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SUMMARY

During evolution, organisms have acquired variable
feeding habits. Some species are nutritional general-
ists that adapt to various food resources, while others
are specialists, feeding on specific resources. How-
ever, much remains to be discovered about how gen-
eralists adapt to diversified diets. We find that larvae
of the generalists Drosophila melanogaster and
D. simulans develop on three diets with different
nutrient balances, whereas specialists D. sechellia
and D. elegans cannot develop on carbohydrate-
rich diets. The generalistD. melanogaster downregu-
lates the expression of diverse metabolic genes sys-
temically by transforming growth factor b (TGF-b)/
Activin signaling, maintains metabolic homeostasis,
and successfully adapts to the diets. In contrast, the
specialist D. sechellia expresses those metabolic
genes at higher levels and accumulates various me-
tabolites on the carbohydrate-rich diet, culminating
in reduced adaptation. Phenotypic similarities and
differences strongly suggest that the robust carbohy-
drate-responsive regulatory systems are evolution-
arily retained through genome-environment interac-
tions in the generalists and contribute to their
nutritional adaptabilities.
INTRODUCTION

Nutrition is a critical environmental determinant for animal

growth, reproduction, and longevity. Through interactions with

surrounding nutritional environments, animals have evolved their

own feeding habits. Some species are generalists, which adapt

to a wide range of food resources, while others are specialists,

which feed on limited resources. Tight associations of specialists

to their specific resources have been studied from the perspec-
2594 Cell Reports 28, 2594–2607, September 3, 2019 ª 2019 The Au
This is an open access article under the CC BY license (http://creative
tives of food preference and toxin resistance (Johnson et al.,

2018; Zhan et al., 2011). However, it is still unclear how adapt-

abilities to nutritional conditions differ between generalist and

specialist species, how different responses are in gene regula-

tion and metabolism, and what molecular mechanisms underlie

the difference.

Drosophila melanogaster is an emerging model organism to

study nutritional adaptability, which can be assessed by

measuring the effects of diet on life history traits, such as devel-

opmental rate, fertility, and lifespan. Many inter-organ signaling

molecules, such as Drosophila insulin-like peptides (Dilps),

which have been functionally conserved during evolution,

mediate nutrient responses (Droujinine and Perrimon, 2016). In

nature, Drosophila species exhibit enormous variation in feeding

habits. D. melanogaster and D. simulans are generalists that are

globally distributed and able to breed on a wide variety of rotting

fruits, vegetables, and other plant matter (Figure 1A) (Markow,

2015; Markow and O’Grady, 2008). In contrast, D. sechellia,

D. erecta, and D. elegans are specialists that have limited habi-

tats and reproduce on specific fruits or flowers (Figure 1A) (Chan-

dler et al., 2011; Hirai and Kimura, 1997; Markow, 2015; Markow

and O’Grady, 2008; Rio et al., 1983; Tsacas and Bächli, 1981).

For example, D. sechellia only lives in the Seychelles islands,

and it feeds on a single host plant, Morinda citrifolia. Biogeo-

graphical and phylogenetic evidence suggests that D. sechellia

evolved in isolation after colonization of these islands by its sister

species, a generalist D. simulans (Clark et al., 2007; Hey and Kli-

man, 1993; Kliman et al., 2000). Previous studies on Drosophila

specialist species have provided examples of the genetic under-

pinnings of traits that are adaptive to their host resources, such

as chemoreception and egg production (Lang et al., 2012; Lav-

ista-Llanos et al., 2014; Linz et al., 2013; Matsuo et al., 2007;

McBride et al., 2007). It was also reported that nutritional

adaptability and gene expression are different between

D. melanogaster and cactus-feeding species (Matzkin et al.,

2011; Nazario-Yepiz et al., 2017); however, the underlying mo-

lecular mechanisms of these differences have not been resolved.

Here, we address the aforementioned questions by comparing

adaptability (larval growth), nutritional profiles in natural food
thor(s).
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resources, and transcriptional and metabolic responses to diets

among the fiveDrosophila species (Figure 1A).We first examined

whether there is a difference in adaptability to a range of nutrient

balances among the species. To define the nutrient balances, we

focused on protein-to-carbohydrate (P:C) ratios, which have a

profound impact on lifespan and reproduction in mammals and

insects (Matzkin et al., 2011; Matavelli et al., 2015; Simpson

et al., 2015). For example, the lifespan in D. melanogaster is

longer on low P:C ratio diets (Lee et al., 2008), and longevity in

mice is also greatest on low P:C ratio diets (Solon-Biet et al.,

2014). Diets for D. melanogaster with different P:C ratios in pre-

vious studies were made by varying the ratio of yeast to sucrose;

therefore, P:C ratios for D. melanogaster also reflect the balance

between yeast-derived nutrients and sugar. We found that

larvae of the generalists adapted to all three diets with different

P:C ratios tested, whereas the specialists D. sechellia and

D. elegans could not adapt to carbohydrate-rich diets. We

compared nutritional profiles of natural food resources for the

species and investigated the critical impediments to adaptation

of the specialists D. sechellia and D. elegans. Collectively, these

results suggest that the generalists have adapted to foods with

widely varying carbohydrate contents, whereas the specialists

D. sechellia and D. elegans have lost this adaptability.

In the generalist D. melanogaster, the consumption of nutritive

sugars stimulates the expression and secretion of the Activin-like

ligand Dawdle (Daw) from the fat body. Daw then activates trans-

forming growth factor b (TGF-b)/Activin signaling in the gut and

represses expression of carbohydrases in response to the nutri-

tional state (Chng et al., 2014). In addition, loss of TGF-b/Activin

signaling leads to accumulation of tricarboxylic acid (TCA) cycle

intermediates and upregulation of TCA cycle enzyme genes

(Ghosh and O’Connor, 2014). TGF-b/Activin signaling also regu-

lates muscle proteostasis and aging (Bai et al., 2013; Langerak

et al., 2018). We performed RNA sequencing (RNA-seq) analysis

using larval whole bodies and multiple tissues and found that the

generalist D. melanogaster systemically regulated the expres-

sion of diverse metabolic genes by TGF-b/Activin signaling,

while the specialistsD. sechellia andD. elegans expressed those

metabolic genes at higher levels on the carbohydrate-rich diet.

Moreover, metabolomic analysis showed that the wild-type

generalist D. melanogaster maintained metabolic homeostasis,

whereas the specialist D. sechellia accumulated various metab-

olites on the carbohydrate-rich diet, as did the D. melanogaster

daw mutant. We discuss both phenotypic similarities and differ-
Figure 1. The Generalists Adapt to Various Nutrient Balances, wherea

(A) Generalist and specialist Drosophila species employed in this study and thei

globally distributed species, whereas the three specialists have limited habitats (

(B) Contents of protein and carbohydrate in our experimental diets. The gray line

(C) Images of the generalist D. melanogaster (left) and specialist D. sechellia (right)

vial. In this figure, ‘‘D. melanogaster’’ represents the wild-type D. melanogaster C

(D) Pupariation rates of 5 species. Each point indicates the percentage of pupated

The central lines indicate the median. Boxes show the 25th–75th percentiles. Whis

the interquartile range. Dmel, D. melanogaster; Dsim, D. simulans; Dsec, D. sech

(Steel-Dwass test, n = 13–15).

(E) Developmental stages of D. melanogaster, D. simulans, D. sechellia, and D. ele

(F) Developmental stages of D. sechellia and D. elegans at 11 days after first-ins

(G) Representative images of animals at 98 hours after first-instar larvae were plac

See also Figure S1 and Table S1.
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ences among the species and the D. melanogaster mutants and

the possible genetic changes of the carbohydrate-responsive

systems in the specialists.

RESULTS

The Generalists Adapt to Various Nutrient Balances,
whereas the Specialists Cannot
We first examined whether there is a difference in adaptability to

a range of nutrient balances among the five Drosophila species

above. We examined larval growth of the species on three isoca-

loric diets with different P:C ratios (Figure 1B; Table S1A): high-

carbohydrate diet (C diet), medium diet (M diet), and high-protein

(high-yeast) diet (P diet). We found that the larvae of the

two generalist species developed into pupae on all three diets

(Figures 1C and 1D). In contrast, larvae of all three specialists

failed to develop on the C diet; most notably, two specialists,

D. sechellia and D. elegans, reduced their pupariation rates

proportionately with decreasing P:C ratios (Figures 1C and 1D;

as for D. erecta, see Discussion). Larvae of the specialists

D. sechellia and D. elegans showed substantial developmental

delays on the C and M diets compared to the P diet (Figures

1E, 1G, and S1A). Importantly, more than 80% of D. sechellia

larvae died at the first-instar stage, and 50% of D. elegans

died at the second-instar stage on the C diet (Figure 1F), indi-

cating that the critical timings of lethality were the first-instar

stage in D. sechellia and the second-instar stage in D. elegans.

We next quantified food intake and addressed the possibility

that the specialists, in particular D. sechellia, have feeding de-

fects on the C and M diets and fail to develop on the diets. We

found that the amount of food ingested by D. sechellia was

less than the amount ingested byD.melanogaster on all three di-

ets (Figures S1B and S1C), suggestive of species differences

(see STAR Methods, ‘‘Designs for interspecies and omics ana-

lyses’’). We therefore compared phenotypes among the three di-

ets within each species rather than between the species on the

same diet. D. sechellia as well as D. melanogaster did ingest a

comparable amount of each food, regardless of the P:C ratio

(Figures S1B and S1C). This result suggests that the poor

adaptability of D. sechellia to the C and M diets compared to

the P diet was not due to lower amounts of food intake on the di-

ets. We also examined whether the associated microbes of the

species played integral roles in their distinct adaptations by

swapping their associated microbes. The specialist D. sechellia
s the Specialists Cannot

r natural food resources. D. melanogaster and D. simulans are cosmopolitan,

highlighted in magenta).

represents isocaloric diets. SF: our laboratory standard food.

fed on the individual diets. 60 first-instar larvae were placed on the diet in each

anton-Special (CS) strain.

animals out of 20 first-instar larvae in a 1.5 mL tube with each respective diet.

kers extend to themost extreme data points, which are nomore than 1.5 times

ellia; Dele, D. elegans; Dere, D. erecta. *p < 0.05, **p < 0.01, and ***p < 0.001

gans at 95–98 h after first-instar larvae were placed on each diet (n = 80–100).

tar larvae were placed on the C or M diet (n = 80).

ed on the individual diets. Arrowheads indicate dead larvae. Scale bars, 1 mm.
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Figure 2. The Generalists Adapt to Much Higher Dietary Carbohydrates Than the Specialists, Both in the Wild and the Laboratory

(A) Experimental design for GC-MS analysis of fermented natural food resources for the generalistD.melanogaster (banana and plum) or the specialistD. elegans

(I. indica and I. cairica).

(B) Images of natural food resources for generalists or the specialistD. elegans before and after fermentation. All fermented foods were actually fed on by growing

larvae of the individual species (shown by arrows). For two species of morning glory, we dissected flowers and collected fermented stamens, pistils, and pollen

(shown by brackets).

(C) Principal component analysis of detected compounds in the fermented natural food resources showing that the individual resources were separated into

distinct clusters (n = 3). The first principal component (PC1) accounts for 54.2% of the variance.

(D) A heatmap showing peak areas of the top 20 compounds with the largest contribution to PC1 in (C).

(E) Peak areas of glucose (top) and citric acid (bottom), which made large contributions to PC1 in (C). Boxplots are depicted as in Figure 1D.

Dunnett’s test was performed to compare the individual compound levels in banana with those in the other samples (*p < 0.05, **p < 0.01, and ***p < 0.001,

n = 3).

(legend continued on next page)
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transplanted with the generalist D. melanogaster microbes still

showed a reduced pupariation rate on the M and the C diet (Fig-

ures S1D and S1E), indicating that mechanisms encoded in

the generalists’ genomes, rather than their associated microbes,

critically contribute to their adaptations. Collectively, these re-

sults indicate that the generalists showed remarkable adapt-

ability to nutrient balances, which included P:C ratios on which

the specialists could not readily grow.

The Generalists Adapt to Much Higher Dietary
Carbohydrates Than the Specialists, Both in the Wild
and the Laboratory
To investigate the critical impediments for adaptations of the

specialists, we examined and compared nutritional profiles of

their natural food resources. In nature, Drosophila species feed

on fruits or flowers fermented by yeasts and bacteria. These mi-

crobes, especially yeasts, are important nutrient sources for

Drosophila species, providing many nutrients such as amino

acids, sterols, B vitamins, and fatty acids that are not abundantly

present in plant materials (Broderick and Lemaitre, 2012; Ya-

mada et al., 2015). For example, the nutritional components in

fresh banana alone cannot support the growth of germ-free

D. melanogaster larvae unless the banana is inoculated with

yeasts (Anagnostou et al., 2010). We therefore collected and

analyzed fermented resources on which larvae in the wild had

actually fed and developed to the second- or third-instar stage,

with the aim of matching the degree of fermentation between the

foods: fermented bananas or plums in fly trap bottles in Kyoto for

generalists (Figures 1A, 2A, and 2B; Table S1B) and two species

of fermented wild morning glory in Okinawa (Ipomoea indica and

Ipomoea cairica) for the specialist D. elegans (Figures 1A, 2A,

and 2B). As for wild morning glory, we dissected fermented

flowers and collected stamens, pistils, and pollen, which are

the parts that are typically fed on byD. elegans larvae (Figure 2B).

Calculating the P:C ratios of fermentedwildmorning glory is diffi-

cult to perform because measuring total protein and carbohy-

drate levels by the standard nutrition analysis requires a large

quantity (100–500 g) of each food (Greenfield and Southgate,

2003). Alternatively, we performed gas chromatography-mass

spectrometry (GC-MS) analysis, which requires much less sam-

ple material (approximately 100 mg; see also STAR Methods).

Principal component analysis of a total of 102 detected com-

pounds showed that the individual food resources were sepa-

rated into distinct clusters and that the first principal component

(PC1) accounted for 54.2% of the variance (Figure 2C). We found

that contents of sugars and organic acids in sugar metabolic

pathways mainly contribute to PC1 and that a resource of the

generalists, fermenting banana, contained much higher sugars

and organic acids than not only the specialist’s resource,

two species of wild morning glory, but also another resource of

the generalists, fermenting plum (Figures 2D and 2E; Tables

S1C–S1E). This result shows that the generalists can adapt to

both high-carbohydrate banana and low-carbohydrate plum,
(F) Protein-to-carbohydrate ratios (P:C ratios) of our laboratory diets (the C, M, an

and vegetables; described in Broderick and Lemaitre, 2012, and Gibson et al., 19

(Pandanus fruits). The data for the respective natural foods were sorted by their

See also Figure S2, Table S1, and STAR Methods.
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whereas the specialist D. elegans adapts only to low-carbohy-

drate morning glory.

As mentioned above, it is desirable to analyze and compare

nutritional profiles of fermented natural food resources fed on

by the larvae of each species. However, fermented food re-

sources, especially those for D. sechellia and D. erecta, are diffi-

cult to collect because of their restricted habitats (Figure 1A). As

an alternative, we obtained nutrition data of unfermented natural

food resources for D. melanogaster (fruits and vegetables; Bro-

derick and Lemaitre, 2012; Gibson et al., 1981), D. sechellia

(M. citrifolia fruits), and D. erecta (Pandanus fruits) from public

nutrition databases and nutrition data of a food resource for

D. elegans (Alpinia flowers) from a previous study (Rachkeeree

et al., 2018). We found that D. melanogaster feeds on both

high-carbohydrate diets (e.g., apple, pear, and fig) and low-

carbohydrate diets (e.g., zucchini, tomato, and cucumber) in

the wild (Figures 2F and S2A–S2C). On the other hand,

the food resources for D. sechellia and D. elegans showed

higher P:C ratios (low-carbohydrate) than most of those for

D. melanogaster (Figures 2F and S2A–S2C). Previous studies

showed that, on Mauritius, variousDrosophila generalist species

were observed emerging from rotten M. citrifolia fruits, of which

the toxic products were detoxified by microbes (David et al.,

1989; R’Kha et al., 1991), indicating that generalist species

also have adaptabilities to high P:C ratio diets, such as

M. citrifolia. All these results strongly suggest that the generalists

have adapted to foods with widely varying P:C ratios and can

adapt to much higher dietary carbohydrates than the specialists

D. elegans and D. sechellia in the wild. In addition, we compared

P:C ratios of these natural food resources with those of labora-

tory diets (the C, M, and P diets). It should be noted that

laboratory diets contain dry yeast as an alternative to microbes

fermenting food resources in the wild, and P:C ratios of labora-

tory diets tend to be higher than those of unfermented natural

food resources (Figure 2F). Therefore, a simple comparison is

not sufficiently accurate; notwithstanding, the P:C ratio of the

P diet was comparable to that of a natural food resource for

D. elegans (Figure 2F), which was consistent with its highest

adaptability to the P diet among the three laboratory diets.

The D. melanogaster daw Mutant Cannot Adapt to
Carbohydrate-Rich Diets, Much Like the Specialists
D. sechellia and D. elegans

In the generalist D. melanogaster, systemic TGF-b/Activin

signaling functions as a carbohydrate-responsive mechanism

(Chng et al., 2014; Ghosh and O’Connor, 2014). We therefore

asked whether D. melanogaster mutants of a TGF-b/Activin

ligand gene, daw, and its upstream regulator gene, mlx (Mattila

et al., 2015), could adapt to our diets. The daw mutant larvae

showed dramatically reduced pupariation rates on the M and

the C diets (Figure 3A), closely resembling the specialists

D. sechellia and D. elegans (Figure 1D). On the other hand, the

mlx mutant larvae failed to adapt to not only the C diet, but
d P diets) and unfermented natural foods preferred by D. melanogaster (fruits

81), D. sechellia (M. citrifolia fruits), D. elegans (Alpinia flowers), and D. erecta

P:C ratios.
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Figure 3. The D. melanogaster daw Mutant

Cannot Adapt to Carbohydrate-Rich Diets,

Much Like the Specialists D. sechellia and

D. elegans

(A) Pupariation rates of control (y w and daw1/+) and

dawmutant (daw1/11 and daw11/11)D.melanogaster

larvae on each diet in a 1.5 mL tube. (Steel-Dwass

test, n = 4–10).

(B) Pupariation rates of control (CS) and mlx

mutant (mlx1/1) D. melanogaster larvae on each

diet (Steel-Dwass test, n = 9–10).

(C) Developmental stages of the D. melanogaster

CS, daw mutant (daw1/11), andmlx mutant (mlx1/1)

at 95–98 h after first-instar larvae were placed on

each diet (n = 80–100).

(D) Developmental stages of the D. melanogaster

CS, daw mutant, and mlx mutant at 11 days after

first-instar larvae were placed on the C or M diet

(n = 80).

(E) Pupariation rates of the individual species or

genotypes on the M diet, the P diet, the L diet, and

the H diet (Steel test, n = 6–12). The L diet contains

the same amount of sucrose as the P diet and the

same amount of yeast as the M diet, whereas

the H diet contains the same amount of sucrose as

the M diet and the same amount of yeast as the

P diet. See also Figure 1B and Table S1A.

(F) Pupariation rates of the individual species or

genotypes on M diets with different amounts of

propionic acid (PA; Steel test, n = 3–7). w/o PA, M

diet without PA; 1xPA, M diet; 2xPA, M diet with

2x PA; 3xPA, M diet with 3x PA.

Boxplots in (A), (B), (E), and (F) are depicted as in

Figure 1D. *p < 0.05, **p < 0.01, and ***p < 0.001.
also the M diet (Figure 3B), which is a more severe phenotype

than those of the two specialists and the daw mutant. Next, we

examined lethal stages of the daw andmlxmutants on our diets.

We found that more than 50% of the daw mutant or mlx mutant

larvae died at the first-instar stage on the C diet (Figures 3C and

3D). This result suggests that the critical timing of lethality was

the first-instar stage in both the daw andmlxmutants, which re-

sembles the timing of lethality of the specialist D. sechellia (Fig-

ures 1E and 1F). From these results, we mainly focused on

phenotypic similarities between the specialist D. sechellia and

the D. melanogaster daw mutant.

In addition to the three laboratory diets, we examined

adaptabilities to a low-protein and low-carbohydrate diet
Cell Report
and a high-protein and high-carbohy-

drate diet (L diet and H diet, respec-

tively) (Figure 1B; Table S1A). Both

the daw mutants and the specialists

D. sechellia and D. elegans developed

better on the L diet than the M diet (Fig-

ure 3E). This result suggests that their

inability to adapt to the M or the C

diet was due to the excess amounts

of carbohydrates rather than the low-

abundances of other yeast-derived nu-

trients. Intriguingly, pupariation rates of
the daw mutant and the specialist D. sechellia tended to be

higher on the H diet compared to the M diet (Figure 3E), indi-

cating that the key variable to their adaptation is the ratio

of carbohydrates to other yeast-derived nutrients in the

foods rather than the total amount of carbohydrates. It was

previously reported that the daw mutation reduced puparia-

tion rates on propionic acid (PA; a mold inhibitor)-induced

acidic diets (Ghosh and O’Connor, 2014). The specialists

D. sechellia and D. elegans also showed reduced pupariation

rates on the M diet with supplemental PA (Figure 3F). These

observations raised the possibility that the specialists are

defective in TGF-b/Activin signaling and unable to adapt to

carbohydrate-rich and/or acidic diets.
s 28, 2594–2607, September 3, 2019 2599
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Figure 4. The Specialist Species Are Defec-

tive in Carbohydrate-Responsive Gene

Regulation

(A) Scatterplot showing expression values in

whole-body RNA-seq datasets of the wild-type

D. melanogaster CS and the daw mutant at the

wandering third-instar stage on the M diet.

(B) Heatmaps of whole-body expression profiles

for the Daw-activated or Daw-repressed genes on

the M diet at the wandering third-instar stage.

RNA-seq platforms: K, Kyoto University; G,

Genome Science; N, NODAI.

(C) Violin plots showing distributions of expression

change between the diets for the Daw-activated or

Daw-repressed genes by ranking. *p < 0.05 and

***p < 0.001 (Steel test or two-tailedMann-Whitney

U test, compared to the D. melanogaster CS on

each platform). White circles indicate the median.

Boxes show the 25th–75th percentiles. Whiskers

extend to the most extreme data points, which are

no more than 1.5 times the interquartile range. The

shape denotes the density estimate and extends

to extreme values.

See also Figures S3 and S4, Tables S2 and S6, and

STAR Methods.
The Specialist Species are Defective in Carbohydrate-
Responsive Gene Regulation and Express Metabolic
Genes at Higher Levels on the Carbohydrate-Rich Diet
To examine whether carbohydrate-responsive gene regulation

mediated by TGF-b/Activin signaling also functions in the spe-

cialists D. sechellia and D. elegans, we performed RNA-seq of

larval whole bodies. To exclude the possibility that differences

in developmental stage and sex influence the outcome of the ex-

periments and lead to erroneous conclusions (Markow and

O’Grady, 2005), we decided to use male larvae at the wandering

third-instar stage that fed on the M or the P diet (see details

in ‘‘Designs for interspecies and omics analyses’’ in STAR

Methods). On the M diet, 1,811 genes were expressed at signif-

icantly higher levels in the wild-type D. melanogaster Canton-

Special (CS) strain than the daw mutant, and we designated

those as ‘‘Daw-activated genes’’ (red in Figure 4A and Table

S2). In contrast, 1,664 genes showed lower expression levels

on theM diet (‘‘Daw-repressed genes’’; blue in Figure 4A and Ta-

ble S2). We then focused on these Daw-activated or Daw-

repressed genes on the M diet and compared dietary responses

(expression changes between the M and the P diet) among the

five species and the D. melanogaster daw mutant by clustering

or ranking (Figures 4B and 4C; Table S2). We found that the

responses of the specialist D. sechellia and D. elegans were

much closer to those of the dawmutants than the wild-type gen-

eralists (Figures 4B and 4C). Similar to the dawmutants, the two

specialists expressed the Daw-activated genes at lower levels

on the M diet and expressed the Daw-repressed genes at higher
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levels (Figures 4B and 4C), indicative of

defective gene regulation of the Daw-

activated and Daw-repressed genes.

We then addressed how gene regula-

tion by TGF-b/Activin signaling operates
in the adaptation of the generalists. Tissue-type-specific RNA-

seq datasets (Brown et al., 2014) showed that Daw-activated

genes are highly expressedmainly in the testis (Figure S3A). We

addressed whether germline-less D. melanogastermale larvae,

in which two Daw-activated genes that we tested were hardly

expressed (Figures S3B and S3C), still adapted to the M and

the C diets or not. Germline-less D. melanogaster still adapted

to the M and the C diets, indicating that the testis-specific Daw-

activated genes do not contribute appreciably to the adapta-

tion (Figures S3B–S3D). In contrast, Daw-repressed genes

show ubiquitous expression (Figure S4A). To search for tissues

where TGF-b/Activin signaling plays an essential role in

the nutritional adaptation, we knocked down a type I receptor

gene of the signaling pathway baboon (babo) in a tissue-

specific manner in D. melanogaster. We found that knocking

down babo in muscles severely reduced pupariation rates on

the C diet, suggesting that TGF-b/Activin signaling in muscles

contributes to the adaptation (Figure S5A; see details in the

legend). We therefore performed RNA-seq on muscles from

wandering male larvae (Table S3). Of note, Daw-repressed

genes in both whole bodies and muscles on the M diet were

significantly enriched for enzyme-coding genes in diverse

metabolic pathways (Figures 5A, S4B, S4C, S5B, and S5C; Ta-

bles S2 and S3). We then addressed whether the specialist

D. sechellia can regulate the expression of these metabolic

genes or not. Expression values for the metabolic Daw-

repressed genes, not only in larval muscles, but also in guts

and fat bodies of D. sechellia, were remarkably higher than
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Figure 5. The Specialist D. sechellia Expresses Metabolic Genes at Higher Levels on the Carbohydrate-Rich Diet

(A) Metabolic pathways catalyzed by the Daw-repressed gene products in whole bodies and muscles of wandering third-instar larvae on the M diet and those in

whole bodies of first-instar larvae on the C diet. Black lines indicate D. melanogaster metabolic pathways.

(B) Heatmaps of expression values for the metabolic Daw-repressed genes in muscles, guts, or fat bodies of the wild-type and the dawmutant D. melanogaster

and D. sechellia at the wandering third-instar stage on the M or P diet.

(C) Venn diagrams showing overlaps among themetabolic Daw-repressed genes on theM diet in whole bodies, those in muscles of wandering third-instar larvae,

and those on the C diet in whole bodies of first-instar larvae. The numbers of genes in the individual categories are indicated.

(D) A heatmap of expression values for themetabolic Daw-repressed genes in thewild-type and the dawmutantD.melanogaster andD. sechellia at the first-instar

stage on the C or P diet.

See also Figures S4 and S5 and Tables S2, S3, S4, S5, and S6.
those of the wild-type D. melanogaster, in particular on the

M diet (Figure 5B; Tables S3, S4, and S6).

We further examined whether these defects in gene regula-

tion in wandering male larvae of the specialist D. sechellia on

the M diet were also seen in larvae on the C diet, where

most D. sechellia larvae eventually died at the first-instar stage

(Figure 1F). For this purpose, we performed RNA-seq using

first-instar larvae on the C or the P diet. On the C diet, 2,515

genes were expressed at significantly lower levels in the

wild-type D. melanogaster than the daw mutant, and we desig-

nated those as ‘‘Daw-repressed genes on the C diet’’ (Table

S5). These Daw-repressed genes include 242 metabolic

genes; notably, they overlapped substantially with Daw-

repressed genes of the third-instar-larval whole body or mus-

cle on the M diet (Figures 5A, 5C, and S4D; Tables S5 and S6).

In addition, many of the expression values of the metabolic

Daw-repressed genes of the first-instar larvae were markedly

higher in the specialist D. sechellia on the C diet—not only

compared to the wild-type D. melanogaster, but also the

daw mutant on the C diet (Figure 5D; Tables S5 and S6). All

of these results indicate that the generalists can systemically
downregulate metabolic gene expression levels by TGF-b/

Activin signaling on the carbohydrate-rich M or C diet at

both early and late larval stages, whereas the specialists

D. sechellia and D. elegans show increased levels of tran-

scripts of those metabolic genes.

The D. melanogaster daw Mutant and the Specialist
D. sechellia Accumulate Various Common Metabolites
on the Carbohydrate-Rich Diet
Previous studies have shown that overexpression of TCA cycle

enzyme genes cause increases in production of intermediates

(Anoop et al., 2003; Ghosh and O’Connor, 2014; Koyama et al.,

2000; Tesfaye et al., 2001). To examine whether the differences

in metabolic gene regulation among the species impact their

metabolism, we performed GC-MS-based metabolomic analysis

using wandering male larvae. In the wild-type D. melanogaster,

most metabolites did not change between the diets (Figure 6A),

and only 4 metabolites were significantly increased on the

M diet (Figures 6B and 6C; Table S7). In contrast, the daw

mutants increased 54 metabolites on the M diet, most of

which are intermediates of metabolic pathways catalyzed by
Cell Reports 28, 2594–2607, September 3, 2019 2601



A B C

D

Figure 6. The D. melanogaster daw Mutant and the Specialist D. sechellia Accumulate Various Common Metabolites on the Carbohydrate-

Rich Diet

(A) A heatmap showing relative abundance of metabolites in the wild-type D. melanogaster CS and the daw mutant.

(B) Mapping of significantly increased metabolites on the M diet compared to the P diet, to metabolic pathways. Not all of the increased metabolites were

mapped. See also Table S7.

(C) Number of increased metabolites on the M diet compared to the P diet and the number that overlaps with the daw mutants.

(D) Representative metabolic pathways catalyzed by the Daw-repressed gene products in whole bodies or muscles of wandering third-instar larvae or whole

bodies of first-instar larvae. Increased metabolites on the M diet compared to the P diet were also mapped as in (B).

See also Figures S5 and S6 and Tables S2, S3, S5, S6, and S7.
the Daw-repressed gene products (Figures 6A–6D; Table S7).

Notably, 33 metabolites were increased in the specialist

D. sechellia on the M diet, and these substantially overlapped

with those that were increased in the daw mutant (27/33 metab-

olites; Figures 6B–6D; Table S7). We further investigated the ef-

fects of the diets on metabolism by observing lipid droplets in

the fat body. In the wild-type D. melanogaster, larger lipid drop-
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lets are seen under much higher carbohydrate conditions than

the M or C diet, and these findings have been discussed in the

context of obesity (Musselman et al., 2011; Öst et al., 2014). In

contrast to the wild-type D. melanogaster, in which the lipid

droplet size did not significantly change between the M and the

P diets, the daw mutant and D. sechellia increased the lipid

droplet size on the M diet (Figure S6). These results imply that
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D

B Figure 7. The Defect in the Specialist

D. sechelliaCannot Be Attributed to a Single

Gene Mutation of the Known Components

or an Upstream Regulator of TGF-b/Activin

Signaling

(A–D) Pupariation rates of the wild-type

D. melanogaster CS, D. sechellia, hybrids between

D.melanogaster CS andD. sechellia (CS/Dsec), and

hybrids betweenD.melanogastermutants of known

components or an upstream regulator of TGF-b/

Activin signaling and D. sechellia. Hybrids between

D.melanogaster dawmutant andD. sechellia (daw1/

Dsec, A), hybrids between a D. melanogaster line

with a deleted babo gene and D. sechellia (baboDf/

Dsec, B), hybrids between D. melanogaster punt

mutants and D. sechellia (punt10460/Dsec, C), hy-

brids between D. melanogaster Smox mutants and

D. sechellia (SmoxF4/Dsec, C), and hybrids between

D. melanogaster mlxmutants andD. sechellia (mlx1/

Dsec, D) were examined. Boxplots are depicted as

in Figure 1D. *p < 0.05, **p < 0.01, and ***p < 0.001

(Steel-Dwass test). n = 7–9 (A), 5–10 (B), 5–8 (C), and

4–10 (D). To generate the hybrids, virgin female

D. melanogaster were crossed to male D. sechellia.

See also Figure S7.

(E) Summary of this study. A question mark (?)

indicates hypothetical defects in carbohydrate-

responsive mechanisms in the specialist.
their fat bodies are more sensitive to the load of carbohydrates

than those of the wild-type D. melanogaster and that this pheno-

type may correlate with nutritional adaptability or lack thereof.

Taken together, our results show that the specialists, especially

D. sechellia and the D. melanogaster dawmutant, cannot coordi-

nately control the amounts of metabolites and severely compro-

mises adaptation on the carbohydrate-rich diets, whereas the

wild-type D. melanogaster can maintain metabolic homeostasis

and successfully adapts to the diets (Figure 7E).
Cell Repor
Our results highlight phenotypic simi-

larities between the specialists D. sechel-

lia and D. elegans and the generalist

D. melanogaster daw mutants, which

imply the possibility that the carbohy-

drate-driven differences in gene expres-

sion come about by retention of gene

regulation by the TGF-b/Activin signaling

pathway in the generalists and its defect

or loss in the specialists D. sechellia and

D. elegans. Previous studies have shown

thatD. sechellia evolved from the general-

ists and underwent accelerated chemore-

ceptor gene loss compared to the gener-

alists (Hey andKliman, 1993; Kliman et al.,

2000; McBride, 2007; McBride et al.,

2007). We assessed whether D. sechellia

also lost some gene functions in the car-

bohydrate-adaptive system by gener-

ating hybrids between D. sechellia and

D. melanogaster mutants of the known

components or an upstream regulator
of TGF-b/Activin signaling. However, they were still able to

develop on the carbohydrate-rich diets (Figures 7A–7D and

S7). This result suggests that the evolutionary changes in

D. sechellia cannot be attributed to a single gene mutation

of the genes tested, but rather may be caused by multiple

loci associated with TGF-b/Activin signaling. An alternative

interpretation of our results of the hybrid analyses would be

that the specialists D. sechellia and D. elegans lost carbohy-

drate-responsive system(s) other than TGF-b/Activin signaling
ts 28, 2594–2607, September 3, 2019 2603



(Figure 7E). We further discuss our results, including these

possibilities, below.

DISCUSSION

Collectively, our results have strongly suggested that robust

carbohydrate-responsive regulation of gene expression and

metabolism contribute to strong nutritional adaptability of the

generalist species during development. One possible interpreta-

tion of our results from hybrids between D. sechellia and

D. melanogaster is that the defect in the specialist D. sechellia

could be caused by multiple loci associated with TGF-b/Activin

signaling. This speculation is consistent with previous studies

suggesting that large- and smaller-effect loci in D. sechellia

contribute to toxin resistance additively (Huang and Erezyilmaz,

2015; Jones, 1998). Indeed, many studies in D. melanogaster

and the laboratory mouse Mus musculus have shown that (1)

complex traits are affected by multiple interacting loci with indi-

vidually small and environmentally sensitive effects and (2) many

sequence variations are located in intergenic regions, probably

impacting regulatorymechanisms, thereby altering gene expres-

sion (Flint and Mackay, 2009; Mackay, 2009).

Although the phenotypic similarities between the specialists

D. sechellia and D. elegans and the generalist D. melanogaster

daw mutants are intriguing, we have also found differences.

For example,D. sechellia exhibited a more severe unadaptability

phenotype than the dawmutants. More than 80% of D. sechellia

larvae died at the first-instar stage, and less than 10% of the

larvae developed to the second-instar stage on the C diet,

whereas more than 30% of the daw mutants developed to the

second-instar stage (Figures 1F and 3D). In addition, many of

the expression values of the metabolic Daw-repressed genes

were markedly higher in D. sechellia compared to the daw

mutant in muscles at the wandering third-instar stage and in

the whole body of the first-instar stage (Figures 5B and 5D).

These results raise the possibility that D. sechellia may have

additional defects in other regulatory mechanisms, including

unidentified adaptive systems, associated with or distinct

from TGF-b/Activin signaling (Figure 7E; see also a caveat in

‘‘Designs for interspecies and omics analyses’’ in STAR

Methods). Furthermore, there was also a difference between

the two D. melanogaster mutants, mlx and daw. Themlx mutant

failed to adapt to not only the C diet but also the M diet (Fig-

ure 3B), which is a more severe phenotype than that of the

daw mutant (Figure 3A) and the two specialists D. sechellia

and D. elegans (Figure 1D). This result implies the presence of

other factors for adaptation that are downstream of Mlx and

separate from TGF-b/Activin signaling (‘‘Other factors’’ in Fig-

ure 7E). To unravel the causative step(s) and genetic architecture

of distinct nutritional adaptabilities in the specialists D. sechellia

and D. elegans to the carbohydrate-rich diets, further studies

focused on genomic differences associated with the distinct

carbohydrate-responsive regulation will be needed. Recently, a

phenotype-based introgression approach using hybrids be-

tween D. simulans and D. sechellia identified genomic regions

in the generalist D. simulans that were sufficient for sugar toler-

ance (Melvin et al., 2018). This raises the possibility that these re-

gions contain the responsible loci for the carbohydrate response
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of the generalists revealed in our study. Future research

should elucidate the precise defects in the specialists and also

investigate the possible interactions between TGF-b/Activin

signaling and genes for other regulatory mechanisms, including

those in the genomic regions identified in the aforementioned

study.

Our interspecies comparative analyses revealed phenotypic

similarities and differences even among the three specialists.

The phenotypes of D. sechellia and D. elegans were similar to

each other with regard to adaptability to the C, M, and P diets

(Figure 1D) and carbohydrate-responsive profiles of gene

expression (Figures 4B and 4C), but they differed with regard

to the critical timings of lethality on the C diet (Figure 1F), meta-

bolic profiles (Table S7), and adaptation to the M diet with PA

(Figure 3F). Considering these results and phylogenetic analyses

showing independent evolutionary histories of D. sechellia and

D. elegans on their particular respective hosts (Chen et al.,

2014), these two specialists are quite likely to have incurred

different mutations responsible for loss of the carbohydrate-

adaptive systems. Our study supports an important possibility

of a genome-environment interaction: the two specialists

D. sechellia and D. elegans independently lost the carbohy-

drate-adaptive systems, which became superfluous during evo-

lution in the constant low-carbohydrate environments. We also

found that nutritional adaptability of the specialist D. erecta

was different from those of the generalists or the two other

specialist species, D. sechellia and D. elegans. The specialist

D. erecta developed well on the M diet but incurred severely

reduced pupariation rates on both the C and the P diets (Fig-

ure 1D). Our whole-body RNA-seq data also showed that dietary

responses ofD. erectawere distinct from those of the generalists

or the two other specialist species. As for the Daw-activated

genes, dietary responses of D. erecta were closer to those of

the specialist D. sechellia, D. elegans, and D. melanogaster

daw mutants (Figures 4B and 4C). On the other hand, as for

the Daw-repressed genes, dietary responses of D. erecta were

much closer to those of the generalists (Figures 4B and 4C). All

of these results imply that D. erecta is defective in some regula-

tory mechanisms for nutritional adaptability other than TGF-b/

Activin signaling. Interestingly, the P:C ratio of the food resource

for D. erecta is located in the middle with respect to the widely

varying resources for D. melanogaster (Figure 2F). The variation

in nutritional adaptability among the specialist species might be

attributed to differences in their feeding habits.

Various species in nature show complex adaptations to

diverse environments, whose underlying mechanisms still

remain to be elucidated. Our interspecies comparative study

provides a powerful approach to understand how environ-

ment-responsive systems function and how they can evolve

through genome-environment interactions.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yukako

Hattori (yhattori@lif.kyoto-u.ac.jp). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila strains and fly culture
D.melanogasterwild-typeCanton-S (E-10002) andD. elegans (HK0461.03) were obtained fromEHIME-FlyDrosophilaStocks of Ehime

University. D. simulans (K-S05), D. sechellia (K-S10), and D. erecta (K-S02) were obtained from KYORIN-Fly Fly Stocks of Kyorin

University. The following D. melanogaster lines were also used in this study: daw1/CyO-GFP, daw11/CyO-GFP, baboDF6090/CyO-

act-GFP, and SmoxF4/FM7-act-GFP were gifts from M. B. O’Connor (Gesualdi and Haerry, 2007; Peterson et al., 2012; Serpe and

O’Connor, 2006; Zheng et al., 2003). mlx1/TM3-GFP was a gift from V. Hietakangas (Havula et al., 2013). UAS-babo-c-miRNA was a

gift from T. Awasaki (Awasaki et al., 2011). osk301/TM3 and w-; osk301/TM3 were gifts from A. Nakamura (Lehmann and

N€usslein-Volhard, 1986). da-Gal4 (#55849), Mef2-Gal4 (#27390), Sxl-eGFP (# 24105), punt10460/TM3,Sb,Ser (#11745) were obtained

fromBloomingtonDrosophilaStockCenter. The genotypeof theD.melanogaster dawmutantwasdaw1/11, unless described otherwise.

All stocks were maintained at 25�C on a laboratory standard food containing, per liter of water, 51 g of corn flour, 26 g of corn grits

(NIPPN), 44 g of dry yeast (Asahi Food & Healthcare, Y2A), 110 g of glucose (Kato Kagaku, Fuji Crystar), 8 g of agar (Matsuki Kanten),

2.9mLofpropionic acid (Nacalai, #29018-55), and2.9mLof10%butyl p-hydroxybenzoate (Nacalai, #06327-02;diluted in70%ethanol).

METHOD DETAILS

Experimental diets
Wemainly used three isocaloric diets that differ in protein-to-carbohydrate (P:C) ratios as described previously (Matzkin et al., 2011),

with the modification of the amounts of yeast, sucrose, and antifungal agents (propionic acid and butyl p-hydroxybenzoate): C diet
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(high-carbohydrate diet), M diet (mediumdiet), and P diet (high-protein or high-yeast diet). The P:C ratio of theMdiet is close to that of

our standard food above. All of the C, M, and P diets were composed of active dry yeast (Genesee Scientific, #62-103), sucrose

(WAKO, #196-00015), yellow cornmeal (Genesee Scientific, # 62-100), and agar (Matsuki Kanten). The complete compositions of

these diets can be found in Table S1A. After ingredients were mixed with 200 mL water, they were boiled and stirred for 4 min.

Once the foods were cooled down, 0.6 mL propionic acid (Nacalai, #29018-55) and 2 mL 10% butyl p-hydroxybenzoate (Nacalai,

#06327-02) in 70% ethanol were added. These foods were dispensed to vials and left for one day before use. When we measured

pupariation rates of first instar larvae on different diets, these foods in vials were mashed and about 1.2 mL volume was put into each

1.5 mL tube, using a 50 mL syringe (TERUMO), unless mentioned otherwise. Calculations of protein and carbohydrate (Figure 1B;

Table S1A) and fat contents were based on the manufacturers’ datasheets and Musselman et al. (2011).

Preparation of first instar larvae
To obtain larvae for our experiments, sexually mature adults were placed on apple agar plates [22.5 g of Bacto agar (Becton Dick-

inson, #214010), 500 mL of apple juice (KIRIN), and 500 mL of water] with yeast paste [dry yeast (Oriental Yeast) kneaded with water]

and allowed to oviposit for 24 hr, unless otherwise mentioned. Embryos/larvae on these plates were washed with 0.7% NaCl + 0.3%

Triton X-100 and collected through 70 mm Cell Strainers (Falcon, #352350). Newly hatched first instar larvae were collected and

placed in 1.5 mL tubes (20 larvae/tube) or vials (200 larvae/vial) of each diet and incubated at 25�C. When the larvae were placed

in 1.5 mL tubes, an approximately 5 mm x 5 mmwindow was made in the lid of each tube and a 59 mm nylon mesh filter was inserted

between the lid and tube. To prevent drying, these 1.5 mL tubes were put in 100-well plastic microtube racks with water-moistened

papers. To quantify pupariation rate and developmental time, the number of pupae in each tube/vial was counted and recorded for at

least 20 days. On rare occasions, almost all of the first instar larvae in a tube or a vial died due to suffocation by clogging of the mesh

filter with themoist food source, or to their escape fromdried food.We did not score such tubes or vials. Statistical analyses including

a non-parametric two-tailed Mann-Whitney U test (for comparison of two samples), a Steel-Dwass test (for comparison of multiple

samples) or Steel test (for non-parametric multiple comparisons to a control) were performed. For Figures 3E and 3F, a Steel test was

used for comparison of pupariation rates on the M diet with those on the other dietary conditions in each species or genotype. Each

point in Figures 1D, 3A, 3B, 3E, 3F, 7A–7D, S1D, S1E, S3D, and S5A indicates the percentage of pupated animals out of 20 first-instar

larvae in a 1.5 mL tube (Figures 1D, 3A, 3B, 3E, 3F, 7A–7D, S1D, S1E, and S3D) or the percentage of pupated animals out of 200 first-

instar larvae in a vial (Figure S5A) with each respective diet. In these figures, n represents the number of the 1.5 mL tube or the vial for

each condition (the number of the replicate). Each point in Figure S1A indicates averaged developmental time of pupated animals in

each 1.5 mL tube, which were prepared for Figure 1D. Tubes with no pupae were omitted to calculate the average time.

Designs for interspecies and omics analyses
Drosophila species can vary in many ways, including the amount of food consumed (Figures S1B and S1C), and these interspecies

differences should be considered in setting up studies and designing experiments (Markow and O’Grady, 2005). We therefore

compared phenotypes among the three diets within each species, rather than between the species on the same diet.

As for omics analyses, considering two issues in the sample preparations, as described below, we compared larvae that could

develop to the wandering larval stage on the M diet with those on the P diet. The first issue was matching the developmental stage

and sex. The entire developmental time to pupariation was different between the species and between the diets (Figure S1A), implying

that the timeat each instarmay also be variable. Those differences can profoundly influence the outcomeof the experiments and lead to

erroneous conclusions (MarkowandO’Grady, 2005). In order to avoid suchmisleading conclusions, it is necessary to compare larvae at

the same developmental stage. It is also critical to exclude sex-related differences in profiles of gene expression and metabolites,

because development of gonads has already begun during larval stages (Cooper, 1950). With these conditions in mind, we opted to

select male larvae at the wandering third-instar stage that fed on the M or the P diet, especially for reasons concerning D. sechellia,

as follows: sexing live larvae of each species depends on finding the testes, but testes of D. sechellia are much smaller than those

of the other four species; consequently, it is sometimes very hard to discriminateD. sechelliamales from females, even at thewandering

larval stage. As long as we positively select males, no error arises. Hence, we considered that choosing males at the wandering larval

stage ensured the reliability of the experiments. The second issue is collecting sufficient sample amounts. The major limiting factor for

our omics experiments is the sample preparations ofD. sechellia larvae. Collecting first-instarD. sechellia larvae is far more labor-inten-

sive than collecting those ofD.melanogaster, chiefly becauseD. sechellia females have an inherent low egg laying potential due to a low

ovariole number and low egg production (R’Kha et al., 1991, 1997). To perform omics experiments using wandering third-instar larvae,

we needed approximately seven timesmore adult flies for egg collection ofD. sechellia thanD.melanogaster. In addition, we picked up

newly hatched first instar larvae one by one, placed them on each diet, and collected them at the wandering larval stage. Scaling up for

D. sechellia in our experiments, particularly in GC-MS, was exceedingly difficult to perform.

The outcomes of our comparisons of theM diet-reared wandering third-instar larvae with the P-reared larvae were compelling with

respect to distinct patterns of gene expression (Figures 4B and 5B) and amounts of metabolites (Figures 6A–6C). Moreover, differ-

ences in metabolic gene expression and metabolites between the wild-type D. melanogaster and the dawmutant were significantly

greater on the M diet than on the P diet (Figures S5B and S5C). These results indicate that our omics experiments using wandering

third-instar larvae on the M or the P diet successfully detect detrimental effects of dietary carbohydrate on larval growth of

D. sechellia, D. elegans, and D. melanogaster daw mutants.
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Asmentioned above, wemainly compared phenotypes between the diets within each species. In Figures 5B and 5D, we compared

the expression values of the metabolic Daw-repressed genes between the species and found that many of the expression values of

those genes were markedly higher in D. sechellia compared to the daw mutant. From this result, we discussed the possibility that

D. sechelliamay have additional defects in other regulatory mechanisms distinct from TGF-b/Activin signaling (Figure 7E). However,

this comparison between the species comes with a caveat, as the amounts of food consumed by D. sechellia were less, in general,

than the amounts consumed by D. melanogaster on all three diets (Figures S1B and S1C), which raises a concern that we compared

well-fed D. melanogaster with semi-starved D. sechellia. Because responses of D. sechellia to (semi-)starvation have not been

reported, we cannot rule out this alternative possibility.

Scoring of developmental progression
Newly hatched first instar larvae were collected and placed in 1.5 mL tubes containing the individual diets as described above (4 or

5 tubes were prepared per experimental condition). After 95–98 hours or 11 days (see Results), we counted the number of live or dead

animals found in each tube and staged individual larvae by tracheal morphology as previously described (Niwa et al., 2010). Color

bars in Figures 1E, 1F, 3C, and 3D indicate percentages of live first-instar larvae (blue), live second-instar larvae (green), live third-

instar larvae (yellow), pupae (orange), adults (pink), dead first-instar larvae (light gray), dead second-instar larvae (dark gray), and

dead third-instar larvae (brown). Percentages of animals that could not be found (Not found) are shown in white. n in these figures

represents the number of animals for each condition. Images of animals at 98 hr on each diet were acquired with a digital camera

(Olympus, DP21) attached to a stereo microscope (Olympus, SZX7).

Feeding assays
20 first instar larvae were transferred to each respective diet containing 1% (w/v) Brilliant Blue FCF (WAKO, #027-12842) for 3 hr.

Larvae were washed in PBS and mounted in 50% glycerol. Images were acquired on a Nikon ECLIPSE E800 microscope (Nikon)

using Axiovision v3.1 acquisition software (Carl Zeiss). We manually extracted blue pixels from the original images by using Adobe

Photoshop, converted them to 8-bit format, andmeasured the sumof the pixel values (‘‘RawIntDen’’) by using Fiji (ImageJ). Statistical

analysis was performed using a Steel-Dwass test. n represents the number of animals for each condition.

Microbe-swapping experiments
TheC,M, and P diet were cooked as described above and dispensed into 50mL tubes. Microbes associated withD.melanogaster or

D. sechellia were provided by exposing each diet to 20 male flies for 24 hr as described (Piper et al., 2014). After removing the male

flies, we mashed these foods and put them into 1.5 mL tubes. Germ-free animals were generated as previously described (Ryu et al.,

2008). Embryos (0–18 hr after egg laying) were dechorionated for 3min in 50%bleach, then washed with sterile water. These dechor-

ionated embryos were subsequently washed in 70% ethanol for 5 min, followed by two washes with sterile water. These germ-free

embryos were transferred onto apple agar plates using an autoclaved brush. 20 newly hatched larvae were collected and placed in

1.5 mL tubes with each diet that had been exposed to microbes.

GC-MS analysis of resources in the wild
We collected two species of fermented wild morning glory (Ipomoea indica and Ipomoea cairica), in May, 2015, in Okinawa, Japan.

We dissected fallen flowers of these morning glories, and those on which the second- or the third-instar D. elegans larvae had grown

were used for analysis. After D. elegans larvae were removed, only fermented stamens, pistils, and pollen were transferred to 1.5 mL

tubes, frozen on dry ice, sent to the Uemura laboratory, and stored at �80�C. To analyze components of foods that the wild gener-

alists fed on, we placed trap bottles containing fresh Cavendish bananas (Musa spp.) or ‘‘Oishi-wase’’ plums (Prunus salicina) outside

our houses in Kyoto for about 1.5 days. We collected flies in the traps and identified the species (Table S1B). In order to match the

degree of fermentation between the natural foods, including wild morning glory above, each fruit in the trap bottles was incubated at

25�C for 2 days when larvae grew to the second- or the third-instar stage. After larvae were removed, fermented bananas or plums

were transferred to 2mL Eppendorf tubes, flash frozen in liquid nitrogen, and stored at�80�C. 3 biological replicates of wild morning

glory and 3 technical replicates of other samples were prepared and analyzed (each Ipomoea indica sample was approximately

80mg and other samples were approximately 110mg). Sample processing and targeted GC-MS analysis were performed by Kazusa

DNA Research Institute using a SHIMADZU QP-2010 Ultra. In order to narrow down key compounds that characterize the difference

of the natural foods, we performed principal component analysis (PCA), which has been widely used for dimensionality reduction of

metabolomic data. Before performing PCA, we processed the resulting raw data (peak area normalized by weight and the peak area

of an internal standard, Ribitol; Table S1C) by Pareto scaling for (1) minimizing the noise effect, (2) reducing the influence of intense

peaks, and (3) avoiding over-manipulating the data (Worley and Powers, 2013; Xi et al., 2014). The raw data were processed using

MetaboAnalyst (Xia et al., 2015). Settings for data processing were as follows: Data Filtering ‘‘Interquantile range (IQR),’’ Sample

normalization ‘‘None,’’ Data transformation ‘‘None,’’ and Data scaling ‘‘Pareto scaling.’’ We processed raw data from 12 samples

(4 sample types x 3 replicates) and performed principal component analysis using ggbiplot of R (Figure 2C). To generate the heatmap

and plots of compounds with large contributions to PC1 (Figures 2D and 2E), we used the raw data (peak areas normalized by weight

and the peak area of an internal standard, Ribitol). Images of native foods in Figure 2B were obtained with a Stylus TG-4 Tough cam-

era (Olympus).
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Nutrients in unfermented natural foods
We obtained carbohydrate contents, protein contents, and fat contents of unfermented natural food resources for D. melanogaster

(fruits and vegetables; described in Broderick and Lemaitre, 2012 and Gibson et al., 1981), D. sechellia (M. citrifolia fruits), D. elegans

(Alpinia flowers), andD. erecta (Pandanus fruits) from the USDA Food Composition Databases (fruits and vegetables; US Department

of Agriculture Agricultural Research Service Nutrient Data Laboratory, 2018), Malaysian Food Composition Database (M. citrifolia

fruits; Tee et al., 1997), Rachkeeree et al., 2018 (Alpinia flowers) or Dignan et al. (2004) (Pandanus fruits). P:C ratios of the individual

foods (Figure 2F) were calculated by dividing the values of protein contents by those of carbohydrate contents. The data shown in

Figures 2F and S2 were sorted by their P:C ratios.

Sample preparation for RNA-seq
For RNA-seq using wandering third-instar larvae, animals were grown in 1.5 mL tubes containing the M or P diet as described above.

To prepare each replicate, Trizol (Invitrogen) was used to extract total RNA from 5 whole bodies, 6 dissected muscle/epidermis,

10 dissected midguts, or 10 dissected fat bodies of male wandering third-instar larvae. For dissection of muscle/epidermis, we

everted larvae, then removed attached tissues such as discs and fat bodies. For dissection of midguts, malpighian tubules

attached to posterior midguts were removed. For dissection of fat bodies, adjacent tissues such as testes and tracheae were

removed. To obtain animals for RNA-seq using first-instar larvae, sexually mature adults were placed on apple agar plates with yeast

paste and allowed to oviposit for 3 hr (D. melanogaster CS and D. sechellia) or 5 hr (D. melanogaster daw mutant). Newly hatched

larvae (20–28 hr after egg laying) were collected and placed in 1.5 mL tubes containing the C or P diet. After 15 hours, live and visibly

feeding first-instar larvae were collected and used for RNA extraction (20 animals per replicate).

Further purification of extracted RNA was carried out with a RNeasy Mini Kit (QIAGEN). The purity of RNA was assessed with a

BioAnalyzer (Agilent Technologies). For each experiment, three or four biological replicates were analyzed. RNA-sequencing was

performed on either an Illumina HiSeq 2500 or an Illumina NextSeq 500 using single end reads. The complete information of

RNA-seq can be found in Table S6C.

Analysis of RNA-sequencing
Obtaining files

FASTA files were downloaded from FlyBase (D. melanogaster r6.04, D. simulans r2.01, D. sechellia r1.3, D. erecta r1.04; Clark et al.,

2007; Hu et al., 2013) or NCBI (D. elegans r2.0; Chen et al., 2014). Transcript annotation files (dmel-all-r6.04.gtf, dsim-all-r2.01.gtf,

dsec-all-r1.3.gtf, dere-all-r1.04.gtf; Clark et al., 2007; Hu et al., 2013) and tissue-type specific RNA-seq datasets of

D. melanogaster (gene_rpkm_report_fb_2015_01.tsv; Brown et al., 2014) were obtained from FlyBase. A transcript annotation file

of D. eleganswas converted from an annotation file of D. melanogaster as follows: the file was first converted to Bed format by using

gtf2bed (ver. 2.4.12; Neph et al., 2012), then converted to that of D. elegans by using a command line liftOver tool of the UCSC

Genome Browser and a LiftOver file dm6ToDroEle2.over.chain (https://hgdownload-test.cse.ucsc.edu/goldenPath/dm6/liftOver/)

with -minMatch = 0.1 option, and finally converted to a gtf-formatted file using the awk command. Files of orthologous gene symbols

(Waterhouse et al., 2011) and NCBI GeneIDs of all genes in the D. melanogaster were downloaded from FlyBase using the Batch

Download tool. KEGG gene IDs (Kanehisa et al., 2017) were downloaded from KEGG API (http://rest.kegg.jp/conv/dme/

ncbi-geneid).

Trimming

All raw sequencing data were adaptor trimmed using TagDust (ver. 1.13; Lassmann et al., 2009) with -fdr 0.05 option. The data were

then quality trimmed by using Fastx-toolkit (ver. 0.0.14; http://hannonlab.cshl.edu/fastx_toolkit/): fastx_trimmer (except for data

obtained from the ‘‘Genome Science’’ program) with -Q 33 -f 14 -l 100 options, fastx_clipper with -a N option, fastq_quality_filter

with -q 20 -p 80 options, and fastq_quality_trimmer with -t 20 option.

Mapping and differential expression analysis

To identify differentially expressed genes, we basically followed Anders et al. and Loraine et al. (Anders et al., 2013; Loraine et al.,

2015). Trimmed fastq files were mapped using Tophat (ver. 2.0.13; Kim et al., 2013), utilizing Bowtie2 (ver. 2.2.3.0; Langmead and

Salzberg, 2012) to each genome while supplying transcript annotation. The BAM files generated by mapping were sorted and con-

verted to SAM files using SAMtools (ver. 1.1; Li et al., 2009). Gene-based read counts were then obtained using htseq-count

(ver. 0.6.1p1; Anders et al., 2015) with -s no -a 10 options. Differential expression analysis was performed on the count data using

a generalized linear model (GLM) in the edgeR Bioconductor package (ver. 3.10.2; McCarthy et al., 2012; Robinson et al., 2010).

Raw p values were adjusted for multiple testing with the Benjamini–Hochberg procedure. Differentially expressed (DE) genes with

an adjusted p value lower than 0.05 were considered to be statistically significant. To compare RNA-seq data between the species,

the output files from edgeR were combined into one file (Tables S6A and S6B) using custom Perl scripts. Data for each gene of

D. simulans, D. sechellia or D. erecta were added to that of D. melanogaster if the gene was a 1:1 ortholog of a D. melanogaster

gene, to make a combined file. Data for D. elegans were directly added to the combined file. This was possible because a transcript

annotation file ofD. elegans had been converted from that ofD. melanogaster, and consequently, gene names ofD. eleganswere the

same as those ofD. melanogaster. For the heatmaps in Figures 4B, 5B, 5D, S3A, and S4A, heatmap.2 in the gplots package of R was

used. A functional annotation clustering of Daw-repressed genes was performed by using the Functional Annotation Clustering of

DAVID (Huang et al., 2009). p values were calculated with amodified Fisher’s test, and then enrichment scores (the geometric means
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of all the enrichment p values of each annotation term in the clusters) were calculated (Figures S4B–S4D; Tables S2N, S3K, and S5I).

For gene ranking in Figure 4C, we used adjusted p values and log2-transformed fold change (Log2FC) calculated by edgeR, and

ranked genes by signed adjusted p values, where the signs were from Log2FC. Genes with the same adjusted p value were ranked

based on Log2FC. A two-tailedMann-WhitneyU test was performed to compare gene ranking inD. melanogaster CS ‘‘K’’ with that in

dawmutants. A Steel test was performed to compare gene ranking inD. melanogaster CS ‘‘G’’ with that inD. simulans orD. sechellia,

or to compare gene ranking inD.melanogaster CS ‘‘N’’ with that inD. elegans orD. erecta. We used the KEGGMapper Search&Color

Pathway tool (Kanehisa et al., 2012) for mapping DE genes andmetabolites on theD. melanogastermetabolic pathways (Figures 5A,

6B, S5B, and S5C). BioVenn (Hulsen et al., 2008) was used to construct a Venn diagram (Figure 5C).

qRT-PCR of germline-less or control larvae
To obtain germline-lessmale larvae (Figures S3B and S3C), we crossed osk301/osk301 females toSxl-eGFPmales (J. Thompson et al.,

2004, 45th Annual Drosophila Research Conference, conference). Because of the difficulties in finding testes in the germline-less

male larvae, we relied on the lack of Sxl-eGFP expression (Sxl-eGFP is a marker for female embryos) and picked up male embryos

(11–16 hr after egg laying); this genetic approach obviated the difficulties in choosing only male larvae by their testes. As a control,

male embryos from Sxl-eGFP females crossed to CS males were picked up. The respective male embryos of each genotype were

transferred onto separate apple agar plates, and 20 newly hatched larvae were collected and placed in 1.5 mL tubes with each diet.

Trizol (Invitrogen) was used to extract total RNA from 3whole bodies ofmale wandering third-instar larvae per replicate. RNA samples

were treated with an RNase-Free DNase set (QIAGEN), and further purified using an RNeasy Mini Kit (QIAGEN). 500 ng of total RNA

was used as a template for cDNA synthesis using a ReverTra Ace qPCRRT Kit (TOYOBO). qRT-PCRwas performed bymixing cDNA

samples diluted 10-fold with THUNDERBIRD SYBR qPCR Mix (TOYOBO). n represents the number of the biological replicate for

each condition. Expression levels were normalized against those of rp49. Data were analyzed using the comparative CT method

on a StepOnePlus Real-Time PCR System (Applied Biosystems). A gene was considered not detectable when CT > 32. Statistical

analysis was performed using one-way ANOVA with Tukey’s post hoc test (for comparison of multiple samples). The following

primers were used:

CG31226 forward: 50- GCTATCCTTGCTATCCTTGCG

CG31226 reverse: 50- TCCGTTGTAGGGTCCAAAGC

CG31644 forward: 50- ACACTTTACACAACAATCCGC

CG31644 reverse: 50- GGAGGACAGGACGATAGGTA

rp49 forward: 50- CAGTCGGATCGATATGCTAAGCTG

rp49 reverse: 50- TAACCGATGTTGGGCATCAGATAC

GC-MS analysis of whole larvae
10 male wandering third-instar larvae were collected to prepare one biological replicate, and were washed with PBS to remove all

traces of food. Larvae were transferred to 1.5 mL tubes, weighed on a microbalance (Sartorius, CP225D), and then flash frozen in

liquid nitrogen. 6 replicates per condition were prepared and analyzed. Sample processing and targeted GC-MS analysis were per-

formed by theMetabolomics Core Research Facility at the University of Utah School of Medicine according to the method described

in Tennessen et al. (2014). The resulting rawdata (peak areas normalized byweight; Table S7C)were uploaded inMetaboAnalyst, and

subsequent data processing and analyseswere performed using this tool. Settings for data processing were as follows: Data Filtering

‘‘None,’’ Sample normalization ‘‘None,’’ Data transformation ‘‘None,’’ and Data scaling ‘‘Pareto scaling.’’ For statistical comparison

of 2 sample types (Figures 6B and 6C; Table S7A), we processed raw data from 12 samples (2 sample types x 6 replicates) and

performed Volcano Plot analysis with options ‘‘Non-parametric tests’’ and ‘‘FDR-adjusted.’’ Statistically significant changes of

metabolite amounts were defined as those with an adjusted p value lower than 0.05. To generate the heatmap of metabolite amounts

(Figure 6A), we processed raw data from 24 samples (4 sample types x 6 replicates), scaled the processed data by Z scaling (gen-

escale function of R), and made a heatmap (heatmap.2 of R).

Lipid droplets in fat bodies
Male wandering third-instar larvae were dissected in PBS, and fixed with 10% formalin in PBS for 20 min. The fixed tissues were

washed with PBS, incubated in 1 mg/ml Nile Red (Sigma-Aldrich) diluted in PBS for 30 min, washed with PBS, and mounted in

VECTASHIELDMountingMediumwith DAPI (Vector Laboratories). Slides were imagedwithin 30minutes to 1.5 hours after mounting,

using a Nikon C1 laser scanning confocal microscope coupled to a Nikon Eclipse E-800 microscope. Along the anterior-posterior

axis, middle regions of the fat bodies were imaged using the 60x Oil objective with an electronic zoom of 2, 1 mm interval, and a res-

olution of 512 3 512. Under each genotype and dietary condition, fat bodies of five larvae were imaged for quantification of lipid

droplet size. Among optical sections of each microscopic field, the section was selected where the size of DAPI-stained nuclei

was the largest. We first used Photoshop to perform levels adjustment and mask areas with weak signals. We then conducted

smoothing, binarization, watershed segmentation, and quantification (Analyze Particles) using NIH ImageJ software. To focus on

large lipid droplets, we compared distributions of droplet size over 2000 pixels (86.09 mm2). Statistical analysis was performed using

a Steel test to compare lipid droplet area of D. melanogaster CS on the P diet with that of each sample.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R (R Core Team, 2017). Values of p < 0.05 were considered statistically different. The

experiments were not randomized or blinded. No statistical method was used to determine whether the data met assumptions of the

statistical approach. For statistical analyses of RNA-seq and GC-MS data, see Tables S2, S3, S4, S5, S6, and S7A–S7C, and each

section of STAR Methods. As for other experiments, statistical tests used, the exact sample size (n), and p values are shown in

Table S7D. See also STAR Methods and figure legends for details.

DATA AND CODE AVAILABILITY

All the RNA-sequencing data have been deposited and are available in the DDBJ Sequence Read Archive. The accession numbers

for the data are DDBJ: DRA004295, DRA006831, andDRA007810 (BioProject accession number: PRJDB4481). GC-MS datasets are

available within the Supplemental Information.
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