the preference lists
are complete. Clearly SMk satisfies the above mentioned condition.

Corollary 1 For k ≥ 2, SMk is NP-complete.

Proof Apparently SMk ∈ NP. For the NP-hardness, in the reduction given in
the proof of Theorem 1, make every preference list complete by appending
missing persons to the tail of the list in an arbitrary order. It is not hard to
see that the same correctness proof (with slight modifications) applies. □

3 Tractable Cases

3.1 Length–Two Preferences Lists of One Side

Our first positive result is for instances in which the length of preference lists
of one side, say men’s side, is bounded by two. In this subsection, we assume
without loss of generality that acceptability is mutual, i.e., m is acceptable
to w in Li if and only if w is acceptable to m in Li. This is because, if for
example m is acceptable to w while w is not acceptable to m, then (m,w) can
neither be a part of a matching nor a blocking pair. Hence we may remove
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m from w’s list safely, without changing the set of jointly stable matchings.
This preprocessing can be done in time linear in the total length of the input
preference lists.

However, even if (m,w) is an acceptable pair in Li but is an unacceptable
pair in Lj (j ̸= i), we must not remove m and w from each other’s list in Li.
This is because, although (m,w) cannot be a pair in a jointly stable matching,
it may block some matching in Li and removing it may change the set of
jointly stable matchings.

The proof of Theorem 3 exploits a partially-ordered set (poset) of rota-
tions and its relation to the whole set of stable matchings. These structural
properties were originally studied for complete preference lists, but they can
be extended easily and naturally to incomplete preference lists. Here we give
brief explanations about them. See (Gusfield and Irving, 1989) for more de-
tail. Readers who are familiar with these notions may skip the following two
paragraphs.

Let I be an instance of SMI and M be a stable matching for I. For a
man m matched in M , sM (m) denotes the first woman w in m’s list such
that w is matched in M and w prefers m to M(w). Note that m prefers
M(m) to sM (m); otherwise, (m, sM (m)) blocks M . Also, nextM (m) denotes
the partner of sM (m) in M , that is, nextM (m) = M(sM (m)). Let ρ =
(m0, w0), (m1, w1), . . . , (mr−1, wr−1) (r ≥ 2) be a sequence of pairs such that
each pair in ρ is contained inM andmi+1 = nextM (mi) for each i, where i+1 is
taken modulo r. Then we call ρ a rotation exposed in M . By eliminating a rota-
tion ρ from M , we mean to replace pairs (m0, w0), (m1, w1), . . . , (mr−1, wr−1)
by (m0, w1), (m1, w2), . . . , (mr−1, w0) in M . The resulting matching, denoted
by M/ρ, is also stable in I. Note that each man included in ρ has a worse
partner in M/ρ than in M .

Let Π be the set of rotations that are exposed in one or more stable match-
ings for I. We can define a partial order ⪯ on Π, and (Π,⪯) is called the
rotation poset of I. A subset P ⊆ Π is called a closed subset of Π if for any
ρ ∈ P and any ρ′ ⪯ ρ, ρ′ ∈ P holds. There is a one-to-one correspondence be-
tween the stable matchings for I and the closed subsets of Π by the mapping
defined as follows. Let M0 be the man-optimal stable matching of I (which
is guaranteed to exist and can be found by the men-oriented Gale-Shapley
algorithm in time linear in the total length of preference lists). Let P be a
closed subset of Π. If we eliminate rotations in P one by one according to the
order ⪯, we obtain a stable matching for I. Conversely, any stable matching
for I is obtained by this procedure for some closed subset of Π. In particular,
the empty set corresponds to the man-optimal stable matching and the whole
set Π corresponds to the woman-optimal stable matching (which is the oppo-
site extreme to the man-optimal stable matching). The rotation poset can be
constructed in time linear in the total length of preference lists (Sec. 3.3 of
(Gusfield and Irving, 1989)).

Theorem 3 (2,∞)-SMkI is solvable in time O(kn).
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Proof We first compute the man-optimal stable matchings Mi for Li (i =
1, 2, . . . , k) using the men-oriented version of the Gale-Shapley algorithm. For
each Li, any stable matching leaves the same set of men and women unmatched
(Gale and Sotomayor, 1985). Thus if there are i and j (i ̸= j) such that the set
of matched people in Mi and that in Mj are different, then we can immediately
answer “no”. In the following, we assume that the sets of matched people are
the same in all Mi.

For each i, we compute all the rotations ρi1, ρ
i
2, . . . , ρ

i
ni

with respect to
Li. Since the length of each man’s preference list is at most two, each man
is contained in at most one rotation. This means that all the rotations are
mutually incomparable in the rotation poset. Hence there is a one-to-one cor-
respondence between the set of stable matchings for Li and the power set of
{ρi1, ρi2, . . . , ρini

}: the subset S ⊆ {ρi1, ρi2, . . . , ρini
} corresponds to the stable

matching Mi,S obtained by eliminating all the rotations in S from Mi. Con-
sider a man m who is matched in Mi. If m is not included in a rotation, his
partner is the same in all the stable matchings of Li. If he is included in a
rotation ρij , then he is matched in Mi,S with his first choice if ρij ̸∈ S and with

his second choice if ρij ∈ S.

The remaining task is to check if there are k subsets Si ⊆ {ρi1, ρi2, . . . , ρini
}

(1 ≤ i ≤ k) such that M1,S1 = M2,S2 = · · · = Mk,Sk
. For this purpose, we

introduce a binary variable xi
j for ρij (1 ≤ i ≤ k, 1 ≤ j ≤ ni), where xi

j = 1

means to put ρij in Si. We then construct a 2CNF SAT instance as follows.

For each man m who is matched in M1 (and equivalently in all Mi), we
fix the value of variables or construct 2CNF clauses to ensure that m’s part-
ners coincide in all M1,S1

,M2,S2
, . . . ,Mk,Sk

. If (m,w) is a pair in some stable
matching of L, w is called m’s stable partner in L. Also, if w is m’s stable
partner in all Li, w is called m’s jointly stable partner. If m has no jointly
stable partner, we immediately output “no”. If m has one jointly stable part-
ner w, then for each i, we enforce the variable (if any) to match m with w
in Mi,Si

. Namely, if m is not included in a rotation, then there is no variable
and we do nothing. If m is included in a rotation ρij and w is his first (second)

choice in Li, then we set xi
j = 0 (xi

j = 1). During this course, if some variable
is fixed differently, then we immediately output “no”. Finally, suppose that m
has two jointly stable partners w′ and w′′. This means that for each i, Li(m)
contains both w′ and w′′ and m is included in a rotation of Li. Let ρiji be
the rotation that includes m. For each i = 2, . . . , k, we construct two clauses
as follows: If the orders of w′ and w′′ are same in L1(m) and Li(m), then we

construct (x1
j1
∨ xi

ji
) and (x1

j1
∨ xi

ji
); these two clauses force x1

j1
= xi

ji
, mean-

ing that inclusion of ρ1j1 and ρiji to the respective posets should be the same.
Otherwise, i.e. if the orders of w′ and w′′ are different in L1(m) and Li(m),

we construct (x1
j1
∨ xi

ji
) and (x1

j1
∨ xi

ji
). The construction of 2CNF formula is

completed by doing this for all the men m who are matched in M1. It is not
hard to see that a satisfying assignment corresponds to subsets Si such that
M1,S1 = M2,S2 = · · · = Mk,Sk

.
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Recall that men’s preference lists are of length at most two and accept-
ability is mutual by assumption, so the total lengths of Li is O(n). Therefore,
for each i, finding Mi and computing the set of rotations of Li can be done in
O(n) time, and hence in O(kn) time in total. Constructing 2CNF clauses for
each man can be done in time O(k), and therefore O(kn) for at most n men.
The resulting 2CNF formula has size O(kn). Finally, solving 2CNF satisfiabil-
ity problem can be done in linear time (Even et al, 1976; Aspvall et al, 1979).
Thus the overall time-complexity is O(kn). □

3.2 Identical Preference Lists of One Side

The next polynomial-time solvable case is that each woman’s preference lists
are identical in all Li. It should be noted that this condition is different from
the so-called master lists where, in each Li, all the women have the same pref-
erence order derived from a fixed master list. (See, e.g., page 30 of (Manlove,
2013) for a formal definition of master lists.) In our case, w and w′ may have
different preference lists.

In this subsection, we restrict inputs so that acceptability is mutual in
each preference list set Li. Note that this assumption was made without loss
of generality in Sec. 3.1, but we cannot do so here because preprocessing
described in Sec. 3.1 (in particular, deleting some men from women’s lists)
would make some woman’s list differ in Li and Lj .

Remark. The case of the master list setting can be solved easily. In this case,
each preference list set Li admits only one stable matching. Hence it suffices
to compute the unique stable matching for each Li and see if the obtained k
matchings are identical or not.

Theorem 4 If each woman’s preference lists are identical in all Li (1 ≤ i ≤ k)
and if in each Li acceptability is mutual, then SMkI is solvable in time O(N),
where N is the total length of preference lists in an input.

Proof Let I = (U,W,L1, L2, . . . , Lk) be an instance of SMkI. We first note
that, since L1(w) = L2(w) = · · · = Lk(w) for every woman w, for each man
m the sets of women included in Li(m) are the same for all i, due to the
mutual-acceptability assumption made at the beginning of this section. Now
we construct a set L of preference lists from L1, L2, . . . , Lk as follows: For each
woman w, let L(w) := L1(w). For each man m, the set of women included in
L(m) is the same as in Li(m), and their order is defined as follows. Let w′ and
w′′ be women in L(m). If m prefers w′ to w′′ in all Li(m), then m prefers w′ to
w′′ in L(m). If m prefers w′ to w′′ in some Li(m) and w′′ to w′ in some Lj(m),
then m is indifferent between w′ and w′′ in L(m). It is not hard to see that
L(m) is a partially-ordered list and hence I ′ = (U,W,L) can be regarded as an
instance of the Stable Marriage problem with Partially-ordered and Incomplete
lists (SMPI).
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We now recall the super-stability (Gusfield and Irving, 1989; Irving, 1994) in
the case that preference lists are not necessarily in a total order. For a matching
M , (m,w) is a blocking pair in super-stability if (1) (m,w) ̸∈ M but (m,w) is
an acceptable pair, (2) m is single in M , or prefers w to M(m), or is indifferent
between w and M(m), and (3) w is single in M , or prefers m to M(w), or is
indifferent between m and M(w). We say that a matching is super-stable if it
admits no blocking pair in super-stability. Irving (1994) developed an O(n2)-
time algorithm to find a super-stable matching or to report that no super-
stable matching exists when preference lists are complete and may include
ties. Manlove (1999) extended this algorithm for incomplete preference lists,
and showed that it runs in time O(N) where N is the total length of preference
lists in an input. Also, Manlove showed that the same algorithm is applicable
for partially-ordered preference lists, i.e., SMPI (page 169 of (Manlove, 2013)).
Therefore, to complete the proof, it suffices to show that a matching M is
jointly stable in I if and only if M is super-stable in I ′.

First suppose that M is super-stable in I ′. Due to Lemma 3.24 in page
160 and observations in page 169 of (Manlove, 2013), M is stable in any SMI
instance derived by linear extension of the partial orders in I ′. Since each Li

is a linear extension of L, M is stable in each Li, that is, M is jointly stable
in I.

Conversely, suppose thatM is not super-stable in I ′. Then, there is a block-
ing pair (m,w) in super-stability. Since L(w) is a total order, w is unmatched
in M or prefers m to M(w) in L(w). In the latter case, w prefers m to M(w)
in all Li(w). Note that m either (i) is unmatched in M , or (ii) prefers w to
M(m) in L(m), or (iii) is indifferent between w and M(m) in L(m). In the
case of (i), (m,w) is a blocking pair for M in all Li. In the case of (ii), m
prefers w to M(m) in all Li(m), so again (m,w) is a blocking pair for M in
all Li. In the case of (iii), m prefers w to M(m) in Li(m) for some i, so that
(m,w) is a blocking pair for M in Li. In any case, M in not jointly stable in
I.

Constructing I ′ from I and solving I ′ can both be done in O(N) time,
hence the theorem follows. □

As a byproduct of the above proof, we can show the existence of the man-
optimal and woman-optimal stable matchings. Let us call a jointly stable
matching M man-optimal if for any man m and any jointly stable match-
ing M ′, either M(m) = M ′(m) or m prefers M(m) to M ′(m) in all Li. The
woman-optimal jointly stable matching is defined similarly.

Let I = (U,W,L1, L2, . . . , Lk) be an SMkI instance and I ′ = (U,W,L) be
the SMPI instance constructed as in the above proof. It is known that the
set of super-stable matchings for an SMPI instance form a distributive lattice
((Spieker, 1995; Manlove, 2002) and page 169 of (Manlove, 2013)), so there
are the man-optimal and the woman-optimal stable matchings for I ′, denoted
MU and MW , respectively. Since women’s preference lists are the same in L
and all Li, MW is the woman-optimal jointly stable matching for I. Consider
a man m and suppose that m is indifferent between w1 and w2 in L(m). It
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is known that it cannot be the case that m is matched with w1 in one super-
stable matching and with w2 in another super-stable matching. Thus by the
man-optimality of MU , for every man m, either MU (m) = M(m) or m prefers
MU (m) to M(m) in L(m) for any super-stable matching M . This implies that
by construction of L, either MU (m) = M(m) or m prefers MU (m) to M(m)
in Li(m) for all i, leading to the existence of the man-optimal jointly stable
matching.

4 Conclusion

In this paper, we considered a variant of the stable marriage problem in which
we are given k sets of preference lists L1, L2, . . . , Lk, and are asked to determine
the existence of a matching that is stable with respect to all Li (1 ≤ i ≤ k). We
have shown two NP-complete cases and one polynomially solvable case with
respect to the lengths of preference lists. We also showed that the problem is
solvable in linear time if every woman has an identical preference list in all Li.

An important future work is to determine the complexity of (3, 3)-SMkI
for k ≥ 2 and (3, ℓ)-SMkI for ℓ ≥ 4 and k = 2, 3. Another direction is ap-
proximability of SMkI; given an instance, find a matching that is stable in
as many Li as possible. Finding a stable matching in any one list is a trivial
k-approximation algorithm. On the other hand, using Theorem 1 we can easily
deduce an approximation hardness of 2−ϵ for even k and 2− 2

k+1−ϵ for odd k,
for any positive constant ϵ under P ̸=NP. Narrowing this gap is an interesting
future work. Considering an alternative optimization criteria, e.g., minimizing
the total number of blocking pairs over all Li, would also be attractive.

Acknowledgments. The authors would like to thank the reviewers for their
constructive comments, which helped to improve the presentation of the paper
considerably.
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A Partial Matchings M1
ℓ , M

2
ℓ , and M3

ℓ

L1

u1
ℓ : v1ℓ v2ℓ Dℓ,1 v3ℓ⃝ v1ℓ : u2

ℓ⃝ u3
ℓ Bℓ,3 u1

ℓ

u2
ℓ : v2ℓ v3ℓ v1ℓ⃝ v2ℓ : u3

ℓ⃝ u1
ℓ u2

ℓ

u3
ℓ : v3ℓ v1ℓ v2ℓ⃝ v3ℓ : u1

ℓ⃝ u2
ℓ u3

ℓ

u4
ℓ : v4ℓ⃝ v5ℓ Dℓ,2 v6ℓ v4ℓ : u5

ℓ u6
ℓ Bℓ,1 u4

ℓ⃝
u5
ℓ : v5ℓ⃝ v6ℓ v4ℓ v5ℓ : u6

ℓ u4
ℓ u5

ℓ⃝
u6
ℓ : v6ℓ⃝ v4ℓ v5ℓ v6ℓ : u4

ℓ u5
ℓ u6

ℓ⃝
u7
ℓ : v7ℓ v8ℓ⃝ Dℓ,3 v9ℓ v7ℓ : u8

ℓ u9
ℓ⃝ Bℓ,2 u7

ℓ

u8
ℓ : v8ℓ v9ℓ⃝ v7ℓ v8ℓ : u9

ℓ u7
ℓ⃝ u8

ℓ

u9
ℓ : v9ℓ v7ℓ⃝ v8ℓ v9ℓ : u7

ℓ u8
ℓ⃝ u9

ℓ

L2

u1
ℓ : v1ℓ v4ℓ v2ℓ v3ℓ⃝ v1ℓ : u2

ℓ⃝ u3
ℓ u7

ℓ u1
ℓ

u2
ℓ : v2ℓ v3ℓ v5ℓ v1ℓ⃝ v2ℓ : u3

ℓ⃝ u8
ℓ u1

ℓ u2
ℓ

u3
ℓ : v3ℓ v1ℓ v2ℓ⃝ v3ℓ : u1

ℓ⃝ u2
ℓ u3

ℓ

u4
ℓ : v5ℓ v7ℓ v6ℓ v4ℓ⃝ v4ℓ : u4

ℓ⃝ u5
ℓ u1

ℓ u6
ℓ

u5
ℓ : v6ℓ v4ℓ v8ℓ v5ℓ⃝ v5ℓ : u5

ℓ⃝ u2
ℓ u6

ℓ u4
ℓ

u6
ℓ : v4ℓ v5ℓ v6ℓ⃝ v6ℓ : u6

ℓ⃝ u4
ℓ u5

ℓ

u7
ℓ : v9ℓ v1ℓ v7ℓ v8ℓ⃝ v7ℓ : u9

ℓ⃝ u7
ℓ u4

ℓ u8
ℓ

u8
ℓ : v7ℓ v8ℓ v2ℓ v9ℓ⃝ v8ℓ : u7

ℓ⃝ u5
ℓ u8

ℓ u9
ℓ

u9
ℓ : v8ℓ v9ℓ v7ℓ⃝ v9ℓ : u8

ℓ⃝ u9
ℓ u7

ℓ

Fig. 5 Partial matching M1
ℓ
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L1

u1
ℓ : v1ℓ v2ℓ⃝ Dℓ,1 v3ℓ v1ℓ : u2

ℓ u3
ℓ⃝ Bℓ,3 u1

ℓ

u2
ℓ : v2ℓ v3ℓ⃝ v1ℓ v2ℓ : u3

ℓ u1
ℓ⃝ u2

ℓ

u3
ℓ : v3ℓ v1ℓ⃝ v2ℓ v3ℓ : u1

ℓ u2
ℓ⃝ u3

ℓ

u4
ℓ : v4ℓ v5ℓ Dℓ,2 v6ℓ⃝ v4ℓ : u5

ℓ⃝ u6
ℓ Bℓ,1 u4

ℓ

u5
ℓ : v5ℓ v6ℓ v4ℓ⃝ v5ℓ : u6

ℓ⃝ u4
ℓ u5

ℓ

u6
ℓ : v6ℓ v4ℓ v5ℓ⃝ v6ℓ : u4

ℓ⃝ u5
ℓ u6

ℓ

u7
ℓ : v7ℓ⃝ v8ℓ Dℓ,3 v9ℓ v7ℓ : u8

ℓ u9
ℓ Bℓ,2 u7

ℓ⃝
u8
ℓ : v8ℓ⃝ v9ℓ v7ℓ v8ℓ : u9

ℓ u7
ℓ u8

ℓ⃝
u9
ℓ : v9ℓ⃝ v7ℓ v8ℓ v9ℓ : u7

ℓ u8
ℓ u9

ℓ⃝

L2

u1
ℓ : v1ℓ v4ℓ v2ℓ⃝ v3ℓ v1ℓ : u2

ℓ u3
ℓ⃝ u7

ℓ u1
ℓ

u2
ℓ : v2ℓ v3ℓ⃝ v5ℓ v1ℓ v2ℓ : u3

ℓ u8
ℓ u1

ℓ⃝ u2
ℓ

u3
ℓ : v3ℓ v1ℓ⃝ v2ℓ v3ℓ : u1

ℓ u2
ℓ⃝ u3

ℓ

u4
ℓ : v5ℓ v7ℓ v6ℓ⃝ v4ℓ v4ℓ : u4

ℓ u5
ℓ⃝ u1

ℓ u6
ℓ

u5
ℓ : v6ℓ v4ℓ⃝ v8ℓ v5ℓ v5ℓ : u5

ℓ u2
ℓ u6

ℓ⃝ u4
ℓ

u6
ℓ : v4ℓ v5ℓ⃝ v6ℓ v6ℓ : u6

ℓ u4
ℓ⃝ u5

ℓ

u7
ℓ : v9ℓ v1ℓ v7ℓ⃝ v8ℓ v7ℓ : u9

ℓ u7
ℓ⃝ u4

ℓ u8
ℓ

u8
ℓ : v7ℓ v8ℓ⃝ v2ℓ v9ℓ v8ℓ : u7

ℓ u5
ℓ u8

ℓ⃝ u9
ℓ

u9
ℓ : v8ℓ v9ℓ⃝ v7ℓ v9ℓ : u8

ℓ u9
ℓ⃝ u7

ℓ

Fig. 6 Partial matching M2
ℓ
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L1

u1
ℓ : v1ℓ⃝ v2ℓ Dℓ,1 v3ℓ v1ℓ : u2

ℓ u3
ℓ Bℓ,3 u1

ℓ⃝
u2
ℓ : v2ℓ⃝ v3ℓ v1ℓ v2ℓ : u3

ℓ u1
ℓ u2

ℓ⃝
u3
ℓ : v3ℓ⃝ v1ℓ v2ℓ v3ℓ : u1

ℓ u2
ℓ u3

ℓ⃝
u4
ℓ : v4ℓ v5ℓ⃝ Dℓ,2 v6ℓ v4ℓ : u5

ℓ u6
ℓ⃝ Bℓ,1 u4

ℓ

u5
ℓ : v5ℓ v6ℓ⃝ v4ℓ v5ℓ : u6

ℓ u4
ℓ⃝ u5

ℓ

u6
ℓ : v6ℓ v4ℓ⃝ v5ℓ v6ℓ : u4

ℓ u5
ℓ⃝ u6

ℓ

u7
ℓ : v7ℓ v8ℓ Dℓ,3 v9ℓ⃝ v7ℓ : u8

ℓ⃝ u9
ℓ Bℓ,2 u7

ℓ

u8
ℓ : v8ℓ v9ℓ v7ℓ⃝ v8ℓ : u9

ℓ⃝ u7
ℓ u8

ℓ

u9
ℓ : v9ℓ v7ℓ v8ℓ⃝ v9ℓ : u7

ℓ⃝ u8
ℓ u9

ℓ

L2

u1
ℓ : v1ℓ⃝ v4ℓ v2ℓ v3ℓ v1ℓ : u2

ℓ u3
ℓ u7

ℓ u1
ℓ⃝

u2
ℓ : v2ℓ⃝ v3ℓ v5ℓ v1ℓ v2ℓ : u3

ℓ u8
ℓ u1

ℓ u2
ℓ⃝

u3
ℓ : v3ℓ⃝ v1ℓ v2ℓ v3ℓ : u1

ℓ u2
ℓ u3

ℓ⃝
u4
ℓ : v5ℓ⃝ v7ℓ v6ℓ v4ℓ v4ℓ : u4

ℓ u5
ℓ u1

ℓ u6
ℓ⃝

u5
ℓ : v6ℓ⃝ v4ℓ v8ℓ v5ℓ v5ℓ : u5

ℓ u2
ℓ u6

ℓ u4
ℓ⃝

u6
ℓ : v4ℓ⃝ v5ℓ v6ℓ v6ℓ : u6

ℓ u4
ℓ u5

ℓ⃝
u7
ℓ : v9ℓ⃝ v1ℓ v7ℓ v8ℓ v7ℓ : u9

ℓ u7
ℓ u4

ℓ u8
ℓ⃝

u8
ℓ : v7ℓ⃝ v8ℓ v2ℓ v9ℓ v8ℓ : u7

ℓ u5
ℓ u8

ℓ u9
ℓ⃝

u9
ℓ : v8ℓ⃝ v9ℓ v7ℓ v9ℓ : u8

ℓ u9
ℓ u7

ℓ⃝
Fig. 7 Partial matching M3

ℓ


