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ABSTRACT
We propose a general theoretical scheme of relativistic electron-nucleus coupled dynamics of molecules in radiation fields, which is derived
from quantum electrodynamical formalism. Aiming at applications to field-induced dynamics in ultrastrong laser pulses to the magnitude
of 1016 W/cm2 or even larger, we derive a nonperturbative formulation of relativistic dynamics using the Tamm-Dancoff expansion scheme,
which results in, within the lowest order expansion, a time-dependent Schrödinger equation with the Coulombic and retarded transversal
photon-exchange interactions. We also discuss a wavepacket type nuclear dynamics adapted for such dynamics.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5109272., s

I. INTRODUCTION

Electrons accelerated close to the speed of light exhibit rela-
tivistic effects.1–4 In molecular science, relativistic electrons appear
in orbitals of heavy atoms where it has been established that not
only the inner-shell electrons5–7 but also valence electrons are sub-
ject to relativistic effects such as the orbital contraction/expansion
effects.8,9 Another important type of relativistic electrons in molecu-
lar science is those accelerated in ultraintense optical fields.10,11 The
former aspect has been discussed separately in our recent work12

within the path integral formalism. We herein develop a relativistic
“wavepacket” theory for coupled electronic and nuclear dynamics
of molecules, which is applicable to dynamics in external fields of
nonperturbative intensity regime.

Rapid progress in experimental techniques10,11 has realized
ultraintense laser pulses of petawatt intensity and femtosecond
width,13 and a number of advanced light sources are being devel-
oped worldwide.14 The strongest laser field ever reported15 exceeds
1022 W/cm2. Nonrelativistic quantum mechanics breaks down in
such ultrastrong fields as the vector field amplitude in the Hamilto-
nian compares mec2

/∣e∣, with me and |e| being the electronic mass
and charge magnitude, respectively. Introducing nondimensional

relativistic scale for a given vector field A by a0 ≡ ∣e∣ ∣A∣/(mec2
),

a typical infrared (IR) laser pulse of wavelength λ = 800 nm
(h̵ω = 1.55 eV) of intensity 2.14 × 1018 W/cm2 corresponds to a0 = 1.
Indeed, with pulse intensity of order ∼1016 W/cm2 or more, exper-
imental studies have demonstrated relativistic behaviors of elec-
trons including relativistic trajectories of photoelectrons,16 radiation
reactions,17,18 and multiphoton Thomson scatterings.19 Molecular
dissociations in laser fields of relativistic intensity have also been
reported in Refs. 20 and 21. In Ref. 20, CH4 molecules irradiated
by IR laser fields of intensity exceeding 1016 W/cm2 were observed
to undergo multiple tunnel ionizations, followed by rapid fragmen-
tation.20 Such dynamics is particularly challenging in that strong
electron-radiation coupling does not allow perturbative approach
which is the most standard tool in the quantum electrodynam-
ics (QED). Another interest is in the interplay of such relativis-
tic electron-radiation coupled dynamics and the nuclear dynamics.
Taking into account the typical nucleus-to-electron mass ratio of
order 103 or more, we can assume that the nuclear dynamics is
nonrelativistic even in ultrastrong fields with a0 ≲ 100. Relativis-
tic electronic dynamics, however, should induce unconventional
nuclear dynamics such as Coulomb explosion of heavily ionized
molecules.20
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Relativistic theory of stationary electronic many-body states
within the Born-Oppenheimer (BO) approximation has been inten-
sively developed in the so-called quantum chemistry.22–24 Numerical
studies have revealed that relativistic electrons, which exist in the
inner-core levels of heavy element atoms, play several important
roles in the chemical properties of molecules.22 Static properties of
those molecules containing heavy elements, including their bonding
properties25–27 and spectroscopic observables,28 have been success-
fully reproduced by numerical ab initio calculations. Formulations
of numerical calculations include the original four-component for-
mulation and more tractable two-component formulations based on
the Foldy-Wouthuysen transformation29–31 or even more sophisti-
cated theories.32–35 Such two-component reduction techniques are
sometimes indispensable for the study of large systems, whereas
its extension to dynamical problems is not straightforward. We
therefore have the present formulation remain in the original four-
component theory unless specified explicitly. A remarkable merit in
the quantum-chemical approach is its large variety of methodolo-
gies of constructing (correlated) many-body wavefunctions; tech-
niques for constructing four-component wavefunctions include the
variational theory36 and the exact solution technique.37 Multiconfig-
uration theories to include correlation effects to the self-consistent
field orbitals have also been developed.38,39 Along with the method-
ological sophistication, there are a large number of “tools” available
for achieving efficient calculations; studies have established a num-
ber of efficient basis sets40 and calculation techniques.41,42 A num-
ber of computational packages for general purposes have also been
developed.43,44

However, in the BO framework, the involved nuclei are made
fixed in space and no time variable is considered in the electronic
wavefunctions, let alone in the radiation fields. Despite its great
success in the calculations of static molecular properties, the main
assumptions presupposed in the BO approximation (and thereby
the conventional quantum chemistry) are not valid when the kine-
matic coupling between electrons and nuclei are strong. Indeed,
the physical and chemical significance of the so-called nonadi-
abatic reactions has long been recognized since the early stage
of quantum mechanics45–47 to date.48–50 Overcoming such break-
down has become even more important in the regime of laser
chemistry,51 which makes it possible to observe52 and control (see
Ref. 53) the kinematic coupling between electrons and nuclei. In par-
ticular, it has been found that the notion of ultrafast nonadiabatic
electron wavepacket dynamics is particularly crucial.54–59 There-
fore, one of the main objectives in this paper is to extend such
non-BO wavepacket dynamics to the relativistic regime. Another
shortcoming of the conventional type of relativistic quantum chem-
istry is that it often shows lack of theoretical rigor; predominantly
many of those studies have been made based on the Dirac-Coulomb
or the Dirac-Breit theory, which are the low-energy static reduc-
tions of the exact QED. Many features in the exact QED treat-
ment, including dynamical coupling to the radiation-field and/or
energy-dependence of the electron-electron interactions, are miss-
ing in those types of quantum chemical approaches, whereas it
can easily be expected that those missing components are essen-
tial in high-energy dynamics of our interest. We therefore start
from the exact QED formulation to construct a framework of rel-
ativistic nonadiabatic electron-nucleus coupled dynamics. The most

standard QED formulation would then take a perturbative approach
to include electron-radiation coupling effects. We indeed have taken
such an approach in our recent study.12 It is, however, obvious
that such an approach is not applicable to dynamics with non-
perturbative couplings to the (external) radiation fields, which is
our main target in this paper. In order to develop a nonpertur-
bative approach, we consider the Tamm-Dancoff (TD)60,61 expan-
sion of the electron-radiation coupled states. We also note that
there have been the development of advanced formulations of
quantum chemistry that resolves such discrepancy from the exact
QED treatment. For example, the effective quantum electrody-
namics (eQED) approach23,24 constructs an effective Hamiltonian
that includes static QED effects such as the vacuum polarization
effect and the one-loop electronic self-energy arising from virtual
interactions with the radiation field. It is of theoretical interest
to make comparison between these static QED theories and our
formulation.

The original idea of the Tamm-Dancoff approximation (TDA)
was independently developed by Tamm60 and Dancoff61 earlier than
the establishment of the covariant perturbation theory.62–66 The
original idea of Dancoff61 was to expand the Heisenberg state vec-
tor, or the time-independent energy eigenstate, by a well-defined set
of basis vectors in various “sectors” to derive a set of Schrödinger-
like equations. A problem in this original approach, pointed out by
Dyson,67 is that the number of interacting particles adds up in a
less-controlled manner than what is in the covariant perturbation
theory, making the theory nonrenormalizable. Several modifications
to overcome such a problem were proposed including Dyson’s for-
mulation.67–69 Among them, Cini68 and Visscher69 developed an
alternative formulation closer in idea to the covariant perturba-
tion theory, which shows that divergences arising from lower order
expansions (Cini68 considered up to what corresponds to the two-
loop expansion in diagrammatic language) can be removed using
the renormalization technique. Even with those modifications, TDA
has several fundamental problems70 including apparent violation of
covariance by its naive truncation scheme. Wilson and co-workers
formulated TDA in the light-cone frame70 to overcome these incon-
veniences. Their light-front TDA approach71 has then been applied
to quantum color dynamics (QCD). To the best of our knowledge,
however, it is not clear that such a drastic change in the frame
is applicable or suitable for molecular dynamics. We therefore do
not use the light-cone frame but stick to more familiar types of
space-time frame (the laboratory or the center-of-mass frame) which
may sacrifice the formal rigor. Nevertheless, it appears that the
Tamm-Dancoff approach provides a method to formulate electron-
radiation coupled dynamics of relativistic energy scale based on
“equal-time” amplitudes, which describes a many-body system on a
spacelike surface with a single timelike variable. We consider that, in
our future study, the equal-time representation would work favor-
ably in importing many-body techniques developed in quantum
chemistry in which the same type of space-time frame is (implicitly)
assumed.

This paper is organized as follows. In Sec. II, we first prepare the
fundamental quantities relevant in the present relativistic dynamics.
In Sec. III, we formulate a theory based on the Tamm-Dancoff60,61

type expansion of the electron-radiation coupled states. This paper
concludes in Sec. IV.
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II. DEFINITIONS OF FUNDAMENTAL QUANTITIES
We first define fundamental quantities that appear in our dis-

cussion. Although this paper is self-contained, a more compre-
hensive discussion on some of those quantities is shown in our
recent work.12 Throughout this paper, we use the sign convention
(1, −1, −1, −1), and the metric tensor ημν is a diagonal tensor with
η00 = 1, η11 = η22 = η33 = −1. Symbol qe represents the electronic
charge, which takes a negative value; qe = −|e|. We use the Gauss
unit for electromagnetic field, and the fine-structure constant is
e2
/h̵c ≈ 1/137. We use the Hermitian Dirac matrices, α and β.

Four-dimensional notation αμ stands for αμ ≐ (1, α), i.e., α0 is the
four-dimensional unit matrix. Other notations, which follow the
standard convention in QED,2 are described explicitly in the main
text and also summarized at the end of the main text.

We consider an electron-nucleus-radiation coupled system in
the Coulomb gauge, whose full Hamiltonian reads

Htot
=∑

a

1
2Ma
(P2

a + (
Za∣e∣
c

Atr
(Ra))

2

)

+∫ d3x
1
2
(4πc2Πtr2 +

1
4π
(∇×Atr

)
2
)

+∫ d3xψ†
(cα ⋅

h̵
i
∇ + βmc2

)ψ

+
1
2 ∫

d3x∫ d3yρmat(x, t)
1
∣x − y∣

ρmat(y, t)

−
1
c ∫

d3xJmat ⋅A
tr, (1)

where α and β are the Dirac matrices, Pa and Ma represent the three-
dimensional momentum and mass of the ath nucleus, whereas ψ and
Atr are the field operators of the electronic and transversal radiation
fields, respectively. The canonical conjugate of Atr is represented by
Πtr
= Ȧtr

/(4πc2
), which is negative of the transversal part of the

electric field. Symbols ρmat and Jmat represent the matter field charge
density and current, respectively, as

ρmat(x) = qeψ†
(x)ψ(x) +∑

a
Za∣e∣fa(x) (2a)

and

Jmat(x) = qecψ
†
(x)αψ(x) +∑

a

1
2
Za∣e∣(fa(x)Ṙa + Ṙafa), (2b)

with qe representing the electronic charge (qe = −|e|), Ra being the
ath nuclear (spatial) coordinate, and Za∣e∣fa(R) being the charge dis-
tribution of the ath nucleus, which could simply be a delta function
Za|e|δ3(R − Ra) or one of the existing model functions.72 Possible
nontrivial nuclear charge distributions are taken into account only
for calculation of the electronic wavefunction, whereas we approxi-
mate them by the pointlike model for description of the field-nucleus
and the nucleus-nucleus Coulombic interactions. Such an approxi-
mation should be appropriate in the energy range where the typical
wavelength of the radiation field is much larger than the length scale
of the nuclear charge distribution. We then introduce the nuclear
potential field

Unuc(x) = qe∑
a
∫ d3RZa∣e∣

1
∣x − R∣

fa(R) (3)

and a set of electronic “mean-fields” ρ(x, t) and WHF(x, t) and
introduce a Fermionic eigenvalue equation

[cα ⋅
h̵
i
∇ + βmc2 + Unuc(x)]φℓ(x, t)

+ ∫ d3yWHF(x, y, t)φℓ(y, t) = 𝜖0
ℓφℓ(x, t), (4)

with 𝜖0
ℓ representing the ℓth orbital energy. The eigenfunctions of

Eq. (4) are hereafter referred to as molecular orbitals (MOs). We
assume that we are interested in the state with a given configuration
Iocc of Ne positive energy MOs (if we are interested in the ground
state, for example, the lowest Ne are occupied and occupied orbitals
are Iocc = {1, 2, . . . ,Ne}),

ρ(x, t) = ∑
ℓ∈Iocc

φ†
ℓ(x, t)φℓ(x, t). (5)

The most natural choice of the mean-field potential WHF must be
the Hartree-Fock potential, which is

WHF(x, y)ij = δ3
(x − y)δij ∫ d3x′

q2
e

∣x − x′∣
ρ(x′, t)

− ∑
ℓ∈Iocc

ψ†
ℓ j
(y, t)

q2
e

∣x − y∣
ψℓi(x, t). (6)

However, we find it more convenient to use its local approxi-
mation and hereafter consider the localized Hartree-Fock field,
W loc

HF, which is to be obtained by one of existing techniques.73–76

For later convenience, we also introduce MO creation/annihilation
operators as

ĉℓ,m,n,... = {
ĉr,s,t,... positive energy states
b̂a,b,c,... negative energy states,

(7)

and the whole set of positive (negative) MO indices are denoted by
I+ (I−).

Our Hamiltonian now reads Htot
= Hnuc +Hel

mf +Hel
int +Hrad with

Hnuc =∑
a

1
2Ma
(
h̵
i
∇a −

Za∣e∣
c

Atr
(Ra))

2

+
1
2∑a≠b

ZaZb∣e∣2

∣Ra − Rb∣
, (8a)

Hel
mf = ∫ d3xψ(x, t)†[cα ⋅

h̵
i
∇ + βmec2 + Unuc(x, t)]ψ(x, t)

+ ∫ d3xψ(x, t)†W loc
HF(x, t)ψ(x, t), (8b)

Hel
int =

1
2 ∫

d3x∫ d3yψ(x, t)†ψ(y, t)†
q2
e

∣x − y∣
ψ(y, t)ψ(x, t)

− ∫ d3xψ(x, t)†W loc
HF(x, t)ψ(x, t)

− qe ∫ d3xψ(x, t)†αψ(x, t) ⋅Atr, (8c)

Hrad =
1
2 ∫

d3x(4πc2Πtr2
+

1
4π
(∇×Atr

)
2
). (8d)

Although the Hamiltonian expression Eq. (8a) is common in the lit-
erature2 and it is indeed sufficient for calculation of perturbation
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expansions, we have to rewrite each term in a symmetric form77

when we calculate its vacuum expectation value. The current oper-
ator Jμ(x, t) = cψ†(x, t)αμψ(x, t) is therefore to be interpreted
as

Jμsym.
(x, t) =

1
2∑i,j
(ψ†

i (x, t)ψj(x, t) − ψj(x, t)ψ†
i (x, t))αμij, (9)

when we calculate its vacuum expectation value.

III. THEORY OF ELECTRON-NUCLEUS-RADIATION
COUPLED DYNAMICS

Having formulated fundamental quantities, we now develop
the Tamm-Dancoff expansion of the electron-nucleus-radiation
coupled dynamics.

A. The lowest order expansion in electron-radiation
coupled dynamics

We first discuss electron-radiation coupled dynamics for a
given nuclear configuration. Couplings to dynamical nuclei are
restored in Subsection III B. Following the original idea of Tamm60

and Dancoff,61 we expand the electron-radiation coupled state vec-
tor as a superposition of zero, one, two, . . . photon states. We
formally introduce notation (Ne,Ne,Nph), where Ne, Ne, and Nph
represent the number of electrons, positrons, and photons. Each
triplet represents a “sector.” We assume that the physical state of
our interest is dominated by a small number of “active” sectors
around (Ne, 0, 0) and truncate other sectors. We first consider
the electron-radiation dynamics for a given nuclear coordinate. We
also assume that the mean-field equation [Eq. (4)] is already solved
and the relevant MOs are known. We then set the zeroth order
Hamiltonian as

H0 = Hel
mf + Hrad, (10)

and the residual interaction for the correction is given as Eq. (8c).
We first consider the smallest nontrivial set of “sectors,” which

consists of (Ne, 0, 0), (Ne, 0, 1), and (Ne + 1, 1, 1). For simplicity of
notation, we also use more intuitive labels for those sectors: 000, 001,
and 111, respectively.

A brief note is made here on the (Ne + 1, 1, 1) or 111 sector;
it consists of states with one electron-positron pair plus a photon,
wherein we are not necessarily assuming existence of “real” electron-
positron pair, which would require energy of order ∼1 MeV. In
the lower energy dynamics, those states are regarded as “virtual”
states, which are, nevertheless, not simply negligible for its possi-
ble roles in four-component dynamics (see Ref. 78, for an illustrative
example) and for achieving mathematically consistent description of
dynamics.

1. Coordinate representation
Following Ref. 68, we define an “amplitude” [hereafter referred

to as the Tamm-Dancoff (TD) amplitude] of the electronic state
vector in (Ne, 0, 0) sector as

F 000
t ({x}) ≡ ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)∣Ψ

int
t ⟩, (11)

where the electronic annihilation operator ψ̆, the vacuum state |0⟩,
and the time-dependent electronic state vector Ψint

t are all in the

interaction representation. The time evolution equation reads

ih̵
∂

∂t
F 000

t ({x}) = ⟨0∣[ψ̆(x1, t) . . . ψ̆(xNe, t),H0]∣Ψint
t ⟩

+ ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)H
el
int(t)∣Ψ

int
t ⟩. (12)

We do not have to take account of all terms in Hel
int of Eq. (8c)

to obtain the correct equation of F 000
t . Since there is a strict one-

to-one correspondence in the transversal photon exchange and the
Coulombic interaction (plus its associated mean-field subtraction
terms), we can concentrate on the transversal interaction part

Hel
int

tr
= −qe ∫ d4xψ†

(x)αψ(x) ⋅Atr
(x) (13)

to expand the perturbation series. Contributions arising from the
remaining part, denoted by Hel

int
′
≡ Hel

int − H
el
int

tr
, are restored when

we evaluate the obtained diagrams by re-interpreting the photon
lines as a summation of the Coulombic and transversal interactions.
Except for those representing the self-interactions (i.e., the photon
lines emitted and absorbed by the same electron), we also attach the
mean-field subtraction terms to those photon lines.

For later convenience, we introduce the mean-field electronic
propagator SF by

SF
(x, y) ≡

1
ih̵
⟨0∣T (ψ̆(x)ψ̆†

(y))∣0⟩, (14)

with T being the time-ordering operator.
We now expand the last term in Eq. (12) using Hel

int
tr

given as
Eq. (13). Details of the expansion procedure is given in Appendix A,
but in short, we move all creation operators appearing in Hel

int
tr

to left
by application of the equal-time (anti-)commutation rule. We then
obtain

ih̵
∂

∂t
F 000

t ({x}) = H0F 000
t ({x}) +∑

k,λ

⎛

⎝
∑
j
(Λ+
Óε k λ(xj))( j) + J

μ
−kεk λμ

⎞

⎠

×F 001
t ({x};k λ) +∑

k,λ
∑
ihjp

∫ d3y(Óε k λ(y))ihjp

×F 111
t ({x}; y, y; ih, jp;k λ)

+ (terms arising from Hel
int
′
), (15)

where Λ+ (Λ−) is the projection operator to positive (negative)
energy states. The index kλ represents the photon wavevector k and
the polarization index λ, whose associated frequency being ωk = c|k|.
For notational convenience, we combine the polarization vector ek,λμ
and all numerical factors associated with the photon annihilation
operator Atr and further contract with the electronic Dirac spinors
αμ to define

εk λμ ≡ qe

√
4πc2h̵

2ωkVol.
ek λμ, (16a)

Óε k λ(xℓ) ≡ εk λμ(α
μ
)(ℓ)e

ikxℓ , (16b)

with Vol. representing the system volume, which is to be taken the
limit Vol. → ∞ in the end of the calculation while keeping k sum-
mation finite, i.e., replacing summation by integration as 1

Vol. ∑k
→ ∫d3k/(2π)3. Subscripts (ℓ) attached to spinor matrices indicate
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that the corresponding spinor matrix operates on the ℓth component
of the rank-Ne spinor F as

(α)(ℓ)F ≡∑
i′ℓ

(α)iℓi′ℓFi1 ,...,i′
ℓ

,...iNe
. (17)

J
μ
k symbolizes the Fourier transformation of the vacuum expecta-

tion value of the current

J
μ
k ≡ ∫ d3xJμ

(x, t)e−ik⋅x, (18)

where Jμ
(x, t) represents the vacuum expectation value of the

current operator

Jμ
(x, t) =

1
2∑i,j
⟨0∣ψ†

i (x, t)ψj(x, t) − ψj(x, t)ψ†
i (x, t)∣0⟩αμij

= −ih̵
1
2

Tr(SF
(x, t − 0; x, t)αμ + SF

(x, t; x, t − 0)αμ), (19)

with t − 0 in the last side indicating an infinitesimally small
time before t. While the corresponding quantity vanishes in the
free-particle system,64 it generally has a nonzero value in our

model because of the existence of the mean-field potential. It can
be evaluated either by direct numerical calculation using a large
set of MOs or by perturbation expansion of the mean-field
propagator SF by the free-particle propagator SF

0 as Jμ
(x)

≈ −ih̵ ∫dτd3ξTr(αμSF
0(x, 0; ξ, τ)SF

0(ξ, τ; x, 0))W loc
HF(ξ, τ) + ⋯. We

also note that the term “vacuum” comes from the vacuum state in the
interaction picture |0⟩, which is actually affected by the mean-field
Hamiltonian. All related ideas in our following discussion, includ-
ing the vacuum polarization and vacuum energy shift, reflect the
mean-field potential as their physical origin.

New amplitudes belonging to the (Ne, 0, 1) and (Ne + 1, 1, 1)
sectors appearing in Eq. (15) are defined, respectively, as

F 001
t ({x};k λ) ≡ ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)ak λ(t)∣Ψ

int
t ⟩ (20)

and

F 111
t ({x}; yh, yp; ih, jp;k λ) ≡ ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)(ψ̆

†
<(yh, t))

ih

× (ψ̆>(yp, t))
jp
ak λ(t)∣Ψ

int
t ⟩. (21)

The derivation of Eq. (15) is given in detail in Appendix A. The time
evolution equation for F 001 reads

ih̵
∂

∂t
F 001

t ({x};k λ) = H0F 001
t ({x};k λ) + (∑

ℓ

(Λ+
Óε ∗k λ(xℓ))(ℓ) + J

μ
kε
∗
k λμ)F

000
t + ∑

k′λ′
∑
ℓ

(Λ+
Óε k′λ′(xℓ))(ℓ)⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)ak λak′λ′ ∣Ψ

int
t ⟩

+ ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe, t)∫ d3yψ̆†
<(y, t)Óε ∗k,λ(y)ψ̆>(y, t)∣Ψint

t ⟩

+∑
k′λ′
⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)∫ d3yψ̆†

<(y, t)Óε k ′ ,λ′(y)ψ̆>(y, t)ak λak′λ′ ∣Ψ
int
t ⟩ + (terms arising from Hel

int
′
), (22)

and that for F 111 becomes

ih̵
∂

∂t
F 111

t ({x}; yh, yp; jh, jp;k λ) = H0F 111
t ({x}; yh, yp; jh, jp;k λ) + ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)∣Ψ

int
t ⟩δ

3
(yh − yp)(Λ

+
Óε ∗k,λ(yh)Λ

−
)
jpjh

−∑
ℓ

(Λ+
Óε ∗k,λ(xℓ)Λ

−
)
iℓjh
δ3
(xℓ − yh)F

000
t ({x})∣iℓ→jp

+ (terms that do not belong to the (Ne, 0, 0) or (Ne, 1, 1) sector) + (terms arising from Hel
int
′
), (23)

where the expression F∣iℓ→jp indicates the spinor F whose ℓth index iℓ is replaced by jp.
Concentrating on the terms proportional to the (Ne, 0, 0) sector amplitudes only, a formal solution of Eq. (22) can be symbolically

written as

F 001
t ({x};k λ) = [ih̵

∂

∂t
−H0]

−1
(∑

ℓ

(Λ+
Óε ∗k λ(xℓ))(ℓ) + J

μ
kε
∗
k λ)F

000
t ({x}), (24)

whereas Eq. (23) is solved as

F 111
t ({x}; yh, yp; jh, jp;k λ) = [ih̵

∂

∂t
−H0]

−1
[(Λ+

Óε ∗k,λ(yh)Λ
−
)
jpjh
δ3
(yh − yp)F

000
t ({x}) − (Λ

+
Óε ∗k,λ(xℓ)Λ

−
)
iℓjh
δ3
(xℓ − yh)F

000
t ({x})∣iℓ→jp].

(25)
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Substituting these expressions into Eq. (15) and restoring the Coulombic and mean-field subtraction terms, we obtain

ih̵
∂

∂t
F 000

t ({x}) =
⎡
⎢
⎢
⎢
⎢
⎣

∑
j
(ĥmf

j −W
loc
HFj) + VC + VSI

⎤
⎥
⎥
⎥
⎥
⎦

F 000
t ({x})

+∑
k λ

⎛

⎝
∑
j
(Λ+
Óε k,λ(xj))( j) + J

μ
−kεk λμ

⎞

⎠

1
ih̵ ∫

t

−∞
dt′e−iωk(t−t′)

× ∫ ∏
k
d3x′k∏

k
C>(xk, t; xk, t′)(∑

ℓ

(Λ+
Óε ∗k λ(x

′
ℓ))(ℓ) + Jν

kε
∗
k λν)F

000
t′ ({x

′
})

+∑
k,λ

1
ih̵ ∫

t

−∞
dt′e−iωk(t−t′)

∑
ℓ
∫ d3y′hd

3y∏
k
d3x′k∏

k≠ℓ

′C>(xk, t; x′k, t′)

× (C>(xℓ, t; y′h, t′)Óε ∗k λ(y
′
h)C

<
(y′h, t′; y, t)Óε k λ(y)C>(y, t; x′ℓ, t′))(ℓ)F

000
t′ ({x

′
})

+∑
k,λ

1
ih̵ ∫

t

−∞
dt′e−iωk(t−t′)

∫ d3yd3y′∏
k
d3x′k∏

k
C>(xk, t; x′k, t′)

×Tr(C>(y, t; y′, t′)Óε ∗k λ(y
′
)C<(y′, t′; y, t)Óε k λ(y))F 000

t′ ({x
′
}), (26)

where ĥmf
j and W loc

HFj represent the mean-field Hamiltonian in
the operator representation and the mean-field potential acting on
the jth electronic coordinate in F000

t , whereas VC and VSI repre-
sent the Coulombic (inter-electronic) interaction and the Coulom-
bic self-interaction,79 respectively. SymbolsC> andC< represent the
zeroth order propagators defined as

C>(x, y) ≡ ⟨0∣ψ̆>(x)ψ̆†
>(y)∣0⟩θ(x

0
− y0
), (27a)

C<ij(x, y) ≡ ⟨0∣ − (ψ̆†
<(y))

j
(ψ̆<(x))i∣0⟩θ(y

0
− x0
), (27b)

with ψ> (ψ<) representing the positive (negative) energy part of
the electronic field operator. Using those propagators, the for-
mal expression [ih̵ ∂

∂t −Hmf]
−1

appearing in Eqs. (24) and (25) is
expanded as

[ih̵
∂

∂t
−Hmf]

−1
ϕt({x},{x})

=
1
ih̵ ∫

t

−∞
dt′ ∫ ∏

i
d3x′i ∫ ∏

a
d3x′a∏

i
C>(xi, t; x′i , t

′
)

×∏
a
(−C<(x′a, t′; xa, t))ϕt′({x′},{x′}), (28)

with ϕt representing an arbitrary physical quantity and {x} ({x})
representing electronic (positronic) coordinates.

Equation (26) describes the time evolution of the electronic
system that interacts through the Coulombic interaction and the
transversal photon exchange, and yet Eq. (26) also includes appar-
ently divergent self-interaction terms whose renormalization is bet-
ter formulated in the MO-representation as we discuss below.

2. Molecular orbital representation
We reformulate the above procedure in the MO-representation.

The MO-representation of Eq. (16) is defined as

(Óε k,λ)ℓm ≡ ∫ d3y′φ†
ℓ(y
′
)Óε k,λ(y

′
)φm(y′). (29)

We also use a collective notation I, which represents a set of
MO indices of the Ne (positive energy) electronic orbitals as
I ≡ {I1, I2, . . . , INe}, and Irj is given by replacing the jth component Ij
by the rth MO as Irj ≡ {I1, I2, . . . , Ij−1, r, Ij+1, . . . , INe}.

We then define amplitudes in 000, 001, and 111 sectors by

f 000
t (I) ≡ ⟨0∣ĉI1(t)ĉI2(t) . . . ĉINe (t)∣Ψ

int
t ⟩, (30a)

f 001
t (I;k λ) ≡ ⟨0∣ĉI1(t)ĉI2(t)⋯ĉINe (t)ak λ(t)∣Ψ

int
t ⟩, (30b)

f 111
t (I; a, r,k λ) ≡ ⟨0∣ĉI1(t)ĉI2(t)⋯ĉINe (t)b̂a(t)ĉr(t)ak λ(t)∣Ψ

int
t ⟩.
(30c)

The time evolution equations for them [Eqs. (15), (22), and (23)] are
rewritten as

ih̵
∂

∂t
f 000
t (I) =∑

k
𝜖0

Ik f
000
t (I) +∑

k λ

⎡
⎢
⎢
⎢
⎢
⎣

∑
j,r
(Óε k λ)Ijrf

001
t (I

r
j ;k λ)

+ J
μ
−kεkλμf

001
t (I;kλ)

⎤
⎥
⎥
⎥
⎥
⎦

+∑
r,a
∑
kλ
(Óε k λ)arf

111
t (I; a, r;kλ),

(31a)

ih̵
∂

∂t
f 001
t (I;k λ) = (∑

k
𝜖0

Ik + h̵ωk)f
001
t (I;k λ)

+∑
j,r
(Óε ∗k λ)Ijrf

000
t (I

r
j ) + J

μ
kε
∗
k λμf

000
t (I) + ⋅ ⋅ ⋅,

(31b)

ih̵
∂

∂t
f 111
t (I; a, r;k λ) = (∑

k
𝜖0

Ik + ∣𝜖0
a∣ + 𝜖0

r + h̵ωk)f
111
t (I; a, r;k λ)

−∑
j
(Óε ∗k λ)Ij ,af

000
t (I

r
j ) + J

μ
−kεk λμf

000
t (I) +⋯.

(31c)

Substitution of solutions of Eqs. (31b) and (31c) into Eq. (31a) yields
the following equation of f 000

t :
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ih̵
∂

∂t
f 000
t (I) =∑

k
𝜖0

Ik f
000
t (I) −∑

j
(W loc

HFj)Ij ,r
f 000
t (I

r
j ) +

1
2∑jℓ
⟨Ij Iℓ∥r s⟩f

000
t (I

rs
jℓ) +

1
2∑j

∬ d3rd3r′∣φIj(r)∣
2 q2

e

∣r − r′∣
δ(r − r′)

+ Δ̂vpf 000
t (I) +∑

j≠ℓ
∑
k λ
∑
r,s
(Óε k λ)Ijr

1
ih̵ ∫

t

−∞
dt′e

−i
⎛
⎝∑k≠j

′𝜖0
Ik +𝜖0

r+h̵ωk
⎞
⎠
(t−t′)/h̵

(Óε ∗k λ)Iℓsf
000
t′ (I

rs
jℓ)

+∑
j
∑
k λ
∑
r,s
(Óε k λ)Ijr

1
ih̵ ∫

t

−∞
dt′e

−i
⎛
⎝∑k≠j

′𝜖0
Ik +𝜖0

r+h̵ωk
⎞
⎠
(t−t′)/h̵

(Óε ∗k λ)rsf
000
t′ (I

s
j)

−∑
j
∑
k λ
∑
a,r
(Óε ∗k,λ)Ij ,a ∫

t

−∞
dt′e−i(∑k 𝜖

0
Ik +𝜖0

r+h̵ωk)(t−t′)/h̵e−i𝜖
0
a(t′−t)/h̵(Óε ∗k,λ)a,r

f 000
t′ (I

r
j )

+∑
k,λ
∑
j,r
(J

μ
−kεk λμ)

1
ih̵ ∫

t

−∞
dt′e−i(∑k 𝜖

0
Ik +h̵ωk)(t−t′)/h̵(Óε ∗−k,λ)Ij ,r

f 000
t′ (I

r
j )

+∑
k,λ
∑
j,r
(Óε k,λ)Ij ,r

1
ih̵ ∫

t

−∞
dt′e

−i
⎛
⎝∑k≠j

′𝜖0
Ik +h̵ωk+𝜖0

r
⎞
⎠
(t−t′)/h̵

(J
μ
kε
∗
k λμ)f

000
t′ (I

r
j ), (32)

with ⟨Ij Iℓ∥r s⟩ representing the instantaneous Coulomb-exchange interaction among four MOs Ij, Iℓ, r, and s (in the physicists’ notation).
By the symbol Δ̂vpf 000

t (I), we separated out contributions that purely arise from vacuum polarization and does not have direct effects on the
dynamics of molecular electrons. It reads

Δ̂vpf 000
t (I) =

1
2∬

d3xd3yJ0
(x)

1
∣x − y∣

J0
(y)f 000

t (I) −
1
2
(ih̵)2

∬ d3xd3ySF
(x, t; y, t − 0)SF

(y, t − 0; x, t)
1
∣x − y∣

f 000
t (I)

+∑
k,λ
(Jν

−kεk λν)
1
ih̵ ∫

t

−∞
dt′e−i(∑k 𝜖

0
Ik +h̵ωk)(t−t′)/h̵(J

μ
kε
∗
k λμ)f

000
t′ (I)

+∑
k,λ

1
ih̵ ∫

t

−∞
dt′e−i(∑k 𝜖

0
Ik)(t−t

′)/h̵
∑
r,a
(Óε ∗k,λ)rae

−i𝜖0
a(t′−t)/h̵(Óε k,λ)are

−i𝜖0
r(t−t′)/h̵e−iωk(t−t′)f 000

t′ (I), (33)

which will be discussed later; below we concentrate on the terms of
dynamical relevance.

Equation (32) contains a number of self-interaction terms,
the Coulombic as well as the transversal photon exchange inter-
actions. These are apparently divergent, and we need appropriate
renormalization to obtain a meaningful result.

We first combine two transversal self-interaction terms in
Eq. (45) to define a quantity Σtr

1LIj ,s(t − t
′
),

Σtr
1LIj ,s(t − t

′
)

=∑
k λ
⟨φIj ∣[θ(t − t

′
) ∑
r∈Λ+
Óε k,λ∣φr⟩e

−i(𝜖0
r+h̵ωk)(t−t′)/h̵⟨φr ∣Óε ∗k,λ

− θ(t′ − t) ∑
a∈Λ−
Óε ∗k,λ∣φa⟩e

−i(𝜖0
a−h̵ωk)(t′−t)/h̵⟨φa∣Óε k,λ]∣φs⟩, (34)

and its Fourier transformation

Σtr
1LIj ,s(ω) =

q2
e

Vol.∑k
∫ d3x∫ d3yφ†

Ij(x)α
ıSF
(x, y;ω − ωk)α

×{δı −
kık
k2 }

4πc2h̵
2ωk

eik⋅(x−y)φs(y)

= ih̵cq2
e ∫

d4k
(2π)4 ∫ d3x∫ d3yφ†

Ij(x)α
ıSF
(x, y;ω − ck0

)α

×{δı −
kık
k2 }

4π
k2 + iη

e−ik(x−y)φs(y), (35)

where η represents an infinitesimal positive constant and the mean-
field propagator SF in the MO representation expands as

SF
(x, y;ω) = ∑

r∈Λ+

φr(x)φ†
r (y)

h̵ω − 𝜖0r + iη
+ ∑

a∈Λ−

φa(x)φ†
a(y)

h̵ω − 𝜖0a − iη
. (36)

We then combine the Coulombic self-interaction contribution as
well, to obtain

(Σ1L(ω))Ij ,s = ih̵cq
2
e ∫

d4k
(2π)4 ∫ d3x

× ∫ d3yφ†
Ij(x)α

μSF
(x, y;ω − ck0

)αν

× [δ0
μδ

0
ν

4π
k2 + (1 − δ0

μ)(1 − δ
0
ν){δμν −

kμkν
k2 }

4π
k2 + iη

]

× e−ik(x−y)φs(y). (37)

Self-energy renormalization using the Coulomb gauge is formulated
in Refs. 80 and 81, and we may well use these results. For simplicity
of discussion, however, we here assume that the final result should
be invariant with respect to the choice of the gauge, and we replace
the photon propagator by the Feynman gauge propagator,

(Σ1L(ω))Ij ,s = ih̵cq
2
e ∫

d4k
(2π)4 ∫ d3x∫ d3yφ†

Ij(x)α
μ

×SF
(x, y;ω − ck0

)αν
4πημν
−k2 − iη

e−ik(x−y)φs(y)

= ∫ d3x∫ d3yφ†
Ij(x)Σ1L(x, y;ω)φs(y), (38)
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where Σ1L(x, y; ω) is the one-loop electronic self-energy constructed from the Hartree-Fock propagator. Apparent divergence in Σ1L(x, y; ω)
can be renormalized using the standard procedure by subtracting the counter terms, which leaves a finite contribution Σfin.

1L (x, y;ω). Formal
expression of the finite part of the single-loop self-energy can be written as

Σfin.
1L (x, y) = ih̵cq2

eα
μSF(x, y)ανDμν(x, y) − βδmc2δ4

(x − y) − Z2(cαμih̵∂μ −W loc
HF(x) − βmc2

)δ4
(x − y)

= ih̵cq2
eα

μSF0(x, y)ανDμν(x, y) − βδmc2δ4
(x − y) − Z2(cαμih̵∂μ − βmc2

)δ4
(x − y)

+ ih̵c∫ d4ξαμSF0(x, ξ)W loc
HF(ξ)S

F
0(ξ, y)ανDμν(x − y) + Z2W loc

HF(x)δ
4
(x − y)

+ ih̵c∫ d4ξ∫ d4ηαμSF0(x, ξ)W loc
HF(ξ)S

F
(ξ,η)W loc

HF(η)S
F
0(η, y), (39)

where SF0 is the free-electron propagator and δmc2 and Z2 are
the mass and field-renormalization constants.2 Detailed discus-
sion of the self-energy, including its numerical calculation proce-
dure, is found in a number of excellent reviews including Refs. 7
and 82.

We next consider terms including Jμ, which arises from the
vacuum polarization. The two terms with (Jν

−kεkν) or its conjugate
but not the both describe scattering of molecular electrons by the
current Jν, as are schematically shown in Figs. 1(d) and 1(e). In
order to get better insight, we introduce the following potential field
arising from Jμ:

Vvp
μ

tr
(x, t)αμ =

1
ih̵c ∫

d4ξ∑
k,λ
Óε k,λ(x)e

−iωk(t−ξ0/c)ε∗k,λμJ
μ
(ξ)e−ikξ .

(40)
Indeed, the two scattering terms in Eq. (32) essentially reduce to
scattering by Vvp

μ. Apparent complication arises from formal dis-
tinction of the time ordering of the source term (Jμ) and the
scattering event (Óε kλ), as well as existence of the upper limit of
the integration range in Eq. (32). Assuming approximate station-
arity of Jμ, we therefore should be able to replace those two
terms by Vvp

μ. We further combine the Coulombic contribution to
Eq. (40) as

FIG. 1. Schematic view of transversal photon exchange interactions included in
Eq. (32) [(a)–(e)] and Eq. (33) [(f) and (g)]. Arrows represent electrons where
upward and downward lines indicate positive and negative energy states, respec-
tively. Wavy lines represent transversal photons. Circles attached with a single
photon line, or “tadpoles,” which appear in (d)–(f) represent the vacuum expecta-
tion values of the current arising from the vacuum polarization. In each diagram,
time flows upward and the upper vertices correspond to time t, while the lower
ones correspond to t′ of Eqs. (32) and (33).

Vvp
μ(x, t)αμ =

1
ih̵c ∫

d4ξ∑
k,λ
(Óε k,λ(x)e

−iωk(t−ξ0/c)ε∗k,λνJ
ν
(ξ)e−ikξ

+ eik⋅(x−ξ)
4π
k2 J0

(ξ)δ(t − ξ0
/c))

= ∫ d4ξ∫
d4k
(2π)4 α

μ
[δ0

μδ
0
ν

4πq2
e

k2 + (1 − δ0
μ)(1 − δ

0
ν)

×{δμν −
kμkν
k2 }

4πq2
e

k2 + iη
]Jν
(ξ)e−ik(x−ξ). (41)

Applying the same argument as Eq. (38), we can replace the square
bracket in Eq. (41) by the corresponding expression in the Feynman
gauge, −4πq2

eημν/(k2 + i0). We can then combine it into the self-
energy as

Σfin.
(x, t; x′, t′) = Σfin.

1L (x, t; x′, t′) + δ3
(x − x′)δ(t − t′)Vvp

μαμ(x, t).
(42)

We finally discuss the vacuum polarization term we separated
out as Eq. (33). It consists of two types of interaction, the Coulom-
bic and the transversal photon exchange, and each has direct and
exchangelike terms [see Figs. 1(f) and 1(g)]. A tricky point is that
some of those terms have apparent dependence on the zeroth elec-
tronic energy, and it includes convolution with f 000

t (I). We can,
however, separate it by taking account of time dependence of the
amplitude, ft(I) ∝ e−i∑k 𝜖

0
Ik and extending the time integration to

∞ to rewrite it as

Δ̂vpf 000
t (I) ≈ ΔE

vpf 000
t (I), (43)

where ΔEvp is the vacuum energy shift,

ΔEvp
= −ih̵∫ dt′ ∫ d3x′ich̵∫

d4k
(2π)4 [δ

0
μδ

0
ν

4πq2
e

k2 + (1 − δ0
μ)(1 − δ

0
ν)

×{δμν −
kμkν
k2 }

4πq2
e

k2 + iη
](Tr(αμSF(x, y)ανSF(y, x))

+ Tr(SF(x, t − 0; x, t)αμ)Tr(SF(y, t′ − 0; y, t′)αν))e−ik(x−y),

(44)
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where the square bracket can be replaced by the Feynman gauge expression, −4πq2
eημν/(k2 + i0). Although replacement Eq. (43) still lacks

theoretical rigor, Eq. (44) is a formally correct expression for the one-loop vacuum energy shift in QED. Furthermore, as such terms only
contribute to a phase factor of the system’s wavefunction, we hereafter drop this term for simplicity.

Thus, we can now rewrite Eq. (32) as

ih̵
∂

∂t
f 000
t (I) =∑

k
𝜖0

Ik f
000
t (I) −∑

j
(W loc

HFj)Ij ,r
f 000
t (I

r
j ) +

1
2∑j≠ℓ
⟨Ij Iℓ∥r s⟩f

000
t (I

rs
jℓ)

+∑
j≠ℓ
∑
k λ
∑
r,s
(Óε k λ)Ijr ∫

t

−∞
dt′e

−i
⎛
⎝∑k≠j

′𝜖0
Ik +𝜖0

r+h̵ωk
⎞
⎠
(t−t′)/h̵

(Óε ∗k λ)Iℓsf
000
t′ (I

rs
jℓ)

+∑
j,s
∬

t

−∞
dτ′1dτ

′
2{δ(τ

′
1 − (t − 0)) + δ(τ′2 − (t − 0))}e

−i∑
k≠j
′𝜖0

Ik (t−τ
′
<)/h̵

× e−i𝜖
0
Ij (t−τ

′
1)Σfin.

Ij ,s (τ
′
1, τ′2)e

−i𝜖0
s(τ′2−τ

′
<)/h̵f 000

τ′< (I
s
j), (45)

where the self-energy term is defined as

Σfin.
i,j (τ

′
1, τ′2) ≡∬ d3xd3x′φi(x)†Σfin.

(x, τ; x′, τ′)φj(x′), (46)

and the delta functions in the curly bracket indicate that either τ′1 or τ′2 is to be fixed to t (with t − 0 being an infinitesimal time before t) and
τ′< represents the smaller one of τ′1 and τ′2. We can also rewrite the real-space expression Eq. (26) as

ih̵
∂

∂t
F 000

t ({x}) =
⎡
⎢
⎢
⎢
⎢
⎣

∑
j
(ĥmf

j −W
loc
HF j) + VC

⎤
⎥
⎥
⎥
⎥
⎦

F 000
t ({x})

+∑
j≠ℓ
∑
k λ
(Λ+
Óε k,λ(xj))( j) ∫

t

−∞
dt′e−iωk(t−t′)

∫ ∏
i
d3x′iS>(xi, t; x′i , t′)(Λ+

Óε ∗k,λ(xℓ))(ℓ)F
000
t′ ({x

′
})

+∑
ℓ
∬

t

−∞
dτ′1dτ

′
2∬ d3ξ′1d

3ξ′2{δ(τ
′
1 − (t − 0)) + δ(τ′2 − (t − 0))}∫ ∏

k
d3x′kS

F
(xℓ, t; ξ′1, τ′1)Σ

fin.
(ξ′1, τ′1; ξ2, τ′2)

×SF
(ξ′2, τ′2; x′k, τ′<)∏

k≠ℓ

′SF
(xk, t; x′k, τ′<)F 000

τ′< ({x
′
}). (47)

The real-time expression of the self-energy operator Eq. (39) repre-
sents “fluctuation” (i.e., emission and absorption of virtual photons)
induced by the radiation field. Assuming such effects can essentially
be included in the form of energy correction, we can approximately
rewrite Eq. (45) into a simpler form,

ih̵
∂

∂t
f 000
t (I) =∑

j
(ĥmf −W

loc
HFj)Ij ,r

f 000
t (I

r
j ) +

1
2∑jℓ
⟨Ij Iℓ∥r s⟩f

000
t (I

rs
jℓ)

+∑
j≠ℓ
∑
k λ
∑
r,s
(Óε k λ)Ijr ∫

t

−∞
dt′e

−i
⎛
⎝∑k≠j

′𝜖0
Ik +𝜖0

r+h̵ωk
⎞
⎠
(t−t′)/h̵

× (Óε ∗k λ)Iℓsf
000
t′ (I

rs
jℓ) +∑

j
ΣIj ,rf

000
t (I

r
j ), (48)

where Σℓ,m is a time-independent matrix, defined by the Fourier
transformation of the self-energy operator as

Σℓ,m =
1
2 ∫

d3x∫ d3yφ†
ℓ(x)[Σ

fin.
(x, y; 𝜖0

ℓ)

+Σfin.
(x, y; 𝜖0

m)]φm(y), (49)

which is seen to converge to an appropriate expression83 in
the static limit. We thus have removed the divergent terms in
Eq. (47). Although our results Eq. (48) or its real-space represen-
tation Eq. (47) are aimed at relativistic dynamics, they have inter-
esting applications in the nonrelativistic limit as is discussed in
Appendix B.

In this paper, we have limited our discussion to the lowest order
expansion. The higher order expansions [i.e., formulation taking
account of higher orders of Hel

int appearing in the RHS of Eq. (12)]
can be in principle obtained in the same framework although it is
not straightforward. We show a sketch of the higher order exten-
sions in Appendix C, and the full expressions will be worked out in
future study.

B. Coupling to nuclear dynamics
We next consider inclusion of nuclear degrees of freedom.

We start with the formal second-quantized representation. We
disregard internal structures of the atomic nuclei and assume
that all nuclei in the system are distinguishable nonrelativis-
tic particles. The nuclear Hamiltonian Eq. (8a) can formally be
rewritten as
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Hnuc = ∫ d3R∑
a
χ̂†a(R)[

1
2Ma
(
h̵
i
∇−

Za∣e∣
c

Atr
)

2

]χ̂a(R)

+
1
2∑a<b

∬ d3Rd3R′χ̂†a(R)χ̂
†
b(R

′
)
ZaZbe2

∣R − R′∣
χ̂b(R

′
)χ̂a(R),

(50)

with χ̂a (χ̂†a ) representing a formal annihilation (creation) opera-
tor of the ath nucleus. We then extend our definition of the TD
amplitudes as

F 000
t ({x},R) ≡ ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe, t)

× χ̆A1(R1, t) . . . χ̆ANn
(RNn , t)∣Ψint

t ⟩. (51)

A tricky aspect in the present procedure is that our definition
of the TD amplitudes requires the zeroth order Hamiltonian in
order to specify the interaction representation. We therefore first
assume a fictitious potential function U(r, t) which mimics the true
electron-nucleus Coulombic interaction potential Ûnuc(r) defined as
an operator,

Ûnuc(r) =∑
a
∫ d3R

qeZa∣e∣
∣r − R∣

χ̂†a(R)χ̂a(R). (52)

Assuming such a space-time function U(r, t), the “mean-field”
Hamiltonian is redefined as

hel
mf[U] = cα ⋅

h̵
i
∇ + βmc2 + U(r, t) + W loc

HF(x), (53)

and we can set the zeroth order Hamiltonian H0 along with the
correction term Hint as

H0 = Hnuc + Hel
mf[U] + Hrad, (54a)

Hint = Hel−nuc + Hel
int, (54b)

with

Hel
mf = ∫ d3rψ†

(r)hel
mf[U]ψ(r) (55)

and

H′el−nuc ≡ ∫ d3rψ†
(r)ψ(r)[Ûnuc(r) −U(r)], (56)

where the latter one H′el−nuc represents the difference between the
fictitious field and the true electron-nucleus potential. Having thus
defined the zeroth order Hamiltonian, the extended TD ampli-
tude given by Eq. (51) is now well-defined. We can then derive an
equation of motion for F 000

t ({x};R) as

ih̵
∂

∂t
F 000

t ({x};R) = ⟨0∣[ψ̆(x1, t) . . . ψ̆(xNe , t)χ̆A1(R1, t) . . . χ̆ANn
(RNn , t),Hnuc + H′el−nuc]∣Ψ

int
t ⟩

+ ⟨0∣[ψ̆(x1, t) . . . ψ̆(xNe, t),Hmf[U] + Hrad]χ̆A1(R1, t) . . . χ̆ANn
(RNn , t)∣Ψint

t ⟩

+ ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe, t)χ̆A1(R1, t) . . . χ̆ANn
(RNn , t)Hel

int∣Ψ
int
t ⟩

=
⎡
⎢
⎢
⎢
⎣
∑
a

−h̵2

2Ma
∇

2
a +

1
2∑a≠b

ZaZbe2

∣Ra − Rb∣

⎤
⎥
⎥
⎥
⎦
F 000

t ({x};R) + Hmf[U]F 000
t ({x};R)

+∑
a
∑
k λ

Za∣e∣
Mac

h̵
i
∇a ⋅ εk λ(Ra)⟨0∣ψ̆(x1, t) . . . ψ̆(xNe, t)ak λχ̆A1(R1, t) . . . χ̆ANn

(RNn , t)∣Ψint
t ⟩

+∑
a
∑
k λ

(Za∣e∣)2

2Mac2 ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)(A
tr
)

2χ̆A1(R1, t) . . . χ̆ANn
(RNn , t)∣Ψint

t ⟩

+ ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)χ̆A1(R1, t) . . . χ̆ANn
(RNn , t)∫ d3rψ̆†

(r)ψ̆(r)(Ûnuc −U)∣Ψint
t ⟩

+ ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe, t)χ̆A1(R1, t) . . . χ̆ANn
(RNn , t)Hel

int∣Ψ
int
t ⟩. (57)

We find that commutation of the nuclear annihilation operators
with Hnuc formally yields additional couplings to the (Ne, 0, 1) sector
although such radiation-nucleus coupling terms in general should
be much smaller in amplitude compared to its electronic counter-
part because of large masses of the atomic nuclei and/or slowness
of the nuclear motion. Below we only keep the first order coupling
terms, which are proportional to h̵∇a/i, whereas we neglect the sec-
ond order terms, which are proportional to (Atr

)
2. Terms arising

from Hel
int can be expanded in the same manner as we did in Sub-

section III A. The remaining terms are expressed in terms of the
derivatives of the (Ne, 0, 0) sector amplitude.

We therefore find that the amplitude F 000
t ({x};R) behaves as

a “first-quantized nuclear wavefunction” on which Hnuc operates as
a differential operator. We therefore rewrite the definition of the TD
amplitude as

F 000
t ({x};R) = ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)∣Ψ

int
t (R)⟩, (58)

in which the electronic mean-field Hamiltonian is constructed with
the use of the true electron-nucleus interaction, Hmf(R) = Hmf[Ûnuc]
(with the operator Ûnuc rewritten in the first-quantized operator
form), so that we no longer need the fictitious field U. The above
definition can be naturally extended to other sectors as
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F001
t ({x};k λ;R) = ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)ak λ(t)∣Ψ

int
t (R)⟩ (59)

and

F111
t ({x}; yh, yp; ih, jp;R) = ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)ak λ(t)(ψ̆<(yh, t))

ih
(ψ̆>(yp, t))

jp
∣Ψint

t (R)⟩, (60)

and so on. The equation of motion for F 000
t ({x};R) reads

ih̵
∂

∂t
F 000

t ({x};R) =
⎡
⎢
⎢
⎢
⎢
⎣

∑
j
ĥmf
(R)j + V̂C −∑

j
W loc

HFj(R)
⎤
⎥
⎥
⎥
⎥
⎦

F 000
t ({x};R) +∑

a

1
2Ma
(
h̵
i
∇a − ih̵Xa)

2

F 000
t ({x};R) + K

+
1
2∑a≠b

ZaZb∣e∣2

∣Ra − Rb∣
F 000

t ({x};R) +∑
a
∑
k λ

Za∣e∣
Mac
[
h̵
i
∇a − ih̵X(a)] ⋅ εk λ(Ra)F001

t ({x};k λ;R)

+∑
k λ

⎛

⎝
∑
j
(Λ+
Óε k λ(xj))( j) + J

μ
−kεk λμ

⎞

⎠
F001

t ({x};k λ;R) +∑
k λ
∑
ihjp

∫ d3y(Óε k λ(y))ihjpF
111
t ({x}; y, y; ih, jp;k λ;R). (61)

Since we have switched from the fictitious U to the true Ûnuc, the electronic wavefunctions depend explicitly on the nuclear coordinate R.
We therefore have included the derivative coupling operator Xa, which acts on electronic variables in the manner (Xa)ij = ⟨φi∣∂/∂Ra∣φj⟩ and
possible mass-polarization terms, K. The latter one K represents a set of coordinate-frame dependent differential operators arising from the
coupling to the nuclear dynamics; in the center of the mass of the nuclei (CMN) frame, for example, there should be mass-polarization
terms as we discuss in Appendix D. For simplicity, however, we here use the Cartesian coordinates in the laboratory frame, where K
vanishes.

We next consider the equation of motion of F001
t ({x };k λ;R), which reads

ih̵
∂

∂t
F001

t ({x};k λ;R) = Hel,rad
0 (R)F001

t ({x};k λ;R) +
⎡
⎢
⎢
⎢
⎣
∑
a

1
2Ma
(
h̵
i
∇a − ih̵Xa)

2

+
1
2∑a≠b

ZaZbe2

∣Ra − Rb∣

⎤
⎥
⎥
⎥
⎦
F001

t ({x};k λ;R)

+∑
a
∑
k λ

Za∣e∣
Mac
[
h̵
i
∇a − ih̵X(a)] ⋅Óε ∗k λ(Ra)F 000

t ({x};R) + (∑
ℓ

(Λ+
Óε ∗k λ(xℓ))(ℓ) + Jν

kεk λν)F
000
t ({x};R)

+ (terms arising from Hel
int
′
) + (terms that do not belong to the (Ne, 0, 0) or (Ne, 0, 1) sector), (62)

and that for F111 becomes

ih̵
∂

∂t
F111

t ({x}; yh, yp; jh, jp;kλ;R) = Hel,rad
0 (R)F111

t ({x}; yh, yp; jh, jp;k λ;R)

+
⎡
⎢
⎢
⎢
⎣
∑
a

1
2Ma
(
h̵
i
∇a − ih̵Xa)

2

+
1
2∑a≠b

ZaZbe2

∣Ra − Rb∣

⎤
⎥
⎥
⎥
⎦
F001

t ({x};k λ;R)

+ (Λ+
Óε ∗k,λ(yh)Λ

−
)
jpjh
δ3
(yh − yp)F

000
t ({x};R) −∑

ℓ

(Λ+
Óε ∗k,λ(xℓ)Λ

−
)
iℓjh
δ3
(xℓ − y)F 000

t ({x};R)∣iℓ→jp

+ (terms that do not belong to the (Ne, 0, 0)or (Ne, 1, 1) sector) + (terms arising from Hel
int
′
). (63)

In addition to those belonging to other sectors than (Ne, 0, 0), (Ne, 0, 1), or (Ne + 1, 1, 1), we neglected all terms arising from nucleus-
radiation couplings as these describe the emission of radiation by the nuclear charge current, which should be negligible due to slowness of
the nuclear motion (∣Ṙa∣ ≪ c). Switching to the MO representation and solving Eqs. (62) and (63), we obtain a closed equation of (Ne, 0, 0)
amplitude,
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ih̵
∂

∂t
f 000
t (I;R) =∑
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1
2Ma
(
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∇a − ih̵X a)

2

Ij ,r
f 000
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r
j ;R) +

1
2∑a≠b
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∣Ra − Rb∣
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+
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Ij (t−τ
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′
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+∑
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Za∣e∣
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dt′e−iH0(t−t′)/h̵(Óε ∗k λ)Ijrf
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(Óε k λ)Ijr ∫

t
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dt′e−iH0(t−t′)/h̵ε∗k λ(Rb) ⋅

Zb∣e∣
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[
h̵
i
∇b − ih̵Xb]f

000
t′ (I

r
j ;R), (64)

where we neglected terms that contain nucleus-radiation coupling
to the second order. Equation (64) is to be compared to the previous
result [Eq. (45)], where the nuclear dynamics is absent. In addition
to the nuclear kinematic energy term, which is in the first term in
Eq. (64), we have additional terms that arise from electron-nucleus
interaction by the transversal photon exchange. Although we admit
those terms should be small in general by the factor ∣Ṙ∣/c, it gives the
lowest order relativistic correction to the electron-nucleus interac-
tion due to relativistic electronic motion. We also note that nuclear
derivative operators in Eq. (64) accompany the derivative couplings
ih̵X. Since the amplitude is explicitly dependent on the nuclear coor-
dinates, appearance of the derivative coupling terms is a manifesta-
tion of the “gauge invariance,” or covariance of the expression with
electronic basis set transformations.

Equation (64) represents the main conclusion of this subsec-
tion. We also derive the corresponding equation in an external field
in Appendix E, where we show that the external field should for-
mally be put into H0 so that one can treat it in a nonperturbative
manner. Our formulation thus defines a Schrödinger-like equation
of motion in the equal-time representation (i.e., all coordinates shar-
ing the same timelike coordinate) of a many-body system; hence,
the space-time frame is the same as that of the conventional non-
relativistic many-electron theory. Also taking account of the fact
we are assuming the nuclear motion as nonrelativistic, we expect
that there should be no fundamental difficulty in integration of
our equation of motion, Eq. (64) using one of existing calculation
techniques. Yet, we propose in Appendix F a wavepacket imple-
mentation of the nuclear dynamics in an attempt to seek for a best
suited numerical algorithm for relativistic electron-nucleus coupled
dynamics.

For clarity of later discussion, we summarize the assumptions
we made in this formulation. First, we assumed (i) nonrelativistic
nuclear motion. The assumption is essential not only for describing
the nuclear kinematic term in the Schrödinger-like form in Eq. (64)
but also for treating nucleus-radiation coupling as a weak pertur-
bation. For laser-induced dynamics, this assumption puts a formal
upper limit of the laser intensity around ∼1022 W/cm2, assuming
λ = 800 nm and nuclear mass of order 103me.

Second, we truncated the higher order terms in the Tamm-
Dancoff expansion beyond the lowest order, which in turn implic-
itly assumes (ii) irrelevance of the higher order electron-radiation
coupled effects. Such assumption should be valid in models where

smallness of electron-radiation coupling suppresses the higher order
effects, but it would break down in unconventional types of dynam-
ics such as those discussed in Refs. 17–19, where higher order QED
effects play vital roles. This assumption (ii), in practice, may there-
fore impose much lower limit than (i) does to the external field
intensity acceptable in our formulation. Relevance of higher order
effects is, however, not clear just from an order estimate. A desirable
strategy is therefore to start from a parameter range ∼1016 W/cm2 to
∼1018 W/cm2 and critically examine the validity of the lowest order
treatment.

We, however, note that the absence of higher order effects in
assumption (ii) refers to the “dynamical” electron-radiation cou-
pling such as those arising from physical processes represented by
more complex Feynman diagrams. It should not be confused with
coupling with “external” radiation fields such as ultrastrong laser
fields, which can be included in H0 and solved by the means of
the time-dependent Schrödinger-like equation [Eq. (64), also see
Appendix E].

We have also mentioned about the gauge invariance, which we
used to simplify the expression of the photon propagator, Coulomb
plus transversal photon to the Feynman gauge propagator [see, for
example, Eqs. (37) and (38) and related discussions]. We do not con-
sider it as an essential assumption since numerical studies indeed
show gauge independence of the final results,80,81 let alone differ-
ence in the contribution from each individual diagram, and there is
also an established technique to directly evaluate the Coulomb gauge
propagator.80,81

Another feature of our present approach is that our work-
ing equation [Eq. (64)] is a direct extension of the conventional
time-dependent Schrödinger equation (TDSE) approach in the sense
it reduces to TDSE in the limit of vanishing dynamical electron-
radiation coupling. We therefore expect that we can apply it to those
models where the conventional TDSE approach provide at least
qualitatively reasonable results in order to obtain an insight on how
the relativistic effects affect the dynamics.

IV. SUMMARY AND DISCUSSIONS
In this report, we have developed a nonperturbative approach

for relativistic electron-nucleus coupled dynamics. We consider that
this approach has potential applications to the electron dynamics
induced by ultraintense IR laser fields.
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Our approach essentially reduces to a set of effective
Schrödinger-like equations of equal-time amplitudes of the system;
hence, it can be combined with nonperturbative calculation tech-
niques including grid-type time-dependent wavepacket approaches.
Possible limitations yet encountered in this approach are rooted
to the problems inherent to the Tamm-Dancoff formulation.67,70

Nonetheless, the present theory has resolved difficulties faced in
application of QED to a marked extent.

The formulation presented here only uses the lowest order
expansion, which reproduces two of the essential features in the
quantum electrodynamics, retarded and/or energy-dependent inter-
actions among electrons and self-energies arising from the self-
interaction of electrons. However, we need higher order expansions
to include other types of QED effects including vertex corrections
and multiple scatterings. Although we included a sketch of such a
formulation in Appendix C, full formulation is to be discussed in
another paper.

As we discussed in our closely related publication,12 the per-
formance in practical calculations should depend strongly on the
quality of electronic wavefunctions to be used, which are supposed
to take into account an electron-electron correlation. Compared
to the path-integral formulation,12 the present formulation, which
derives a Schrödinger-like equation for a many-body wavefunction
in the equal-time representation, has better similarity and affinity to
the conventional Hamiltonian formalism of nonrelativistic theory,
which might work favorably. We therefore can rest on many com-
putational tools40 and techniques41,42 well developed in quantum
chemistry.

Another theoretical interest is to make a close comparison
between our obtained equation [Eq. (45)] in the static limit and
existing static QED theory such as the eQED approach.23,24 We can
indeed find rough correspondence to their theory by performing
the Fourier transformation to those integral kernels, as we did in
Eq. (49). Nevertheless, partly because it is not very straightforward to
define a strict static limit of Eq. (45), a detailed comparison is beyond
our current scope and left for future study.

Notation

● We use the sign convention (1, −1, −1, −1). Symbol ημν rep-
resents the four-dimensional diagonal metric tensor unless
specified otherwise; η00 = 1, η11 = η22 = η33 = −1. Gen-
eral four-dimensional indices are denoted by Greek letters
μ, ν, etc., but Latin letters i, j, k, etc., are also used when we
emphasize that they are spacelike components.

● ∂μ describes the covariant derivatives; ∂μ ≐ (∂/(c∂t), ∂/∂x),
whereas vectors such as Aμ represents covariant vectors
Aμ ≐ (A0, −A).

● qe is the electronic charge, which takes a negative value;
qe = −|e|.

● Subscripts i and j attached to Fermionic operators and
matrices represent the spinor indices.

● We use the Gauss unit for electromagnetic field; the
Coulomb interaction between two charges Q1 and Q2 sep-
arated by distance r becomes Q1Q2/r, and the fine-structure
constant is e2

/h̵c ≈ 1/137.
● We exclusively use spinor matrices αμ ≐ (1, α) and β = γ0

instead of γμ. Slashed symbols, such as Óε , are also defined

as contraction of four-vector and alpha-matrices; Óε ≡ αμεμ
[see Eq. (16)].

● Symbol ≷ attached as a subscript or superscript of an elec-
tronic annihilation or creation operator specifies the energy
sector; for example, ψ> and ψ< represent a positive-energy
electron annihilation operator and a negative-energy elec-
tron (positron) creation operator, respectively.

● Symbol T represents the time-ordering operator unless spec-
ified otherwise.

● Symbol R represents the nuclear coordinate, which is a 3Nn
dimensional vector. The mass and charge of the ath nucleus
are denoted by Ma and Za|e|, respectively.

● Symbol akλ represents the annihilation operator of a
(transversal) photon with the wavevector k and polarization
λ. The associated normalized polarization vector is denoted
by eμk λ.
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APPENDIX A: DETAILS OF THE TAMM-DANCOFF
EXPANSION

We here describe some details of the Tamm-Dancoff expan-
sion. As a simple example, we show the derivation of Eq. (15), the
time evolution equation of an (Ne, 0, 0) sector amplitude.

We first recall the definition ofF000
t in Eq. (11). Since each oper-

ator is in the interaction representation, ψ̆(x, t) = e
i
h̵H0tψ(x)e

−i
h̵ H0t ,

its time-derivative yields commutator with H0, as shown in the first
term in the RHS of Eq. (12). It then contributes to the mean-field
single-particle Dirac Hamiltonian term H0F 000

t ({x}) in the RHS of
Eq. (15). On the other hand, the state vector appearing in the defi-
nition of F 000

t [Eq. (11)] is in the interaction representation. Hence,
its time derivative yields ih̵ ∂

∂t ∣Ψ
int
t ⟩ = Hint(t)∣Ψint

t ⟩, which appears in
the second term in the RHS of Eq. (12). All Fermionic and Bosonic
creation operators appearing in Hel

int(t) are then moved leftward
until they come next to the bra-vector ⟨0|, where they eliminate the
vacuum state. During this operation, the Fermionic (Bosonic) anti-
commutation (commutation) rules between equal-time operators
apply.

Following the main text, we consider the transversal part, Hel
int

tr
,

in the interaction Hamiltonian. We see that Hel
int

tr
is decomposed as

Hel
int

tr
(t) = ∫ d3ξ(ψ†

>(ξ, t) + ψ†
<(ξ, t))∑

k λ
(Óε k λ(ξ)âk λ(t)

+Óε ∗k λ(ξ)â
†
k λ(t))(ψ>(ξ, t) + ψ<(ξ, t)). (A1)

It then follows that, in the equation of F 000, all the “photon cre-
ation” operators trivially move to the left end and vanish, whereas
all the photon annihilation operators survive. We next see that, in
the electronic operators, ψ†

>(ξ, t) and ψ<(ξ, t) contain the creation
operators. We see that the positron creation operator ψ<(ξ, t) moves
to the left end and vanishes, whereas the electron creation opera-
tor ψ†

>(ξ, t) anticommutes with ψ̆(xj, t) to yield Λ+δ3(xj − ξ); hence,
there appears Óε kλ(xj)ψ>(xj, t) in the position of the jth operator,
yielding a vector in the 001 sector.
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We also see that the remaining set of operators ∫d3ξψ†
<(ξ, t)

αμψ>(ξ, t)∑k λÓε kλ(ξ)âk λ(t) does not vanish and yields state vec-
tors in the 111 sector.

APPENDIX B: SPIN-ORBIT AND SPIN-SPIN COUPLING
IN THE NONRELATIVISTIC LIMIT

Although it is not our major task, the low-energy effective
theory with nonrelativistic two-component approximation gives
by-products which are certainly useful in many applications.

As is suggested in the textbook of Bethe and Salpeter,84 an
effective Hamiltonian for interacting particles can be derived from
the Tamm-Dancoff expansion. First we note that, in contrast to
the remark made in Ref. 84 that (standard) TDA only repro-
duces the Coulombic term, our Tamm-Dancoff-like expansion does
indeed recover those equations that include transversal interaction
terms.

Following Ref. 84, we study an Ne-particle system in an external
vector field potential Vext

= ∑j v
ext
μ (αμ)( j),

ih̵
∂

∂t
F 000

t ({xi}) = [H0 + Vext + VC]F 000
t ({xi}) +∑

i
∫ ∏

m
d3x′m ∫ dτΣ(xi, t; x′i , τ)∏

j≠i

′K0
>(xj, t; x

′
j , τ)F 000

τ ({x
′
k})

+
c
2 ∫

t

−∞
dτ∑

i≠j
∫ ∏

m
d3x′m ∫

d4k
(2π)4 e

−ik(xi−x′j ) 4πe2

k2 + iη
{δℓ,m −

kℓkm
k2 }

× (αℓK0
>(xi, t; x

′
i , τ))(i)(K

0
>(xj, t; x

′
j , τ)α

m
)( j)∏

k≠i,j

′′K0
>(xk, t; x′k, τ)F 000

τ ({x
′
}), (B1)

which is a slight modification of our real-space equation (47), in
which we use, following Ref. 84 Sec. 39, the free-particle Hamilto-
nian as the zeroth order one; H0 = ∑j h

0
j +Hrad with h0

j = −ich̵α ⋅∇j +
βmc2. The corresponding positive-energy propagator is denoted by
K0
>, which reads

K0
> = θ(t − t

′
)⟨x∣Λ+e−

i
h̵ ĥ0(t−t′)Λ+

∣x′⟩

= θ(t − t′)∑
σ
∫

d3p
(2πh̵)3 upσe

ip(x−x′)/h̵e−iεp(t−t
′)/h̵u†

pσ , (B2)

with upσeipx/ h̵ being the positive energy solution of h0 with spin-
projection σ and εp being its energy, εp ≡

√
c2p2 + m2c4. Assum-

ing the existence of its stationary solutions, we perform Fourier
transformation of Eq. (B1) to obtain

h̵ωF 000
ω ({p}) =∑

i
εpiF

000
ω ({p}) +∑

i
(Σ(pi,ω

(1)
i ))(i)

F 000
ω ({p})

+∑
i
∫

d3k
(2π)3 v

ext
μ (k)(α

μ
)( j)F

000
ω (

i
∨

pi − h̵k)

+
1
2∑i≠j

∫
d3k
(2π)3

4πe2

k2 F 000
ω (

i
∨

pi − h̵k,
j
∨

pj + h̵k)

−
1
2∑i≠j

∫
d3k
(2π)3

4πe2

k2 − (ω(2)i (k)/c)
2 {δℓ,m −

kℓkm
k2 }

× (αℓ)
(i)
(αm)( j)F

000
ω (

i
∨

pi − h̵k,
j
∨

pj + h̵k), (B3)

where we introduced frequencies ω(1)i ≡ (ω −∑k εpk) + εpi and
ω(2)i (k) ≡ (ω −∑k εpk) + εpi − εpi−h̵k. Equation (B3) can be seen as
an implicit eigenvalue problem, where one solves an eigenvalue ω
by ω-dependent matrix in the RHS. We also see that by neglecting

the frequency dependent term (ω(2)i (k)/c)
2
, the transversal photon

contribution reduces to

−
1
2∑i≠j

∫
d3k
(2π)3

4πe2

k2 {δℓ,m −
kℓkm
k2 }(α

ℓ
)
(i)
(αm)( j)

×F 000
ω (

i
∨

pi − h̵k,
j
∨

pj + h̵k), (B4)

which is equivalent to the momentum representation of the Breit
term in Ref. 84 Eq. (38.10). Equation (B3) therefore provides a
small extension of Eq. (38.10) in Ref. 84, with an additional self-
energy terms and frequency dependency in the transversal photon-
exchange interactions.

For low-energy dynamics |E − mc2|≪ mec2, we can apply the
same technique as Ref. 84 to reduce it to 2N-component repre-
sentation. Even under such an assumption, however, the frequency
dependence of the transversal interaction is not necessarily negligi-
ble if the frequency-dependent factor ω(2)i (k)/c is not negligible in
comparison with a typical value of k, which is the inverse of the typi-
cal length scale of the electronic wavefunction. Assuming inner core
electron, such an inverse length scale is of order ∼ (aB/Z)−1, with
aB being the Bohr radius and Z being the (effective) atomic num-
ber. This implies the frequency condition h̵ω(2)i (k) ∼ Zh̵c/(aB),
which is usually much smaller than the “relativistic” energy scale
h̵ω(2)i (k) ∼ mc2.

As for Fω, we apply, following Ref. 84, general 4Ne-component
spinor transformation to F 000

ω as
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F 000
ω =∑

a1

∑
a2

⋅ ⋅ ⋅∑
C1

∑
C2

⋅ ⋅ ⋅
⎛

⎝
∏
j
Ξij ,aj
Cj

⎞

⎠
θC1 ,C2 ,...,CNe
a1 ,a2 ,...,aNe , (B5)

where the indices of type aj take 0 or 1, whereas those of type Cj

take + or −. Symbol θC1 ,C2 ,...,CNe
a1 ,a2 ,...,aNe represents a 2Ne-component spinor,

which is labeled by an index C1,C2, . . . ,CNe and has 2Ne -dimensional
spinor index a1, a2, . . . , aNe . We also recall that, in our convention, ij
represents the jth (four-component) spinor index of the amplitude
F 000
ω . Four-by-two spinor matrices ΞC are given by

Ξ+(p) ≐ (
12

cp ⋅ σ/(mc2 + εp)
), (B6a)

Ξ−(p) ≐ (
− cp ⋅ σ/(mc2 + εp)

12
), (B6b)

with 12 representing the two-dimensional unit matrix. Positive
(negative) energy projection Λ+

p (Λ−p ) is defined as

Λ±p =
εp ± (cp ⋅ α + βmc2

)

2εp
, (B7)

with which we have

ΛC
pα

μΞC′(p′) = ΞC(p)αμCC′(p,p′), (B8)

where the explicit expression of αμCC′(p,p′) are found in Ref. 84
Eq. (16.12) [α0

CC′(p,p′) in our notation corresponds to ICC(p, p′)
in Ref. 84]. Here, we concentrate on the lowest order expansion with
respect to the ∣p∣/mec term of αμ+,+(p,p′), which are, according to
Eq. (16.14) in Ref. 84,

α0
++(p,p + h̵k) = 1 +

(σ ⋅ p)(σ ⋅ h̵k)
(2mc)2 , (B9a)

α++(p,p + h̵k) =
2p + h̵k + ih̵k×σ

2mc
. (B9b)

Substitution of expansion Eq. (B5) into Eq. (B3) and application of
positive-energy projection operator ∏j Λ

+
pj retaining only a single

component C1,C2, . . . ,CNe = + +⋯+, we obtain

∏
j
Λ+
pj h̵ΩΞ++⋯+({p})θ++⋯+

({p}) ≈∑
i
εpiΞ++⋯+({p})θ++⋯+

({p}) +∑
i
∫

d3k
(2π)3 v

ext
μ (k)Ξ++⋯+(p)(αμ+,+)(i)θ

++⋯+
({p})

+
1
2∑i≠j

∫
d3k
(2π)3

4πe2

k2 Ξ++⋯+(p)(α0
++(pi,pi − h̵k))(i)(α

0
++(pj,pj + h̵k))

( j)
θ++⋯+

(

i
∨

pi − h̵k,
j
∨

pj + h̵k)

−
1
2∑i≠j

∫
d3k
(2π)3

4πe2

k2 − (ω(2)i (k)/c)
2 Ξ++⋯+(p)∑

ℓ,m
{δℓ,m −

kℓkm
k2 }(α

ℓ
++(pi,pi − h̵k))(i)

× (αm++(pj,pj + h̵k))
( j)
θ++⋯+

(

i
∨

pi − h̵k,
j
∨

pj + h̵k), (B10)

where we have neglected the self-energy term whose contribution is
negligible in nonrelativistic limit and summation over spinor indices
is made implicit, that is, spinor products are to be understood as
∑a1
⋅ ⋅ ⋅∑aNe

Ξa1 ,...,aNe
++⋯+ θ++⋯+

a1 ,...,aNe . Equation (B10) only differs by the
retarded interaction from Ref. 84.

We next expand the retarded interactions. Substitution of
Eqs. (B9a) and (B9b) into the last term in the RHS of Eq. (B10) yields
the following three terms:

V(1)ij =
4πe2

k2 − (ω(2)i (k)/c)2

1
(mc)2

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

pi ⋅ pj −
(pi ⋅ k)(pj ⋅ k)

k2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

(B11a)

V(2)ij =
4πe2

k2 − (ω(2)i (k)/c)2

ih̵
(mc)2 {sj ⋅ (pi×k) − si ⋅ (pj×k)},

(B11b)

V(3)ij =
4πe2

k2 − (ω(2)i (k)/c)2

h̵2

(mc)2 {k
2si ⋅ sj − (si ⋅ k)(sj ⋅ k)},

(B11c)

which are then transformed into real-space representation as

V(1)ij =
e2

rij(mc)2 (pi ⋅ pj{e
iqrij +

1 − eiqrij

(qrij)2 + i
eiqrij

qrij
}

− (pi ⋅ nij)(pj ⋅ nij){eiqrij + 3i
eiqrij

qrij
+ 3

1 − eiqrij

(qrij)2 }), (B12a)

V(2)ij =
h̵2e2eiqrij

(mc)2r3
ij
(si ⋅ (pj×nij) − sj ⋅ (pi×nij))(1 − iqrij), (B12b)

V(3)ij =
h̵2e2

(mc)2

⎛

⎝
(si ⋅ sj)

8π
3
δ3
(rij) −

⎡
⎢
⎢
⎢
⎣
(si ⋅ sj)(1 − iqrij + (qrij)2

)
eiqrij

r3
ij

− 3(si ⋅ nij)(sj ⋅ nij)
⎛

⎝

eiqrij

r3
ij
− iq

eiqrij

r2
ij

+
q2

3
eiqrij

rij
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

′
⎞

⎠
, (B12c)

where q ≡ ω(2)i (k)/c, rij ≡ri − rj, and nij ≡ rij/∣rij∣, and the primed
bracket [⋯]′ indicates that the singularity of the expression in the
square bracket at the origin has been removed.84 We note that these
expressions reduce to static expressions in the limit ω→ 0 as
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V(1)ij =
e2

rij(mc)2 (pi ⋅ pj − (pi ⋅ nij)(pj ⋅ nij)), (B13a)

V(2)ij =
e2h̵2

(mc)2r3
ij
(si ⋅ (pj×nij) − sj ⋅ (pi×nij)), (B13b)

V(3)ij =
e2h̵2

(mc)2

⎛

⎝
(si ⋅ sj)

8π
3
δ3
(rij)−

⎡
⎢
⎢
⎢
⎣
(si ⋅ sj)

1
r3
ij
− 3(si ⋅ nij)(sj ⋅ nij)

⎤
⎥
⎥
⎥
⎦

′
⎞

⎠
.

(B13c)

A qualitative difference in our results [Eqs. (B12b) and (B12c)]
in contrast to its well-known static counterpart [Eqs. (B13b) and
(B13c)] is that the present expressions bear the longer-range terms
(with respect to spatial separation rij) arising from higher order
terms of qrij.

APPENDIX C: HIGHER ORDER EXPANSIONS IN THE
ELECTRON-RADIATION COUPLED DYNAMICS

Here, we discuss higher order expansions in the electron-
radiation coupled dynamics to be appended to the lowest order

expansion in Subsection III A. We find that a straightforward exten-
sion of our discussion made on the lowest order expansion in Sub-
section III A does not work to a larger number of sectors because
of divergences arising from the summation over photon k vec-
tors. Since such k vector summation arises from all loop structures
in the diagrammatic representation, we first need to separate out
these divergent summations. We restart from a formal perturbation
expansion of the state vector ∣Ψint

t ⟩, which is assumed to correspond
to a reference state (eigenstate of H0) |Φ0⟩ in the limit of far past
t → −∞ as

∣Ψint
t ⟩ = Uη(t,−∞)∣Φ0⟩/Nη

= T exp[
1
ih̵ ∫

t

−∞
dt′Hint(t′)e−η∣t

′ ∣
]∣Φ0⟩/Nη, (C1)

where η is an infinitesimal positive constant, which is to be later
taken the limit η → 0, and the associated normalization factor
is defined as Nη ≡

√
⟨Φ0∣Uη(t,−∞)∣Φ0⟩. We then find that the

amplitude is written as

F 000
t ({x}) = ⟨0∣ψ̆(x1) . . . ψ̆(xNe)[∣Φ0⟩ +

1
ih̵ ∫

t

−∞
dτ0Hint(τ0)∣Φ0⟩ + (

1
ih̵
)

2

∫

t

−∞
dτ0 ∫

τ0

−∞
dτ1Hint(τ0)Hint(τ1)∣Φ0⟩

+(
1
ih̵
)

3

∫

t

−∞
dτ0 ∫

τ0

−∞
dτ1 ∫

τ1

−∞
dτ2Hint(τ0)Hint(τ1)Hint(τ2)Uη(τ2,−∞)∣Φ0⟩]/Nη, (C2)

whose time derivative leads to an integrodifferential equation,

ih̵
∂

∂t
F 000

t ({x}) = H0F 000
t ({x}) + ⟨0∣ψ̆(x1) . . . ψ̆(xNe)[H

el
int(t)∣Φ0⟩ + Hel

int(t)
1
ih̵ ∫

t

−∞
dτ1Hel

int(τ1)∣Φ0⟩ + Hel
int(t)(

1
ih̵
)

2

×∫

t

−∞
dτ1 ∫

τ1

−∞
dτ2Hel

int(τ1)Hel
int(τ2)∣Ψint

τ2 ⟩]/Nη. (C3)

We herein concentrate on the formal theory for simplicity
and assume that each integral can be extended to t → −∞ and
that the state in the far past t → −∞ is a radiation-free reference
state of Ne electrons with no photons or antiparticles. We also
extend our definition of the amplitudes. Only in this section, we
allow appearance of multiple electronic timelike coordinates in the
amplitude,

F 000
t ({x}) = ⟨0∣ψ̆(x1)⋯ψ̆(xN)∣Ψint

t ⟩, (C4)

F001
t ({x},k λ) = ⟨0∣ψ̆(x1)⋯ψ̆(xN)ak λ(t)∣Ψ

int
t ⟩, (C5)

F111
t ({x}; yh, yp, ih, ip;k λ) = ⟨0∣ψ̆(x1)⋯ψ̆(xN)(ψ̆†

<(yh, t))
ih

× (ψ̆>(yp, t))
ip
ak λ(t)∣Ψ

int
t ⟩, (C6)

where we require that all timelike variables should not be smaller
than t; x0

j /c ≥ t. Those amplitudes can then be calculated by spatial
convolution with function C>,

Fnlm
({x},⋯) = ∫ ∏

k
d3x′k∏C>(xk; x′k, t)Fnlm

t ({x},⋯), (C7)

with nlm being either of 000, 001, or 111, and Fnlm
t ({x},⋯) in

the RHS being the corresponding amplitude with a single timelike
variable t.

As we did in the main text, we first replace Hel
int by Hel

int
tr

and
expand the interaction terms. We then find that, in Eq. (C3), the first
order correction vanishes, whereas the second order survives. After
restoring Coulombic contributions, the second order contribution
reads
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⟨0∣ψ̆(x1) . . . ψ̆(xNe)H
el
int(t)

1
ih̵ ∫

t

−∞
dτ1Hel

int(τ1)∣Φ0⟩

= ih̵∑
i≠j
(αμ)(i) ∫

t

−∞
dτ∫ d3ξ(SF

(xj, t; ξ, τ)αν)( j)F
000
τ
(0)
(x1, t; . . . ;

j
∨
ξ, τ; . . .)Dμν(xi, t; ξ)

+∑
i
∫

t

−∞
dτ∫ d3ξΣ1L(xi, t; ξ, τ)F 000

τ
(0)
(x1, t; . . . ;

i
∨
ξ, τ; . . .)

+ ih̵∑
i
∫ d3y∫ dτ∫ d3ξJμ

(y, t)Dμν(y, t; ξ, τ)(SF(xi, t; ξ, τ)αν)(i)F
000
τ
(0)
(x1, t; . . . ;

i
∨
ξ, τ; . . .)

+∑
i
(αμ)(i) ∫ dτ∫ d3ξJν

(ξ, τ)Dμν(xi, t; ξ, τ)F 000
τ
(0)
(x1, t; . . . ;

i
∨
ξ, τ; . . .)

+ ∫ d3y∫ dτ∫ d3ξJμ
(y, t)Dμν(y, t; ξ, τ)Jν

(ξ, τ)F 000
τ
(0)
(x1, t; . . . ; xNe , t)

− (ih̵)2
∫ d3y∫ dτ∫ d3ξTr(αμSF

(y, t; ξ, τ)ανSF
(ξ, τ; y, t))Dμν(y, t; ξ, τ), (C8)

with F 000
t
(0)

defined as

F 000
t
(0)
≡ ⟨0∣ψ̆(x1) . . . ψ̆(xNe)∣Φ0⟩.

The remaining part in Eq. (C3) is expanded as

⟨0∣ψ̆(x1) . . . ψ̆(xNe)H
el
int

tr
(t)(

1
ih̵
)

2

∫

t

−∞
dτ1 ∫

τ1

−∞
dτ2Hel

int
tr
(τ1)Hel

int
tr
(τ2)∣Ψint

τ2 ⟩

= ∫ ∏
j

1
c
d4ξj∑

D

∑
ℓ

∑
k,λ

V000,001;D
ℓ ({x};{ξ};k λ)F001

ℓ ({x};{ξ};k λ) + ∫ ∏
j

1
c
d4ξj∑

D

∑
ℓ

∑
k,λ
∫ d3y∑

ih ,jp
V000,111;D
ℓ ({x};{ξ}; yh, yp; ih, jp;k λ)

×F111
ℓ ({x};{ξ}; yh, yp; ih, jp;k λ) + (terms arising from Hel

int
′
) + (terms that do not belong to sector 000, 001 or 111), (C9)

where VX,Y;D
ℓ ({x};{ξ};k, λ) represents a coefficient (a function of

space-time variables) that couple sectors X and Y by a process rep-
resented by the time-ordered Feynman diagram D. The remaining
symbols and their meanings depend on their diagrammatic repre-
sentations such that ℓ represents a set of indices to be summed over,
{ξ} do a set of integration variables, and the notation {x}; {ξ} indi-
cates that a part of the coordinate set {x} = x1, . . . , xNe is replaced by

{ξ} = ξ1, . . .. In the relevant calculations, we rearrange the Coulom-
bic interaction as follows: all photon lines represent the summation
of the Coulombic interaction and the transversal photon exchange,
and all the lines representing interelectron interactions (excluding
self-interactions) accompany mean-field subtraction term. Several
examples of such diagrams are shown below, whose corresponding
expressions are

∫

ct 1
c
d4ξ1 ∫

ξ0
2 1
c
d4ξ2V000,001;D1

ij (ξ1, ξ2)F001
ξ0

2
(x1, . . . ,

i
∨
ξ2, . . .

j
∨
ξ1, . . .)

= ∫

ct 1
c
d4ξ1 ∫

ξ0
2 1
c
d4ξ2[∑

k′λ′
(Óε k′λ′(xi)SF

(xi, ξ2)Óε k λ(xi))(i)(S
F
(xj, ξ1)Óε ∗k′λ′(ξ1))( j) + (SF

(xi, ξ2)Óε k λ(xi))(i)

× cδ4
(xj − ξ1)v

′
C(xi, xj)]F001

ξ0
2
(x1, . . . ,

i
∨
ξ2, . . .

j
∨
ξ1, . . . ;k λ), (C10a)
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∫

ct 1
c
d4ξ2V000,001;D2

i (ξ2)F001
ξ0

2
(x1, . . . ,

i
∨
ξ2, . . . ;k λ) = ∫

ct 1
c
d4ξ2 ∫

ct

ξ0
2

1
c
d4ξ1(∑

k′λ′
Óε k′λ′(xi)SF

(xi, ξ1)Óε ∗k′λ′(ξ1)S
F
(ξ1, ξ2)Óε k λ(ξ2)

+SF
(xi, ξ1)δ(t −

ξ0
1

c
)

1
∣xi − ζ′∣

SF
(ξ1, ξ2)Óε k λ(ξ2))

(i)
F001
ξ0

2
(x1, . . . ,

i
∨
ξ2, . . . ;k λ), (C10b)

∫

ct 1
c
dξ0

2V000,001;D3
i (ξ0

2)F001
ξ0

2
(x1, . . . , xNe ;k λ) = ∫

ct 1
c
d4ξ2 ∫

ct

ξ0
2

1
c
d4ξ1[∑

k′λ′
(Óε k′λ′(xi))(i)Tr[−SF

(ξ1, ξ2)Óε k λ(ξ2)S
F
(ξ2, ξ1)Óε ∗k′λ′(ξ1)]

+ Tr[−SF
(ξ1, ξ2)Óε k λ(ξ2)S

F
(ξ2, ξ1)]δ(t −

ξ0
1

c
)v′C(ξ1, xi)]F001

ξ0
2
(x1, . . . , xNe ;k λ), (C10c)

and

∫

ct 1
c
d4ξ2V000,001;D4

ij (ξ2)F001
ξ0

2
(x1, . . . ,

i
∨
ξ2, . . .) = ∫

ct 1
c
d4ξ2 ∫

ct

ξ0
2

1
c
d4ξ1[∑

k′λ′
(Óε k′λ′(xi)SF

(xi, ξ1)Óε k λ(ξ1)S
F
(ξ1, ξ2)Óε ∗k′λ′(ξ2))(i)

+ (SF
(xi, ξ1)Óε k λ(ξ1)S

F
(ξ1, ξ2))(i)δ(t −

ξ0
2

c
)v′C(xi, ξ2)]F

001
ξ0

2
(x1, . . . ,

i
∨
ξ2, . . .), (C10d)

where the four-dimensional integral with upper limit is a shorthand
notation defined as

∫

ct 1
c
d4ξ ≡

1
c ∫

ct

−∞
dξ0
∫ d3ξ,

whereas the symbol v′C represents the Coulombic interaction minus
the mean-field interaction,

v′C(x1, x2) ≡
q2
e

∣x1 − x2∣
−
W loc

HF(x1) + W loc
HF(x2)

2
.

We see that Eqs. (C10b)–(C10d) are divergent. It is, how-
ever, clear that summation over all the different time-ordering
with the same topology as Fig. 2(b) makes an expression
that is obtained from Eq. (C10b) by reordering the time.
We can then apply the standard renormalization procedure
for the electronic self-energy Σ to remove formal divergences
and obtain a finite result. Application of the same procedure
to diagrams Figs. 2(c) and 2(d) [Eqs. (C10c) and (C10d)]
should yield the polarization and vertex correction functions,
respectively.

We then need expressions for the amplitudes of the (Ne, 0, 1)
and (Ne + 1, 1, 1) sectors. Applying the simplest truncation scheme
to Eqs. (22) and (23), to truncate sectors other than (Ne, 0, 0), (Ne, 0,
1), and (Ne + 1, 1, 1), we obtain

ih̵
∂

∂t
F001

t ({x};k λ) ≈ H0F001
t ({x};kλ)

+ (∑
ℓ

(Λ+
Óε ∗k λ(xℓ))(ℓ) + Jμε∗k λ)F

000
({x})

(C11)

and

ih̵
∂

∂t
F 111

t ({x}; yh, yp; jh, jp;k λ)

= H0F 111
t ({x}; yh, yp; jh, jp;k λ) + ⟨0∣ψ̆(x1, t) . . . ψ̆(xNe , t)∣Ψ

int
t ⟩

× δ3
(yh − yp)(Λ

+
Óε ∗k,λ(yh)Λ

−
)
jpjh
−∑

ℓ

(Λ+
Óε ∗k,λ(xℓ)Λ

−
)
iℓjh

× δ3
(xℓ − yh)F

000
t ({x})∣iℓ→jp . (C12)

Substitution back of the formal solutions of Eqs. (C11) and (C12)
then leads to an effective equation of the (Ne, 0, 0) sector such that

ih̵
∂

∂t
F 000

t ({x}) = H0F 000
t ({x}) +

1
2 ∑D,D′

∑
X=001,111

∑
ℓ,j
∑
k λ
∫

1
c
d4ξ1 . . .

× ∫
1
c
d4ξ′1 . . .V000,X;D

ℓ ({x}; ξ1, . . . ;k λ)

× exp[
1
ih̵
Hmf(t − ξ

0
2)]VX,000;D′

j ({x}; ξ1, . . . ;k λ)

× F 000
({x}; ξ1, . . .). (C13)

FIG. 2. Examples of time-ordered Feynman diagrams that couple sectors (Ne,
0, 0) and (Ne, 0, 1). Time increases upward. Four panels (a)–(d) correspond to
Eqs. (C10a)–(C10d), respectively. Upward (downward) arrows represent electrons
(positrons) and wavy lines represent photons.
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Here, an additional divergence arises from the summation over kλ if
the corresponding photon line makes a loop. But it can be treated in
the same manner as Eq. (48). Although Eq. (C13) only shows an out-
line of the procedure, it is clear that summation over all the diagrams
arising from expansion of Eq. (C3) corresponds to the standard
Feynman diagrams of the two loop expansion in the standard per-
turbation theory, in which all formal divergences can be removed.
We therefore conceive that there should be no divergence problem
although we have yet to calculate all the possible diagrams in MO
representation carefully examining whether this expansion works.

APPENDIX D: MASS-POLARIZATION TERMS
Here, we discuss the mass-polarization terms K we encounter

in the derivation of Eq. (61). In the main text, we adopted the lab
frame and simply set it zero. On the other hand, if we use the coor-
dinate representation relative to the center of the mass of the nuclei
(CMN), Nonzero mass polarization emerges. Hence, we need to
consider a general transformation from the lab frame to the CMN
frame to derive those terms. Below, the lab frame electronic coordi-
nates are denoted by {rj} (j = 1, 2, . . ., Ne) and the nuclear coor-
dinates in the mass-weighted representation are denoted by {Qa}
(a = 1, 2, . . ., Nn), whereas in the CMN frame, electronic coordinates
are denoted by {̃rj} and the mass-weighted nuclear coordinates are
denoted by {Ξλ}, among which the CMN coordinate is denoted by
Ξω ≡ ∑a

√
MaQa/

√
∑bMb.

We then consider the following generalized transformation
with an orthogonal matrix R:

r̃j = rj −
Ξω

√
∑bMb

, (D1a)

Ξλ =∑
a′
Ra′

λ Qa′ . (D1b)

The associated differential operators then transform as

∂

∂rj
=

∂

∂r̃j
, (D2a)

∂

∂Qa
=∑

λ′
Ra

λ′
∂

∂Ξλ′
−

1
√
∑bMb

Ra
ω
⎛

⎝
∑
j′

∂

∂rj′
⎞

⎠
. (D2b)

Substitution of these results to the electronic Dirac equation makes
no apparent change, whereas that to the kinematic part of the
nuclear Schrödinger equation yields

1
2∑a
(
h̵
i

∂

∂Qa
−
Za∣e∣
c

A(Ra))

2

=
1
2∑λ
(
h̵
i

∂

∂Ξλ
)

2

+
1
2∑a

1
Ma
(
Za∣e∣
c

A(Ra))

2

+
1

2∑bMb

⎛

⎝
∑
j

h̵
i
∂

∂r̃j
⎞

⎠

2

−
1

√
∑bMb

⎛

⎝
∑
j

h̵
i
∂

∂r̃j
⎞

⎠
⋅
h̵
i

∂

∂Ξω

+∑
λ

1
2
{
h̵
i

∂

∂Qλ
,(∑

a

Za∣e∣
√
Ma

A(Ra)Ra
λ)}

+

+ ∑a Za∣e∣A(Ra)

c∑bMb

⎛

⎝
∑
j

h̵
i
∂

∂r̃j
⎞

⎠
, (D3)

with {A,B}+ ≡ AB + BA representing the anticommutator, and Ra
in the RHS are to be understood as a function of new coordinate
vectors {Ξλ} in the sense Ra = ∑λ(R−1

)
aλΞλ.

We can then find the mass-polarization term which couples
among all the electronic momenta and also charge-polarization
terms that add to the electron-radiation coupling term although
both terms accompany small factor me/(∑Mb). We also see that
the CMN mode formally couple with the electronic momentum
operators reflecting the Galilean covariance although we can sim-
ply assume that the CMN is fixed at the origin in many of
applications.

In dynamical models of molecules, however, the derivative cou-
plings, which approximately scales as

√
me/Mλ for the λth (λ ≠ ω)

nuclear displacement modes around the equilibrium configuration,
can be even larger in magnitude than these mass-polarizations.

APPENDIX E: EXTERNAL FIELDS
We here consider chemical dynamics (CD) in an external vec-

tor field 𝓐ext
(r, t). We keep discussions in the main text where we

set that Atr in Eqs. (8a)–(8d) as “internal” or “dynamical” field while
adding new terms

Hext = −qe ∫ d3xψ†
(x)αψ(x) ⋅𝓐ext

(x, t) +∑
a

1
2Ma
{−2

Za∣e∣
c

𝓐ext
(R, t) ⋅ (

h̵
i
∇a −

Za∣e∣
c

Atr
) + (

Za∣e∣
c

𝓐ext
(R, t))

2

}

+
1

4π ∫
d3r{−

1
c
∂

∂t
𝓐ext
(r, t) ⋅ 4πcΠtr + (∇×𝓐ext

) ⋅ (∇×Atr
)}. (E1)

In principle, one can treat these terms in an analogous manner
as what we did in Subsection III A. We then need to expand the
electronic part in Eq. (E1), Hel

int
ext
≡ −qe ∫d3xψ†

(x)αψ(x)⋅𝓐ext
(x, t),

which introduces additional couplings between (Ne, 0, 0) and
(Ne + 1, 1, 0) sectors, (Ne, 0, 1) and (Ne + 1, 1, 1) sectors, etc. It
then appears, in the lowest order, we need to solve a set of coupled
equations of the (Ne, 0, 0), (Ne, 1, 0), and (Ne, 1, 1) sector amplitudes,

which is not a trivial task, since there appears potentially divergent
summation over photon wavevectors.

A better insight is obtained by first solving the single-
particle propagator in the external field and then by solving the
radiation coupling. In such a scheme, one can directly reach
the final conclusion just by replacing propagators in Eq. (64)
as
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ih̵
∂

∂t
f 000
t (I;R) =∑

a

1
2Ma
(
h̵
i
∇a −

Z∣e∣
c

𝓐ext
(R) − ih̵Xa)

2

Ij ,r
f 000
t (I

r
j ;R)

+
1
2∑a≠b

ZaZb∣e∣2

∣Ra − Rb∣
f 000
t (I;R) +∑

j
(ĥ(0)mf (R) −W

loc
HFj − α ⋅𝓐

ext
)
Ij ,r
f 000
t (I

r
j ;R)

+
1
2∑j≠ℓ
⟨Ij Iℓ∥r s⟩f

000
t (I

rs
jℓ;R) +∑

j,r
∫

t

−∞
dt′Σfin.

𝓐ext(t, t′)Ij ,rf
000
t′ (I

r
j ;R)

+∑
j≠ℓ
∑
k λ
∑
r,s
∫

t

−∞
dt′(Óε k λ)Iℓse

−iH𝓐ext
0 (t−t′)/h̵

(Óε ∗kλ)Ijrf
000
t′ (I

rs
jℓ;R)

+∑
a,j
∑
k λ

εk λ(Ra) ⋅
Za∣e∣
Ma
[
h̵
i
∇a −

Za∣e∣
c

𝓐ext
(Ra) − ih̵Xa]∫

t

−∞
dt′e−iH

𝓐ext
0 (t−t′)/h̵

(Óε ∗k λ)Ijrf
000
t′ (I

r
j ;R)

+∑
a,j
∑
k λ
(Óε k λ)Ijr ∫

t

−∞
dt′e−iH

𝓐ext
0 (t−t′)/h̵ε∗k λ(Rb) ⋅

Zb∣e∣
Mb
[
h̵
i
∇b −

Zb∣e∣
c

𝓐ext
(Rb) − ih̵Xb]f

000
t′ (I

r
j ;R), (E2)

where the zeroth order Hamiltonian is defined as

H𝓐ext

0 ≡ Hnuc + Hel
mf + Hrad + Hext (E3)

and

Σfin.
𝓐ext(t, t′)j,k ≡∬ d3rd3r′φj(r)Σfin.

𝓐ext(r, t; r′, t′)φk(r
′
), (E4)

with the finite part of the self-energy operator in the presence of the external field being Σfin.
𝓐ext(x, y). An explicit expression of such self-energy

is given in an analogous manner as in Eq. (39),

Σfin.
𝓐ext(x, y) = ih̵ce2αμSF𝓐ext(x, y)ανDμν(x, y) − βδmc2δ4

(x − y)

− Z2(cαμih̵∂μ −W loc
HF(x) − qeα ⋅𝓐

ext
− βmc2

)δ4
(x − y) + δ4

(x − y)Vvp
μαμ(x, t)

= ih̵ce2αμSF(x, y)ανDμν(x, y) − βδmc2δ4
(x − y) − Z2(cqeαμih̵∂μ −W loc

HF(x) − βmc2
)δ4
(x − y)

− ih̵ce2
∫ d4ξαμSF(x, ξ)α ⋅𝓐extSF0(ξ, y)ανDμν(x − y) − Z2α ⋅𝓐ext

(x)δ4
(x − y)

+ ih̵c∫ d4ξ∫ d4ηαμSF(x, ξ)α ⋅𝓐ext
(ξ)SF𝓐ext(ξ,η)α ⋅𝓐ext

(η)SF(η, y) + δ4
(x − y)Vvp

μαμ(x, t), (E5)

in which SF𝓐ext and SF being the Hartree-Fock Feynman propa-
gator in the presence and absence of the external field, respec-
tively. The above expansion does not necessarily require that the
external field should be included in the mean-field Hamiltonian
as long as one can obtain an expression of single-particle prop-
agator. Obviously, however, a set of field-induced states, such as
the Volkov states,85,86 would be one of the most suitable basis
set to be used in dynamics in an external field of relativistic
strength.

APPENDIX F: WAVEPACKET FORMULATION
OF NUCLEAR DYNAMICS

Here, we append the discussion for the nuclear dynamics since
this aspect is inevitable in practical applications of the present the-
ory to molecular problems. Here, we restrict our attention to a
mixed quantum-classical formulation or its variant, in which the

nuclear wavepacket is represented by a small number of localized
wavepackets instead of a fully quantum-mechanical (delocalized)
wavefunction.

The formal equation of motion in the Tamm-Dancoff expan-
sion is given as in Eq. (64). Since the equation has almost the
same mathematical form as those in the conventional nonrela-
tivistic chemical dynamics (CD), many calculation techniques so
far proposed can be applied for its integration. A crucial differ-
ence to the conventional CD is, however, the absence of explicit
expressions of the true adiabatic states. Moreover, even if one
derives an approximate expression of those states, it should be
very different from those in conventional CD but should be a
superposition of multiple electronic and radiational states. We
therefore consider that it should be more convenient to adopt a
“wavepacket picture,” where the electronic state vectors dynami-
cally evolve in time (this contrasts with a more popular approach in
which each wavepacket is associated with a single time-independent
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state). In such a formulation, it is, in general, not appropriate
to use a single wavepacket, but one needs to introduce bifurca-
tion at a point where the character of the electronic state changes
drastically. We therefore develop a general (multiple) wavepacket
expansion of the nuclear dynamics. We then augment our theory
with an appropriate “branching” algorithm in order to take account
of bifurcations.

In this section, we use the mass-weighted representation of the
nuclear coordinates, and hence, R here represents mass-weighted
coordinates. We start with a formal expansion of the electron-
nucleus coupled state,

∣Ωt⟩ = ∫ dDR∣R⟩∑
A
∣ΦA : R⟩χA(R, t), (F1)

where |ΦA : R⟩ represents a time-independent electronic state at
nuclear coordinate R and χA(R, t) represents its associated nuclear
wavefunction. Recalling Eq. (64) in Sec. III, a formal equation of
motion of χ can be rewritten in the following form:

ih̵χA(R, t) =∑
B
[Tnuc(R)AB + Hel

AB(R)]χB(R, t), (F2)

where Tnuc is the (nonrelativistic) kinetic operator for nucleus,

Tnuc(R)AB =
1
2
(
h̵
i
∇−

Qnuc

c
𝓐ext
)

2

δAB

− ih̵XAB ⋅ (
h̵
i
∇−

Qnuc

c
𝓐ext
) −

h̵2

2
YAB, (F3)

where ∇ = ∂/∂R is the 3Nn-dimensional (mass-weighted) gradi-
ent, Qnuc represents a diagonal matrix which consists of reduced
charges (the nuclear charges divided by the square-root of nuclear
masses), and 𝓐ext represents the external field supervector 𝓐ext

≐ (Aext
(R1)

t,Aext
(R2)

t, . . .). Since we neglect the radiation from
the nuclear charge current, the resultant vector fields are regarded
as an external field. Matrices XAB and YAB represent the derivative
couplings of the first and second order; XAB ≡ ⟨A|∇|B⟩ and YAB
≡ ⟨A|∇2|B⟩. We then expand χA(R) as

χA(R) =∑
σ
gσC

σ
A, (F4)

with normalized Gaussian g, defined as

gσ = exp
⎡
⎢
⎢
⎢
⎢
⎣

−∑
ℓj
(xℓ −Qℓ

σ(t))
Γℓjσ (t)

2
(xj −Qj

σ(t)) +∑
ℓ

iKℓ
σ (t)

× (xℓ −Qℓ
σ(t))+iΘσ(t) +

1
4

ln(det(
Γσ(t)
π
))

⎤
⎥
⎥
⎥
⎥
⎦

, (F5)

where Qσ , h̵Kσ Γσ , and Θσ represent the central coordinate, momen-
tum, inverse width, and phase of the σth Gaussian. The inverse
width matrix Γσ is symmetric. For convenience, we also introduce
a shorthand notation for nuclear coordinate integral in the bracket
form,

⟨σ∣O∣τ⟩ ≡ ∫ dDR g
∗
σ (R)Ogτ(R), (F6)

where O represents an arbitrary function or operator in the nuclear
coordinate representation. The overlap matrix is then defined as

Sστ ≡ ⟨σ∣τ⟩. (F7)

In the RHS of Eq. (F1), coefficients Cσ
A are related to the total

population of the Ath adiabatic state nA by

nA =∑
στ

Cσ
A
∗SστCτ

A,

where the unitarity condition requires∑AnA = 1. We then apply the
time-dependent variational equation,

⟨δΩt ∣Htot
− ih̵∂t ∣Ωt⟩ = 0, (F8)

with Htot representing the total (electron-nucleus) Hamiltonian and
bracket ⟨⋯⟩ representing the integration of electronic as well as
nuclear coordinates, to derive equations of motion for Cσ

A(t), and
the parameters in the Gaussian functions, Qσ , Kσ , and Γσ .

1. Variation of Cσ
A

We first decompose the total HamiltonianHtot by the electronic
basis as

⟨A∣Htot
∣B⟩ = T δAB + K̂AB, (F9)

where T is the kinetic operator acting only on the nuclear wavefunc-
tion, whereas K̂AB is the remaining part of the Hamiltonian,

K̂AB = Hel
AB − ih̵XAB ⋅ (

h̵
i
∇−

Qnuc

c
𝓐ext
) −

h̵2

2
YAB, (F10)

where “hat” on K is meant to emphasize that it is an operator work-
ing on the nuclear wavefunction. We also use notationHeff

AB to denote
the “electronic part,”

Heff
AB = H

el
AB −

h̵2

2
YAB. (F11)

We now write down the variational stationary condition for Cσ
A
∗ as

0 =∑
τ
∑
B
⟨σ∣⟨A∣Htot

− ih̵
∂

∂t
∣B⟩∣τ⟩Cτ

B

=∑
τ
⟨σ∣f (Γτ , Γ̇τ ; τ) + Tr(

h̵2Γτ
4
) −

1
2
(h̵Kτ −

Qnuc

c
𝓐ext
)

2

+ h̵Θ̇τ + h̵K̇σ ⋅ yτ ∣τ⟩C
τ
A

+∑
τ
∑
B
⟨σ∣Heff

AB − ih̵XAB ⋅ (
h̵
i
∇−

Qnuc

c
𝓐ext
)∣τ⟩Cτ

B

−∑
τ
⟨σ∣τ⟩ih̵Ċτ

A, (F12)

where we introduced the notation

yσ ≡ R −Qσ , (F13)

and f (Γτ , Γ̇τ ; τ) represents
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f (Γτ , Γ̇τ ; τ) ≡
1
2

Tr[(ih̵Γ̇τ − h̵2Γ2
τ)(yτy

t
τ −

Γ−1
τ

2
)],

with the operator Tr representing the trace over coordinatelike
indices. We then obtain the time evolution equation for Cσ

A as

ih̵Ċσ
A =∑

τ
∑
B
⟨σ̃∣Htot

AB − ih̵∂̂tδAB∣τ⟩C
τ
B

=∑
τ
⟨̃σ∣f (Γτ , Γ̇τ ; τ) + Tr(

h̵2Γτ
4
) −

1
2
(h̵Kτ −

Qnuc

c
𝓐ext
)

2

+ h̵Θ̇τ + h̵K̇σ ⋅ yτ ∣τ⟩C
τ
A +∑

τ
∑
B
⟨σ̃∣K̂AB∣τ⟩Cτ

B, (F14)

where ∂̂t represents time derivative whose operation is limited to
inside the bracket and bra-vectors with tilde and ⟨̃σ∣ are defined as
⟨̃σ∣ ≡ ∑τ(S

−1
)
στ⟨τ∣.

2. Variation of the Gaussian parameters
We first note that variation of the Gaussian parameters ξ, which

is one of the four parameters Kℓ
σ , Qℓ

σ , Γℓmσ , and Θσ , can be written in
the following form:

δ(ξ)gσ(R, t) = δξσO(ξ)σ gσ(R, t), (F15)

where the superscript (ξ) represents the variational parameter and
the corresponding O(ξ)x is in general a function of nuclear coordi-
nates,

O(K
ℓ
σ )

σ = i(xℓ −Qℓ
σ), (F16a)

O(Q
ℓ
σ )

σ = −Γℓmσ (x
m
−Qm

σ ) + iKℓ
σ , (F16b)

O(Θσ)
σ = i, (F16c)

O(Γ
ℓm
σ )

σ = −(xℓ −Qℓ
σ)(x

m
−Qm

σ )/2 + (Γ−1
σ )

mℓ
/4. (F16d)

We then write the variational stationary condition for those param-
eters,

0 =∑
τ
∑
A,B
⟨σ∣OσCσ

A
∗
⟨A∣Htot

− ih̵
∂

∂t
∣B⟩Cτ

B∣τ⟩

=∑
τ
⟨σ∣Oσ(T̂ + K̂ − ih̵∂̂t)

στ
∣τ⟩

− ∑
τκ
∑
AB

Cσ
A
∗
⟨σ∣Oσ ∣τ⟩⟨̃τ∣Htot

AB − ih̵∂̂tδAB∣κ⟩C
κ
B, (F17)

where the matrices with Gaussian superscripts σ, τ, . . . represent

Oστ
≡∑

AB
Cσ
A
∗OABCτ

B, (F18)

and we also define related quantities for the unit matrix

ηστ ≡∑
A
Cσ
A
∗Cτ

A. (F19)

Although we have to find such a solution that eliminates all varia-
tion in principle, it would lead to complex expressions for numerical
calculations. Here, we rather derive a simpler approximate solu-
tion and later confirm that major contributions to variation do
vanish.

We first set
h̵Kσ = Q̇σ (F20)

so that all terms containing Q̇σ vanish at all order. We then concen-
trate on large contributions, arising from σ = τ, or diagonal terms
in Eq. (F17), and eliminate variation of type O = 1 and O = yσ .
It can then be shown that all the other residual terms arise from
the higher order correlation. Diagonal contribution in the RHS of
Eq. (F17) then reads

⟨σ∣Oσ[ησσ{f (Γσ , Γ̇σ ; σ) + Tr(
h̵2Γσ

4
) −

1
2
(h̵Kσ −

Qnuc

c
𝓐ext
)

2

+ h̵Θ̇σ + h̵K̇σ ⋅ yσ} + Hσσ
eff]∣σ⟩, (F21)

where we have taken account of the fact Xσσ = 0, which follows from
the antisymmetry of XAB. Requiring Eq. (F21) for O = 1, O = yℓσ and
O = yℓσymσ to vanish, we obtain

−h̵Θ̇σ = Tr(
h̵2Γσ

4
) −

1
2
(h̵Kσ)

2 + ⟨σ∣Hσσ
eff ∣σ⟩/η

σσ , (F22a)

h̵K̇ℓ
σ = −∑

m
(2Γσ)ℓm ⟨σ∣(

1
2
(̵hK σ −

Qnuc

c
𝓐ext
)

2
+ Hσσ

eff)y
m
σ ∣σ⟩/η

σσ ,

(F22b)

0 =∑
jk
(ih̵Γ̇σ − h̵2Γ2

σ)jk

⎛

⎝
(
Γ−1
σ

2
)

ℓm
(
Γ−1
σ

2
)

jk
+ (

Γ−1
σ

2
)

ℓk
(
Γ−1
σ

2
)

jm

⎞

⎠

+ ⟨σ∣(Hσσ
eff − ⟨σ∣H

σσ
eff ∣σ⟩)y

ℓ
σy

m
σ ∣σ⟩/η

σσ . (F22c)

In deriving these equations, we took account of the fact that any odd
momenta of Gaussian ⟨σ∣yℓ1

σ ⋅ ⋅ ⋅ y
ℓ2n+1
σ ∣σ⟩ = 0 and that

⟨σ∣yjσy
ℓ
σ ∣σ⟩ =

1
2
(Γ−1

σ )
ℓj
=

1
2
(Γ−1

σ )
jℓ

(F23)

and

⟨σ∣
4

∏
p=1

yℓpσ ∣σ⟩ = (Γ
−1
σ /2)ℓ1ℓ2

(Γ−1
σ /2)ℓ3ℓ4

+ (Γ−1
σ /2)ℓ1ℓ3

× (Γ−1
σ /2)ℓ2ℓ4

+ (Γ−1
σ /2)ℓ1ℓ4

(Γ−1
σ /2)ℓ2ℓ3

. (F24)

Equations (F22a)–(F22c) reduce to more familiar forms if we expand
Hσσ

eff around the Gaussian center Qσ up to the second order,

−h̵Θ̇σ = Tr(
h̵2Γσ

4
) −

1
2
(h̵Kσ −

Qnuc

c
𝓐ext
(Qσ))

2

+
⎛

⎝
Hσσ

eff(Qσ) +
1
2∑jk

∂2Hσσ
eff

∂Rj∂Rk (
Γ−1
σ

2
)

jk

⎞

⎠
/ησσ , (F25a)

h̵K̇σ = − ⟨σ∣∇(
1
2
(h̵Kσ −

Qnuc

c
𝓐ext
)

2
+ Hσσ

eff)∣σ⟩/η
σσ , (F25b)

0 =∑
jk
((ih̵Γ̇σ − h̵2Γ2

σ)jk + (
1
2
∂2Hσσ

eff

∂Rj∂Rk )/η
σσ
)

×
⎛

⎝
(
Γ−1
σ

2
)

ℓm
(
Γ−1
σ

2
)

jk
+ (

Γ−1
σ

2
)

ℓk
(
Γ−1
σ

2
)

jm

⎞

⎠
, (F25c)
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where the second one is further rewritten as

d
dt
[h̵Kσ −

Qnuc

c
𝓐ext
] = − ⟨σ∣∇Hσσ

eff ∣σ⟩/η
σσ

−
Qnuc

c
⟨σ∣(h̵Kσ −

Qnuc

c
𝓐ext
)

× (∇×𝓐ext
)∣σ⟩. (F26)

We now fix the time derivatives of the first two set of param-
eters, Θ̇σ and h̵K̇σ by Eqs. (F22a) and (F22b), respectively, together
with Q̇σ by Eq. (F20). On the other hand, we formally leave Γ̇ in

the following expressions as we later employ the frozen Gaussian
approximation to fix Γσ at a reasonable value, such as that satisfies
Eq. (F25c) at the initial point of the dynamics. Substitution of the
relation

⟨τ∣T − ih̵∂̂t ∣σ⟩ = ⟨τ∣f (Γσ , Γ̇σ ; σ)∣σ⟩ − ⟨τ∣σ⟩⟨σ∣Hσσ
eff ∣σ⟩/η

σσ

−∑
ℓ,m
⟨τ∣yℓσ ∣σ⟩(2Γσ)ℓm⟨σ∣H

σσ
effy

m
σ ∣σ⟩/η

σσ (F27)

into Eq. (F12) leads to

0 =∑
τ
⟨σ∣Oσηστf ∣τ⟩ −∑

τ
ηστ⟨σ∣Oσ ∣τ⟩ ⟨τ∣Hττ

eff∣τ⟩/η
ττ
−∑

τ
ηστ⟨σ∣Oσyt

σ ∣τ⟩(2Γτ) ⟨τ∣yτH
ττ
eff∣τ⟩/η

ττ
−∑

τ
⟨σ∣OσHστ

eff∣τ⟩

−∑
τ
⟨σ∣Oσ ih̵Xστ

⋅ (ih̵Γτyτ + (h̵Kτ −
Qnuc

c
𝓐ext
))∣τ⟩ −∑

τλ
⟨σ∣Oσ ∣τ⟩[{⟨̃τ∣f (Γλ, Γ̇λ; λ)∣λ⟩ − ⟨τ∣Hττ

eff∣τ⟩/η
λλ

−⟨̃τ∣yt
λ∣λ⟩(2Γλ) ⟨λ∣yλH

λλ
eff ∣λ⟩/η

λλ
}ησλ + ⟨̃τ∣Hσλ

eff − ih̵X
σλ
⋅ (

h̵
i
∇−

Qnuc

c
𝓐ext
)∣λ⟩], (F28)

which shows that the variation indeed vanishes for Oσ = 1 and the residual part consists only of the higher correlation for the other Oσ .
We also substitute Eq. (F27) into Eq. (F12) to obtain a reduced equation for Cσ

A,

ih̵Ċσ
A =∑

τ
⟨σ̃∣f (Γτ , Γ̇τ ; τ)∣τ⟩Cτ

A − [ ⟨σ∣H
σσ
eff ∣σ⟩/η

σσ
]Cσ

A −∑
τ
[ ⟨σ̃∣yt

τ ∣τ⟩(2Γτ)⟨τ∣H
ττ
effyτ ∣τ⟩/η

ττ
]Cτ

A

+∑
τ
∑
B
⟨σ̃∣Heff

AB − ih̵XAB ⋅ (ih̵Γτyτ + (h̵Kτ −
Qnuc

c
𝓐ext
))∣τ⟩Cτ

B, (F29)

which is rewritten in the following form:

ih̵Ċσ
A =Δ

dag
σσ C

σ
A +∑

τ≠σ

′Δofd
στ C

τ
A +∑

B
K(1)

σσ
ABC

σ
B

+∑
τ
K(2)

στ
AAC

τ
A +∑

τ
∑
B
K(3)

στ
ABC

τ
B, (F30)

with

Δdag
σσ = − ⟨σ∣H

σσ
eff ∣σ⟩/η

σσ
− ⟨σ̃∣yt

σ ∣σ⟩(2Γσ)⟨σ∣H
σσ
effyσ ∣σ⟩/η

σσ ,
(F31a)

Δofd
στ = ⟨σ̃∣f (Γτ , Γ̇τ ; τ)∣τ⟩

− (1 − δστ) ⟨σ̃∣yt
τ ∣τ⟩(2Γτ)⟨τ∣H

ττ
effyτ ∣τ⟩/η

ττ , (F31b)

K(1)
σσ
AB = ⟨σ̃∣H

eff
AB − ih̵XAB ⋅ (ih̵Γτyτ + h̵Kτ)∣σ⟩Cσ

B, (F31c)

K(2)
στ
AA = (1 − δστ)⟨σ̃∣H

eff
AA∣σ⟩C

τ
A, (F31d)

K(3)
στ
AB = (1 − δστ)(1 − δAB)⟨σ̃∣H

eff
AB − ih̵XAB ⋅ (ih̵Γτyτ + h̵Kτ)∣τ⟩.

(F31e)

We then see K(1)
σσ
AB describes the electron wavepacket dynamics

(including possible nonadiabatic transitions among the wavepacket
components) of the σth wavepacket, and Δdag

σσ adds or
subtracts the nuclear wavepacket contribution of the phase

factor, whereas K(3)
στ
AB describes the nonadiabatic transitions

between the σth and τth wavepackets. On the other hand, we con-
sider that K(2)

στ
AA and Δofd

στ cause “transition to different wavepacket
with no electronic state change,” which corresponds to an arti-
fact of our Gaussian expansion scheme [Eq. (F4)]. We therefore
expect that the amplitude of these two terms should be much
smaller than other terms if our Gaussian propagation scheme is
successful.

3. A practical calculation scheme
Having established formal equations of motion, we now con-

sider a practical calculation scheme with branching. We first apply
the frozen-Gaussian approximation, to avoid complexity and pos-
sible unphysical deformation of Gaussian wavepackets. We set Γσ
of the initial wavepacket to some reasonable value, in such a man-
ner that Γ2 equals the Hessian of the electronic Hamiltonian at
the initial geometry and set Γ̇ = 0 in subsequent time evolu-
tion. We thus start from a single wavepacket, but the final state
should be in general a superposition of multiple wavepackets that
asymptote to mutually independent adiabatic states. Since our equa-
tions of motion do not automatically increase the number of Gaus-
sian wavepackets, we need an additional algorithm that intro-
duces new wavepackets. Following Ref. 55, we call it a “branching”
algorithm.
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There are several clues to judge path-branching that directly
follows from our formulation: (i) the variation residual of Eq. (F17),
which does not exactly vanish except for O = 1, or (ii) K(2)

στ
AA and

Δofd
στ in Eq. (F30), which should be small by physical requirements.

One can therefore introduce a new wavepacket such that it reduces
those inconvenient quantities. Such algorithm should be most desir-
able for fully consistent realization of our Gaussian wavepacket for-
mulation; however, we here seek for a simpler algorithm that directly
realizes branchings.

An alternative approach is to judge from the nuclear kinemat-
ics. In case we know the asymptotic adiabatic states, we can (a)
introduce branching so that each wavepacket should consist of a
single adiabatic state in the final asymptotic region. Even if we do
not know those states a priori, we can also use more intuitive quan-
tity, “force matrix,” introduced in Refs. 54 and 55. In the present
formulation, it appears as the first (nonradiative) term in the RHS
of Eq. (F26),

Fσσ = − ⟨σ∣∇Hσσ
eff ∣σ⟩/η

σσ
= ∑

A,B
Cσ
A
∗FσσABC

σ
B/∑

A′
Cσ
A′
∗Cσ

A′ , (F32)

where we find a state-dependent force, or a variant of the force
matrix,

FσσAB = −⟨σ∣∇HAB∣σ⟩. (F33)

One can then (b) use the eigenvectors of the force matrix to decom-
pose the wavepacket into most rapidly departing parts.55 In either
scheme, (a) or (b), we can construct branching algorithm following
the idea proposed in Ref. 55: (1) Set a relative population thresh-
old nrel

thr and relative adiabatic coupling thresholds ξrel
thr. (2) Start

checking wavepackets which have a mixture of distinct adiabatic
states more than nrel

thr when the strength of the nonadiabatic cou-
pling decreases and passes through the thresholds ξrel

thr (relative to
the peak) downward, and divide the wavepacket by projecting onto
either (a) the adiabatic state vectors or (b) the eigenstates of the force
matrix.

At this point, our discussion on the branching algorithm cannot
be further extended since branching does not directly follow from
the variational principle [Eq. (F8)]. The best algorithm is therefore
only be judged through numerical applications by comparing accu-
racy, convergence, computational costs, etc., which we leave to our
future study.
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