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20 Abstract

21 Little is known about the biogeographical and evolutionary histories of macaques 

22 (Macaca spp.) in East Asia because the phylogenetic positions of fossil species remain 

23 unclear. Here we examined the zygomaxillary remains of a fossil macaque (M. cf. robusta) 

24 from the Durubong Cave Complex, South Korea, that dates back to the late Middle to Late 

25 Pleistocene, to infer its phylogenetic relationship to extant species. We took 195 fixed- and 

26 semi-landmarks from the zygomaxillary regions of the fossil specimen and from 147 

27 specimens belonging to 14 extant species. We then conducted a generalized Procrustes 

28 analysis followed by a multivariate statistical analysis to evaluate the phenetic affinities of 

29 the fossil to the extant species and reconstructed the most parsimonious phylogenetic tree 

30 using a phylogenetic morphometric approach. We found that the fossil was most similar to 
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31 M. fuscata (Japanese macaque) in the zygomaxillary morphospace although it was at the limit 

32 of the range of variation for this species. The second closest in the morphospace was the 

33 continental M. mulatta (rhesus macaque). Parsimonious reconstruction confirmed that the 

34 fossil was most closely related to M. fuscata, even after controlling for the effects of allometry. 

35 These findings suggest that in the late Middle to Late Pleistocene, close relatives of M. fuscata 

36 that looked like the extant species were distributed on the Korean Peninsula, where no species 

37 of macaques are found today. Thus, some morphological characteristics of M. fuscata may 

38 have developed before its ancestor dispersed into the Japanese archipelago.

39 1. Introduction

40 The genus Macaca consists of approximately 20 extant species and occupies a wider 

41 range of climates and habitats than any other genus of nonhuman primates (Fleagle, 2013). 

42 Consequently, macaques have attracted much attention as an analogy to understand how 

43 humans left tropical regions and adapted to various other environments (Rae et al., 2003; 

44 Márquez and Laitman, 2008; Hanya et al., 2011; Karen J, 2011; Tsuji et al., 2013; Ito et al., 

45 2015). Furthermore, some East Asian species, particularly M. mulatta (rhesus macaque) and 

46 M. fuscata (Japanese macaque or snow monkey), are often used in biological laboratory 
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47 studies (Sibal and Samson, 2001). To better understand these cold-adapted and well-studied 

48 species, we need to understand their biogeographic and evolutionary histories, particularly at 

49 the northern limit of their distribution in East Asia.

50 The phylogeny of extant species of macaques has been well studied, with most molecular 

51 phylogenetic studies (Tosi et al., 2000; Li et al., 2009; Jiang et al., 2016), except 

52 mitochondrial studies (Morales and Melnick, 1998; Liedigk et al., 2014), supporting the 

53 classification of Delson (1980). Delson’s classification subdivides macaques into four 

54 phylogenetic groups: fascicularis, sinica, silenus, and sylvanus groups. A molecular 

55 phylogenetic study by Jiang et al. (2016) suggested that the African sylvanus group first 

56 diverged ca. 5.5 million years ago (Mya), the silenus group diverged ca. 4.5 Mya, and the 

57 fascicularis and sinica groups diverged ca. 3.5 Mya.

58 The most recently diverged groups (i.e., fascicularis and sinica groups) are distributed 

59 in East Asia and partly overlap each other (Fooden, 1988, 2006). The fascicularis group 

60 consists of four extant species, including M. fuscata and M. mulatta, which are found in 

61 temperate regions: M. fuscata is distributed in the Japanese archipelago, which is at the 

62 northernmost limit of extant nonhuman primates (Fooden and Aimi, 2005), while M. mulatta 

63 is widely distributed from Afghanistan to southern China (Fooden, 2000). The sinica group 
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64 consists of at least five (Sinha et al., 2005; possibly six or seven; Chakraborty et al., 2007; Li 

65 et al., 2015; Fan et al., 2016) extant species, with some of the large-bodied species, such as 

66 M. thibetana, M. assamensis, and M. leucogenys, distributed in high-altitude areas in southern 

67 China (Fooden, 1982, 1983; Li et al., 2015). Thus, both phylogenetic groups inhabit relatively 

68 cold environments in East Asia. However, no species currently inhabit northern China and 

69 the Korean Peninsula, isolating M. fuscata from the other continental species.

70 However, some excavations of Pleistocene fossil macaques have been reported from 

71 northern China and the Korean Peninsula (Schlosser, 1924; Young, 1934; Zhang et al., 1986; 

72 Pan and Jablonski, 1987; Park and Lee, 1998; Takai et al., 2008). The first record of a fossil 

73 macaque from East Asia was M. anderssoni, which was described from a nearly complete 

74 face excavated from the Early Pleistocene sediment of Mianchi, Henan Province, China 

75 (Schlosser, 1924). A decade later, another species, M. robusta, was described from a partial 

76 maxilla excavated from the Middle Pleistocene sediment of Choukoutien, Beijing, China 

77 (Young, 1934). Since then, nearly all of the fossil specimens that have been discovered in 

78 northern China or the Korean Peninsula from the Early to Middle Pleistocene have been 

79 referred to as one of these two fossil species. Although M. anderssoni has a larger dental size 

80 than M. robusta, it is sometimes considered a junior synonym of the latter (Simons, 1970; 
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81 Delson, 1980; but see Fooden, 1990). These fossils are believed to fill the biogeographical 

82 gap in the current distribution of macaques, which will potentially elucidate their evolutionary 

83 histories. However, the phylogenetic relationships of these fossils and extant species remain 

84 controversial (Delson, 1977, 1980; Jablonski and Pan, 1988; Fooden, 1990; Pan and 

85 Yanzhang, 1995; Park and Lee, 1998; Ito et al., 2014b), particularly with regard to whether 

86 they are phylogenetically related to members of the sinica group or the fascicularis group.

87 The fossil records from the Korean Peninsula is key to understanding the evolution of 

88 M. fuscata in particular. Some fossil macaques have been reported from the Middle and Late 

89 Pleistocene sediments of several localities in the Korean Peninsula (Park and Lee, 1998; 

90 Fooden and Aimi, 2005; Lee and Woo, 2005; Lee, 2006; Lee and Takai, 2012; Lee et al., 

91 2013). Most of these fossils are isolated teeth or partial fragments of skeletons, but the fossil 

92 specimen excavated by the Chungbuk National University Museum Team from the Durubong 

93 (=Turupong) Cave Complex, Cheongju City, Chungbuk Province, South Korea, is a well-

94 preserved zygomaxillary region (Fig. 1). This was identified as M. cf. robusta by Park and 

95 Lee (1998), who reported that its morphology was intermediate between M. robusta and M. 

96 fuscata but more similar to M. robusta with regard to tooth size. Lee and Takai (2012) stated 

97 that the upper molars of the Korean fossils were relatively large, making them comparable 
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98 with those of M. anderssoni, while the lower molars were relatively small compared with 

99 other fossil and extant macaques. Furthermore, they also stated that most of the Korean fossils 

100 retain some accessory cusps (distoconules, interconulus, 6th cusp, and 7th cusp), which are 

101 frequently found in the molars of M. fuscata (Lee and Takai, 2012). Fooden and Aimi (2005) 

102 demonstrated that measurements of the Korean fossil molars were within the range of 

103 variation shown by M. fuscata. Together, these findings imply that the Korean fossils may be 

104 related to the ancestors of M. fuscata or the other fossil species, namely M. anderssoni and/or 

105 M. robusta; and that more than one lineage may have been distributed in the Korean Peninsula 

106 during the Middle to Late Pleistocene. However, most previous studies have based their 

107 conclusions on tooth morphology alone, and no phylogenetic assessment of the fossil species 

108 in comparison with the various extant species of macaques has been conducted to date.

109 In this study, we compared the morphology of the zygomaxillary region in the Korean 

110 fossil specimen that was discovered in the Durubong Cave Complex with that of extant 

111 species of macaques. This is the most well-preserved fossil macaque specimen in Korea. 

112 Zygomaxillary morphology is likely to be informative for the reconstruction of phylogenetic 

113 relationships, because zygomaxillary shape can be partially differentiated among the four 

114 phylogenetic groups in macaques (Ito et al., 2014a) and has some phylogenetic signal (Ito et 
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115 al., 2014a). First, we evaluated the pattern of zygomaxillary variation in extant species and 

116 estimated the evolutionary and phylogenetic significance of this variation. We then assigned 

117 the fossil to the morphospace of the extant species and performed a cladistic analysis to infer 

118 the evolutionary and phylogenetic relationships of this fossil to the extant species. To do this, 

119 we used semi-landmark-based geometric morphometrics to capture the surface topography 

120 of the zygomaxillary region, because anatomically defined landmarks were limited on the 

121 fossil. Moreover, we examined the nasal cavity morphology using computed tomography 

122 (CT), because it has been reported that this reflects phylogenetic relationships (Ito et al., 

123 2014b; Nishimura et al., 2014; Ito and Nishimura, 2016). Based on the findings of these 

124 analyses, we discuss the biogeographic and evolutionary histories of East Asian macaques.

125 2. Materials and methods

126 2.1. Molecular phylogeny

127 The phylogeny that was used for the phylogenetic comparative analyses was estimated 

128 using 11 mitochondrial and 53 nuclear DNA sequences (Supplementary Online Material 

129 [SOM] Table S1). The DNA sequences were obtained from the 10KTrees webserver (Arnold 

130 et al., 2010; http://10ktrees.fas.harvard.edu/Primates/) and Perelman et al. (2011). The 
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131 sequences were aligned using MAFFT version 7 (Katoh and Standley, 2013) and then 

132 concatenated using SequenceMatrix software (http://gaurav.github.io/taxondna/). BEAST 2 

133 software (Bouckaert et al., 2014) was used for phylogenetic inference using a site model that 

134 was estimated by the Bayesian approach with the bModelTest package (Bouckaert, 2015). 

135 Markov Chain Monte Carlo simulations were performed for 10,000,000,000 generations with 

136 a sampling frequency of 100,000. Five species belonging to the subtribe Papionina 

137 (Cercocebus torquatus, Lophocebus aterrimus, Mandrillus sphinx, Papio hamadryas, and 

138 Theropithecus gelada) were used as an outgroup. The maximum clade credibility tree was 

139 chosen after removing a 10% burn-in using TreeAnnotator version 2.4.7 (SOM Fig. S1).

140 2.2. Cranial sample

141 For the fossil specimen, we used the zygomaxillary specimen of a fossil macaque stored 

142 at the Chungbuk Natural History Museum, Chungbuk, South Korea (2ㅜㄷ-12-2169; Fig. 1), 

143 which has been partially broken and repaired. The fully erupted third molars and relatively 

144 large canines indicate that this individual was an adult male. This specimen originated from 

145 the Durubong (=Turupong) Cave Complex, Cheongju City, Chungbuk Province, South Korea. 

146 The faunal composition of Durubong Cave Complex (Ursus arctosi, Crocuta ultima, 

147 Dicerorhinus cf. choukoutiensis, and M. cf. robusta) suggests that this specimen dates back 
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148 to the late Middle Pleistocene to the Late Pleistocene period (Park and Lee, 1998), while the 

149 faunal complex together with the results of pollen analyses suggests that this was a warm 

150 (interglacial or interstadial) period (Lee and Woo, 2005).

151 For the extant samples, we used the dry crania with almost-erupted or fully erupted third 

152 molars from 147 adult males belonging to 14 extant species (Table 1). These specimens are 

153 stored at eight institutes in Japan and USA, which are listed in SOM Table S2. Sulawesi 

154 macaques were not included in the sample because of their unusual cranial morphology 

155 (Albrecht, 1978). The samples consisted of wild (n = 80), captive (n = 35), and unknown-

156 origin specimens (n = 32), but any pathological specimens, which showed evidence of severe 

157 alveolar pyorrhea and/or unusual deflection of muzzles, were not included in the samples. 

158 ANOVA showed that the differences in zygomaxillary shape among wild, captive, and 

159 unknown-origin specimens were significant in some cases, but were much smaller compared 

160 with interspecies differences (SOM Table S3).

161 2.3. CT examinations

162 CT images were acquired for the fossil specimen and 134 specimens of extant species. 

163 The zygomaxillary fragment of the Korean fossil specimen (2ㅜㄷ-12-2169) was scanned 
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164 using a helical scanner (HiSpeed; GE Medical Systems Inc., Waukesha, WI, USA) at the 

165 veterinary medical center of Chungbuk National University, Chungbuk, South Korea, with a 

166 pixel size of 0.1 mm and a slice thickness of 1.0 mm. The original volume data were then 

167 reconstructed to give a slice thickness of 0.3 mm. CT scans of the extant species were 

168 obtained previously (Ito and Nishimura, 2016) and are available at the Digital Morphology 

169 Museum, Kyoto University (http://dmm.pri.kyoto-u.ac.jp), with the exception of specimens 

170 that were not permitted for release due to copyright restrictions (SOM Table S2), or from 

171 MorphoSource (http://www.morphosource.org).

172 The internal structure of the maxilla was observed using Amira 5.5. In particular, we 

173 investigated the degree of lateral expansion of the nasal cavity and the maxillary thickness, 

174 which are considered to reflect phylogenetic relationships in macaques (Ito et al., 2014b).

175 2.4. Geometric morphometrics

176 Three-dimensional (3D) surface models of the face were obtained from the Smithsonian 

177 3D collection of primates (http://humanorigins.si.edu/evidence/3d-collection/primate) or 

178 constructed from the serial CT images using Amira 5.5 software (FEI Visualization Sciences 

179 Group, Bordeaux, France). Details of the 3D surface modeling were described in a previous 



12

180 paper (Ito and Nishimura, 2016). Small superficial holes, if any, were manually filled using 

181 Amira 5.5 or Rapidform XOS3 64. Where the left side of the face was broken, the 3D surface 

182 model was horizontally flipped using MeshLab software (http://www.meshlab.net). Because 

183 the repair of the fossil specimen was slightly imperfect (i.e., the joins of fragments were not 

184 smooth; Fig. 1), we slightly re-repaired the fossil specimen virtually using Amira 5.5 software 

185 so that the joins of fragments were smooth and the repaired specimen had a more natural 

186 appearance (Fig. 2).

187 In total, 195 landmarks were taken on the 3D surface models (left side of the face) using 

188 Stratovan Checkpoint software (Stratovan Corporation, Sacramento, CA, USA; Fig. 3). This 

189 included 22 anatomically defined landmarks, 42 semi-landmarks on curves, and 131 semi-

190 landmarks on the surface (SOM Table S4). Missing landmarks (16 landmarks in nine 

191 specimens) were estimated by deforming the configurations of the weighted average of the 

192 complete dataset for the same species using a thin-plate spline (TPS) interpolation calculated 

193 from the available landmarks. The semi-landmarks were slid on curves or surfaces so that the 

194 bending energy of TPS deformation was minimal (Gunz et al., 2005). These procedures were 

195 performed using the package “Morpho” version 2.5.1 (Schlager, 2017) in R software version 

196 3.4.1 (R Core Team, 2017). Following sliding, the semi-landmarks were treated in the same 
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197 way as the homologous landmarks in subsequent analyses.

198 All of the final coordinates were subjected to generalized Procrustes analysis (GPA), 

199 which registered the landmark configurations across all individuals to produce Procrustes 

200 coordinates. The centroid size was simultaneously calculated as the square root of the sum of 

201 the square distances of all landmarks from their centroid. To evaluate non-allometric 

202 variations, we also produced size-adjusted shape components by calculating the residuals of 

203 the multiple regression of Procrustes coordinates on natural-logarithmically transformed 

204 centroid size (lnCS) using MorphoJ version 1.06d (Klingenberg, 2011), wherein 16.2% of 

205 the shape variance was explained by lnCS (p < 0.0001).

206 We then calculated species mean values. To do this, GPA was conducted for each 

207 species, and the mean shapes of the 15 operational taxonomic units (the 14 extant species and 

208 the fossil specimen) were then subjected to another GPA. A size-adjusted shape component 

209 was then calculated in the same way as mentioned above but on a species mean basis, wherein 

210 27.2% of the shape variance was explained by lnCS (p = 0.0012).

211 The individual values were used in the phenetic analyses, while the species mean values 

212 were used in the phylogenetic comparative and cladistic analyses. Each of these analyses was 
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213 conducted twice using the raw and size-adjusted shape data.

214 2.5. Phenetic analyses

215 The phenetic affinity of the fossil specimen was evaluated to assign it to the 

216 morphospace of the extant species. To detect shape vectors that exhibited interspecies 

217 differences, between-group principal component analyses (bgPCAs) were performed. The 

218 bgPCA is the projection of data onto the principal components of the group means 

219 (Mitteroecker and Bookstein, 2011). In this study, the species means for extant species were 

220 included in the calculation of the covariance matrix, following which the individuals of extant 

221 species and the fossil specimens were projected onto the bgPCA axes. This step was 

222 performed using the “plotTangentSpace” function of the “geomorph” package with some 

223 modifications. Shape changes along the bgPC axes were visualized using R, Amira 5.5, and 

224 Rapidform XOS3 64.

225 Procrustes distances were calculated from the fossil specimen to all extant individuals 

226 to quantify its phenetic affinity to extant species using the R package “shapes” version 1.2.0 

227 (Dryden, 2016).
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228 2.6. Phylogenetic comparative analyses

229 Phylogenetic comparative analyses were performed to evaluate the phylogenetic 

230 significance and evolutionary polarity of zygomaxillary shape. A phylomorphospace 

231 (Sidlauskas, 2008) was obtained to reconstruct the evolutionary changes in zygomaxillary 

232 shape along the tree using the “plotGMPhyloMorphoSpace” function of the “geomorph” 

233 package with some modifications. A phylomorphospace is a PCA of the species mean values 

234 and the inferred ancestral shapes, with the phylogeny mapped onto the plane of the PCs. This 

235 was produced using only the extant species (and the inferred ancestral nodes), following 

236 which the fossil specimen was extrapolated into the PC axes. The phylogenetic signal in 

237 zygomaxillary shape was evaluated using the “physignal” function of the “geomorph” 

238 package. The significance of the phylogenetic signal was then tested using permutation 

239 procedures with 9,999 iterations.

240 2.7. Cladistic analyses

241 A phylogenetic morphometric approach (Catalano et al., 2010; Goloboff and Catalano, 

242 2011) was used to estimate the phylogenetic relationship between the fossil specimen and the 

243 extant species examined. This approach parsimoniously detects the ancestral points that 
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244 minimize the distance between the ancestor and descendant points along the tree and has been 

245 shown to have a better performance than other landmark-based cladistic approaches 

246 (Catalano and Torres, 2016). We performed the cladistic analyses using the species mean 

247 values of the Procrustes coordinates with the Windows GUI version of TNT 1.5 software 

248 (Goloboff et al., 2008; Goloboff and Catalano, 2016), setting M. sylvanus as an outgroup and 

249 searching for the best tree with and without monophyly constraints. Considering previous 

250 molecular phylogenetic studies of Alu elements (Li et al., 2009; Jiang et al., 2016), the 

251 constraints were forced as follows: [([arc, ass, thi], [rad, sin]), ([fus, mul, cyc], fas)], (leo, sil, 

252 sib, nem); the fossil was allowed to move freely (for abbreviations, see Table 1). Landmark 

253 optimization was set as six grid cells and one nesting with iterations. A traditional search was 

254 conducted, which consisted of Wagner trees with 10 replications followed by tree bisection 

255 reconnection. Resampling was performed to evaluate phylogenetic uncertainty, wherein 

256 symmetric resampling with 33% change probability was conducted, and the frequency 

257 difference (GC values; Goloboff, 2003) was calculated.
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258 3. Results

259 3.1. Internal structures

260 The internal structures of the maxilla in the extant species are shown in Figure 4. The 

261 large-bodied species of the sinica group, namely M. arctoides, M. assamensis, and M. 

262 thibetana, often exhibited a laterally expanded nasal cavity with thin maxillary walls, which 

263 was well represented at the M1 level (this corresponds approximately to the level at which the 

264 nasal cavity shows a maximum width). By contrast, other species, including members of the 

265 fascicularis, silenus, and sylvanus groups, usually had limited lateral expansion of the nasal 

266 cavity and a relatively thick maxillary wall.

267 In the fossil specimen, the lateral and upper walls of the nasal cavity were broken (Fig. 

268 5). Nevertheless, based on the surrounding structures, it appeared that the nasal cavity was 

269 not as greatly expanded laterally as those of the large-bodied species of the sinica group, and 

270 the maxillary walls were relatively thick.

271 3.2. Phenetic affinities of zygomaxillary shape

272 The bgPCA for the raw shape data showed allometric and non-allometric variations in 

273 the zygomaxillary shape (Fig. 6). bgPC1 and bgPC2 accounted for 47.2% and 18.0% of the 
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274 total interspecies variance, respectively; bgPC1 was positively correlated with lnCS (r = 0.70, 

275 p < 0.001), whereas bgPC2 was not (r = 0.10, p = 0.238). Individuals with more positive 

276 bgPC1 scores (and thus larger lnCS) tended to have muzzles that were longer, superior-

277 inferiorly shorter, and narrower, had a more prominent canine alveolus, and were more 

278 ventrally oriented at the anterior portion (Fig. 7). The intercept of this allometric trajectory 

279 was significantly different among the species groups (ANCOVA, p = 0.010; the sylvanus 

280 group was excluded from this analysis due to its small sample size), but their distributions 

281 highly overlapped each other. Individuals with more positive bgPC2 scores tended to have 

282 less prognathic and higher muzzles, with a wider posterior portion compared with the anterior 

283 portion. The fascicularis and sylvanus groups had high bgPC2 scores compared with the other 

284 two groups, although their distributions also considerably overlapped.

285 The bgPCA for the size-adjusted shape data exhibited non-allometric variations (Fig. 6), 

286 with bgPC1 and bgPC2 accounting for 27.2% and 16.4% of this interspecies variance, 

287 respectively. In contrast to the bgPCA for the raw shape data, bgPCA for the size-adjusted 

288 shape data did not show a variation in facial elongation (Fig. 7). A more positive bgPC1 score 

289 was associated with a more inferior deflection of the anterior portion of the muzzle against 

290 the posterior portion. The shape changes, as well as interspecies group differences along the 
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291 bgPC2 axis, were almost identical to those shown for bgPC2 of the raw shape data, but in the 

292 opposite direction.

293 For the fossil specimen, lnCS and bgPC1 were approximately intermediate among the 

294 macaques (Fig. 6). The bgPC2 showed that the fossil specimen had a less prognathic and 

295 higher muzzle, and the posterior portion of the muzzle was wider than the anterior portion, 

296 making it similar to members of the fascicularis and sylvanus groups. In particular, the fossil 

297 specimen was closest to or within the ranges of variation for M. fuscata and M. mulatta, as 

298 seen in the scatterplots of lnCS and bgPC scores. Figure 8 shows the Procrustes distances 

299 from the fossil specimen to each of the examined individuals of extant species. For both the 

300 raw and size-adjusted shape data, the fossil specimen was the most similar to M. fuscata and 

301 the least similar to species of the silenus group. The other species were positioned 

302 intermediate between these two extremes, but M. thibetana was similar to the fossil when 

303 size was adjusted.

304 3.3. Phylogenetic comparisons

305 A moderate phylogenetic signal was detected in the raw shape data (K = 0.42, p = 

306 0.0163) but was marginally significant in the size-adjusted shape data (K = 0.36, p = 0.0627). 
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307 The phylomorphospace demonstrated evolutionary changes in the zygomaxillary shape 

308 (Fig. 9). For the raw shape data, PC1 and PC2 accounted for 50.4% and 17.5% of the variance, 

309 respectively, and PC1 was positively correlated with lnCS (r = 0.79, p = 0.0009), whereas 

310 PC2 was not (r = 0.06, p = 0.831). Shape changes along these PC axes showed similar patterns 

311 to the bgPCA of the raw shape data (SOM Fig. S2). For the size-adjusted shape data, PC1 

312 and PC2 accounted for 27.7% and 26.4% of the variance, respectively. More positive PC1 

313 scores were associated with a more prominent canine alveolus and with the anterior portion 

314 of the muzzles being deflected more inferiorly against the posterior portion. Shape changes 

315 along PC2 were almost identical to those shown in the raw shape data, but in the opposite 

316 direction.

317 The fossil specimen was positioned near the branch of M. fuscata for both the raw and 

318 size-adjusted shape data (Fig. 9). The clade that included M. fuscata, M. mulatta, and M. 

319 cyclopis, as well as M. sylvanus, deviated from the ancestral nodes in phylomorphospace. 

320 Although the degree of deviation was limited compared with the two lineages, M. thibetana 

321 also approached the derived fields of the phylomorphospace, particularly when size was 

322 adjusted. Such deviations indicated that these lineages independently acquired similar derived 

323 features (i.e., a less prognathic and higher muzzle, whose posterior portion was narrower than 
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324 the anterior portion).

325 3.4. Cladistic analyses

326 Cladistic analyses were performed based on the 3D landmark data from the 

327 zygomaxillary region (Fig. 10). The unconstrained models reconstructed trees whose 

328 topologies were quite different from the molecular phylogenetic trees (Li et al., 2009; SOM 

329 Fig. S1), indicating that there is some homoplasy in the zygomaxillary morphology. The best 

330 tree scores, which indicate the sum of the differences between the shapes of the ancestor and 

331 descendants for all tree branches (Goloboff and Catalano, 2016), were 3.21664 and 3.41040 

332 for the raw and size-adjusted shape data, respectively. When the analyses were repeated with 

333 monophyly constraints, which searched for the most parsimonious scenario within the 

334 constraints, the best tree scores were 3.70956 and 3.85731 for the raw and size-adjusted shape 

335 data, respectively. In all four cases, the phylogenetic proximity between the fossil specimen 

336 and M. fuscata was supported.

337 4. Discussion

338 4.1. Patterns of zygomaxillary variation in extant species

339 We observed allometric variations in zygomaxillary shape among the extant species 
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340 examined. As commonly found in papionin crania (Singleton, 2002; Frost et al., 2003; Gilbert 

341 and Grine, 2010; Ito et al., 2014a), we confirmed that larger individuals tended to have more 

342 elongated and inferiorly deflected muzzles. Such allometric shape components should be 

343 interpreted with care in phylogenetic studies because they can obscure phylogenetic signal. 

344 For example, although bgPC1 showed that an elongated and inferiorly deflected muzzle is 

345 characteristic of members of the silenus group, this feature is actually just a scaled-up version 

346 of that found in small-bodied taxa. Similarly, the shape components that were represented by 

347 PC1 of the phylomorphospace were also allometric and therefore problematic. Although 

348 allometric shape components are potentially phylogenetically informative (Gilbert and Rossie, 

349 2007; Gilbert et al., 2009), we were unable to detect clear differences in allometric vectors 

350 among the four phylogenetic groups. Furthermore, although size itself may provide some 

351 phylogenetic information, it is inappropriate to rely on a single trait (i.e., size) when inferring 

352 phylogenetic relationships (see Pearson et al., 2015).

353 Non-allometric shape components were observed in two ways. First, bgPC2 and PC2 of 

354 phylomorphospace based on the raw shape data were independent of size, which can be 

355 interpreted as non-allometric. Second, the size-adjusted shape components, which were the 

356 residuals of a multiple regression of raw Procrustes shape components on lnCS (Monteiro, 
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357 1999; Drake and Klingenberg, 2008; Klingenberg, 2011), were free from allometric 

358 associations, although they had also partially lost some phylogenetic information in the 

359 process (see Gilbert, 2011). These non-allometric shape components did not include facial 

360 elongation but could be characterized by the degrees of height and prognathism of the muzzle, 

361 as well as some localized shape changes in the zygomaxillary region.

362 The phylogenetic significance and evolutionary polarity of zygomaxillary shape were 

363 evaluated. The phylomorphospace suggested that a higher and less prognathic muzzle was a 

364 derived condition in macaques as shown in PC2, and this was observed in the clade that 

365 includes M. fuscata, M. mulatta, and M. cyclopis of the fascicularis group, as well as M. 

366 thibetana and M. sylvanus. These lineages all inhabit relatively cold environments, and 

367 therefore this shape change may reflect parallel adaptive evolution to a cold environment, 

368 although further testing is required to verify this hypothesis. The degree of change along this 

369 PC2 axis, however, varies among lineages; M. fuscata is located at the extreme end of this 

370 axis (and thus has the highest and least prognathic muzzle), followed by M. sylvanus, close 

371 relatives of M. fuscata (M. mulatta and M. cyclopis), and M. thibetana. The difference in the 

372 degree of the shape change among phylogenetic groups could be explained by phylogenetic 

373 constraints, as suggested by the finding that some phylogenetic signal is detected in the 
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374 zygomaxillary shape, although it is marginally significant for size-adjusted shape data. 

375 In addition, previous studies have indicated that variations in the nasal cavity can be 

376 explained by phylogeny but not by allometry (Ito et al., 2014b; Ito and Nishimura, 2016). 

377 Here, the most notable characteristics are a laterally expanded nasal cavity and thin lateral 

378 maxillary walls at the anterior portion of the muzzle, which are often seen in the three large-

379 bodied species of the sinica group (M. arctoides, M. assamensis, and M. thibetana). These 

380 internal features are considered to be derived traits in macaques (Ito et al., 2009; Ito et al., 

381 2014b). Certainly, nasal cavity morphology also varies in relation to ecological adaptation 

382 and developmental plasticity. For example, in modern humans, individuals in colder 

383 environments tend to have a narrower nasal cavity (Noback et al., 2011), while in Japanese 

384 macaques, individuals in colder environments tend to have a larger cross-sectional area of the 

385 cavity (Rae et al., 2003); such clinal variations are generally considered to be a consequence 

386 of adaptation to climate. Additionally, cold environment-reared rats have smaller nasal 

387 cavities than a corresponding control group, which reflects developmental plasticity (Rae et 

388 al., 2006). Nevertheless, it is difficult to explain, solely by such environmental factors, why 

389 an expanded nasal cavity is often found in the three-large-bodied species of the sinica group 

390 but is barely observed in other cold environment-inhabiting species such as M. sylvanus and 
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391 M. fuscata. Therefore, the derived traits of internal structures that are found in members of 

392 the sinica group as well as those of zygomaxillary shape that are typically found in members 

393 of the fascicularis and sylvanus groups are considered to be informative for estimating the 

394 phylogenetic relationships of a fossil specimen.

395 4.2. Characteristics of the Korean fossil specimen and their phylogenetic significance

396 The Korean fossil specimen was most similar to M. fuscata in several characteristics. 

397 However, it must be remembered that a phenetic affinity does not necessarily reflect 

398 phylogenetic relatedness. The nasal cavity of the Korean fossil specimen exhibited moderate 

399 lateral expansion, making it similar to members of the fascicularis group and some of the 

400 other groups. However, this is not considered to be a derived character (Ito et al., 2014b) and 

401 so cannot be used to imply their phylogenetic relatedness. The Korean fossil specimen also 

402 had a somewhat similar level of facial elongation to some other species, such as M. fuscata. 

403 However, since this feature is largely associated with size, its reliability for phylogenetic 

404 interpretation is also questionable. The long-standing controversies around the phylogenetic 

405 relationships of fossil macaques (Delson, 1977, 1980; Jablonski and Pan, 1988; Fooden, 

406 1990; Pan and Yanzhang, 1995; Park and Lee, 1998; Ito et al., 2014b) could be partly ascribed 

407 to the use of such confusing characteristics.
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408 The Korean fossil specimen has a vertically high and less prognathic muzzle, which is 

409 the same as the clade that includes M. mulatta, M. cyclopis, and M. fuscata, as well as M. 

410 sylvanus. This shape component is independent of allometry and is probably a derived 

411 condition in macaques. It is not likely that the Korean fossil is closely related to the African 

412 species M. sylvanus. Among the three species of the clade, the Korean fossil was most similar 

413 to M. fuscata, followed by M. mulatta, with features that lay within the range of intraspecific 

414 variation for each. Furthermore, cladistic analyses also confirmed phylogenetic relatedness 

415 between the Korean fossil specimen and M. fuscata. Although M. thibetana is similar to the 

416 Korean fossil, particularly for the size-adjusted shape data, the degree of similarity is limited 

417 compared with M. fuscata. Therefore, it is reasonable to consider that the Korean fossil 

418 specimen is phylogenetically related to the clade that includes M. mulatta, M. cyclopis, and 

419 M. fuscata, particularly to M. fuscata.

420 It should be noted here that this finding does not necessarily suggest a phylogenetic 

421 closeness between members of the fascicularis group and the Chinese fossil species, namely 

422 M. robusta and M. anderssoni. Although the fossil macaques discovered from the Korean 

423 Peninsula are sometimes referred to as M. robusta (Park and Lee, 1998; Lee and Woo, 2005), 

424 some or all of them may be actually unrelated to this fossil species. Further studies are 
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425 expected to elucidate the phylogenetic relationships among the fossil specimens in East Asia.

426 4.3. Biogeographical and evolutionary implications

427 The present study suggests that the Korean fossil specimen is phylogenetically related 

428 to the fascicularis, rather than the sinica, group of macaques. Delson (1980) and Ito et al. 

429 (2014b) suggested that the proto-members of the sinica group, for example, M. anderssoni, 

430 were largely distributed in northern China in the Early Pleistocene and that members of this 

431 group may have retreated southward and been replaced by latecomers, that is, members of 

432 the fascicularis group, likely by the Middle Pleistocene (Delson, 1980; Ito et al., 2014b). This 

433 scenario is congruent with the present inference that the macaques living on the Korean 

434 Peninsula in the late Middle to Late Pleistocene were related to the fascicularis group.

435 The late Middle to Late Pleistocene period is likely later than the divergence time 

436 between M. fuscata and M. mulatta, which is considered to be ca. 0.4–1.4 Mya based on 

437 molecular studies and fossil evidence from Japan (Fooden and Aimi, 2005; Fooden, 2006; 

438 Chu et al., 2007; Jiang et al., 2016). Therefore, the Korean macaque is not the direct ancestor 

439 of M. fuscata but rather belongs to a collateral line that diverged from the main line of M. 

440 fuscata, M. mulatta, or the common ancestral lineage of the two species. They are probably 
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441 remnants that had been retained in the Korean Peninsula. Alternatively, the Korean macaque 

442 may be a subpopulation of Japanese macaques that had returned from the Japanese 

443 archipelago. In light of the parsimony principle, the former scenario is more probable. In 

444 either case, the Korean lineage could have become extinct due to an inability to escape the 

445 Korean Peninsula during the Late Pleistocene glacial period.

446 The zygomaxillary shape of the Korean fossil specimen is intermediate between M. 

447 fuscata and M. mulatta but more similar to the former. It has previously been suggested that 

448 the distinct morphological characteristics of M. fuscata developed after its dispersal into the 

449 Japanese archipelago (Fooden, 2006). However, assuming that the Korean macaque is not the 

450 lineage that has returned from the Japanese archipelago, it follows that the morphological 

451 evolution of these features started before this dispersal. These findings fill in some of the 

452 biogeographical and evolutionary gaps between M. fuscata and continental lineages, 

453 potentially shedding light on cold adaptation in primates.

454 4.4. Limitations of this study

455 This study has several important limitations, particularly related to sample composition. 

456 First, the sample size is small for both extant (n = 2–53/species) and fossil species (n = 1). 
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457 This limitation risks an underestimation of intraspecific variation and reduces the reliability 

458 of species mean value estimation (Cardini and Elton, 2007; Schillaci and Schillaci, 2009). 

459 Second, the sample includes not only wild-caught specimens but also captive and unknown-

460 origin specimens. We demonstrated that the morphological differences among specimen 

461 sources were small compared with interspecies differences, but were significant in some cases. 

462 Therefore, our interpretation of the results, which mainly suggested a phylogenetic closeness 

463 between the Korean lineage and M. fuscata, is not necessarily conclusive. In particular, M. 

464 thibetana should remain a candidate for being the sister taxon of the Korean lineage, because 

465 M. thibetana is somewhat similar to the Korean fossil in terms of zygomaxillary shape, 

466 particularly when size is adjusted. Further studies with a larger sample size, which ideally 

467 include only wild-caught specimens, will clarify our findings.

468 5. Conclusion

469 This study investigated the zygomaxillary morphology of the fossil macaque from the 

470 Middle to Late Pleistocene of the Korean Peninsula compared with living macaque species. 

471 We found that the Korean fossil is the most similar in zygomaxillary morphology to M. 

472 fuscata, followed by M. mulatta, and is phylogenetically related to the clade that includes M. 
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473 mulatta, M. cyclopis, and M. fuscata (particularly to M. fuscata). This finding, unlike 

474 traditional scenarios, suggests that the morphological characteristics of M. fuscata could have 

475 been formed before this group dispersed to the Japanese archipelago, potentially shedding 

476 light on how primates adapted to a cold environment.
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710

711

712 Figure legends

713 Figure 1. The zygomaxillary specimen (2ㅜㄷ-12-2169) from the Durubong Cave Complex 

714 (Site 2), South Korea. (a) Left lateral view, (b) right lateral view, (c) occlusal view, and 

715 (d) dorsal view. The scale is in centimeters.

716 Figure 2. (a) Original surface model and (b) corrected surface model of the Durubong specimen. 

717 The arrows denote fixing of the orientation of fragments (green and blue regions) and 

718 filling of gaps in the main body (red region).

719 Figure 3. Landmarks used in this study. (a) Frontal view, (b) dorsal view, (c) left lateral view, 

720 and (d) occlusal view. Anatomically defined landmarks: red; curve semi-landmarks: 

721 blue; and surface semi-landmarks: green (see also SOM Table S4).

722 Figure 4. Coronal computed tomography (CT) images at the level of M1 in extant macaques. 

723 (a–d) Species of the sinica group. Arrows denote the degree of lateral 



45

724 expansion/constriction of the nasal cavity and the thickness of the lateral bony wall of 

725 the maxilla. The scale is in centimeters. An asterisk denotes the maxillary sinus.

726 Figure 5. Coronal computed tomography (CT) image (bottom left) and corresponding line-

727 drawn diagram at the level of M1 (bottom right) in the Durubong fossil macaque 

728 specimen (2ㅜㄷ-12-2169). Upper image illustrates where the cross-section is located. 

729 The areas filled in gray and the dots on the line diagram indicate the bony structure and 

730 plaster, respectively. Arrows denote the limited expansion of the nasal cavity and the 

731 thick lateral bony wall of the maxilla. The scale is in centimeters.

732 Figure 6. Relationships between bgPC scores and the lnCS of the zygomaxillary region in the 

733 fossil macaque specimen and extant macaque species. (a) bgPC1 based on the raw shape 

734 data vs. lnCS, (b) bgPC2 based on the raw shape data vs. lnCS, (c) bgPC2 vs. bgPC1 

735 based on the raw shape data, and (d) bgPC2 vs. bgPC1 based on the size-adjusted shape 

736 data. Red (dashed-dotted lines), sinica group; green (dashed lines), fascicularis group; 

737 blue (dotted lines), silenus group; yellow (solid lines), sylvanus group; black, the fossil 

738 specimen (2ㅜㄷ-12-2169).

739 Figure 7. Zygomaxillary shape changes along the bgPC axes. (a) Image of the fossil specimen 
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740 showing the locations of the polygons illustrated in this figure. (b) bgPC1 and (c) bgPC2 

741 based on the raw shape data. (d) bgPC1 and (e) bgPC2 based on the size-adjusted shape 

742 data. The upper row represents the lateral views of the zygomaxillary region, while the 

743 lower column represents the dorsal views. The negative (left, blue) and positive (right, 

744 red) extremes, and their superimposition (middle) are shown.

745 Figure 8. Procrustes distances from the fossil macaque specimen (Macaca cf. robusta) to all 

746 examined individuals of extant species of macaques based on (a) the raw shape data and 

747 (b) the size-adjusted shape data. Color indicates the species group (see the legend of 

748 Fig. 6).

749 Figure 9. Phylomorphospace of (a) the raw shape data and (b) the size-adjusted shape data. 

750 Color indicates the species group (see the legend of Fig. 6). Gray-filled circles indicate 

751 the most recent common ancestor of all macaques.

752 Figure 10. Parsimonious phylogenetic trees inferred from the three-dimensional landmark data 

753 from the zygomaxillary region of the fossil macaque specimen (2ㅜㄷ-12-2169) and 

754 extant species of macaques based on (a) the raw shape data with a monophyly constraint, 

755 (b) the size-adjusted shape data with a monophyly constraint, (c) the raw shape data 
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756 without a monophyly constraint, and (d) the size-adjusted shape data without a 

757 monophyly constraint. Numbers near the nodes indicate GC support value when the 

758 landmarks were resampled. Asterisk indicates the fossil specimen.

759
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Table 1 The sample used in this study.

Species group Species Abbreviation n

M. arctoides arc 9

M. assamensis ass 10

M. thibetana thi 5

M. radiata rad 8

sinica group

M. sinica sin 2

M. fuscata fus 53

M. mulatta mul 11

M. cyclopis cyc 10

fascicularis group

M. fascicularis fas 11

M. leonina leo 2

M. silenus sil 4

M. siberu sib 9

silenus group

M. nemestrina nem 8

sylvanus group M. sylvanus syl 5



unknown M. cf. robusta rob 1



Table S2 Specimens used in this study.

Species Institutea Catalog number ID for analysis Data sourceb Doi Origin

DKY 1473 DKY_1473 PRI CT unknown

JMC 3111 JMC_3111 PRI CT captive

NMNH 256825 NMNH_256825 Smithsonian 3D collection wild

PRI 1871 PRI_1871 KAS CT captive

PRI 2793 PRI_2793 PRI CT captive

PRI 291 PRI_291 PRI CT captive

PRI 4227 PRI_4227 KAS CT unknown 

PRI 5846 PRI_5846 PRI CT captive

M. arctoides

PRI 6434 PRI_6434 PRI CT unknown

PRI 1893 PRI_1893 PRI CT wild

PRI 2178 PRI_2178 KAS CT unknown

PRI 2208 PRI_2208 PRI CT unknown

PRI 2302 PRI_2302 PRI CT unknown

PRI 2303 PRI_2303 PRI CT unknown

PRI 3057 PRI_3057 PRI CT captive

PRI 4498 PRI_4498 PRI CT unknown

PRI 5015 PRI_5015 PRI CT unknown

PRI 5230 PRI_5230 KAS CT unknown

M. assamensis

PRI 5342 PRI_5342 PRI CT unknown



DKY 1688 DKY_1688 PRI CT unknown

NMNH 296795 NMNH_296795 Smithsonian 3D collection wild

PRI 1358 PRI_1358 PRI CT unknown

PRI 4201 PRI_4201 PRI CT captive

PRI 4233 PRI_4233 PRI CT unknown

PRI 4486 PRI_4486 PRI CT wild

PRI 528 PRI_528 PRI CT captive

PRI 5847 PRI_5847 PRI CT unknown

PRI 6431 PRI_6431 PRI CT captive

M. cyclopis

PRI 9520 PRI_9520 PRI CT unknown

DKY 995 DKY_995 PRI CT unknown

NMNH 121511 NMNH_121511 Smithsonian 3D collection wild

NMNH 317191 NMNH_317191 Smithsonian 3D collection wild

NMNH 573504 NMNH_573504 Smithsonian 3D collection wild

PRI 3046 PRI_3046 PRI CT unknown

PRI 4434 PRI_4434 KAS CT unknown

PRI 4477 PRI_4477 PRI CT unknown

PRI 4478 PRI_4478 PRI CT unknown

PRI 4703 PRI_4703 PRI CT unknown

PRI 5225 PRI_5225 PRI CT captive

M. fascicularis

PRI 6680 PRI_6680 PRI CT captive



HMCZ 37709 HMCZ_37709 MorphoSource doi:10.17602/M2/M3043 wild

HNCC 03-10 HNCC_03-10 PRI CT wild

HNCC 04-14 HNCC_04-14 PRI CT wild

HNCC 04-60 HNCC_04-60 PRI CT wild

HNCC 05-16 HNCC_05-16 PRI CT wild

HNCC 05-17 HNCC_05-17 PRI CT wild

HNCC 05-43 HNCC_05-43 PRI CT wild

HNCC 06-23 HNCC_06-23 PRI CT wild

HNCC 06-40 HNCC_06-40 PRI CT wild

HNCC 06-59 HNCC_06-59 PRI CT wild

HNCC 06-60 HNCC_06-60 PRI CT wild

PRI 1571 PRI_1571 PRI CT wild

PRI 2168 PRI_2168 PRI CT wild

PRI 2586 PRI_2586 PRI CT wild

PRI 3452 PRI_3452 PRI CT wild

PRI 4076 PRI_4076 PRI CT wild

PRI 4113 PRI_4113 PRI CT wild

PRI 4335 PRI_4335 PRI CT wild

PRI 4338 PRI_4338 PRI CT wild

PRI 4341 PRI_4341 PRI CT wild

M. fuscata

PRI 5868 PRI_5868 PRI CT wild



PRI 6162 PRI_6162 PRI CT wild

PRI 6470 PRI_6470 PRI CT wild

PRI 6474 PRI_6474 PRI CT wild

PRI 6498 PRI_6498 PRI CT wild

PRI 6504 PRI_6504 PRI CT wild

PRI 6833 PRI_6833 PRI CT wild

PRI 7317 PRI_7317 PRI CT wild

PRI 7381 PRI_7381 PRI CT wild

PRI 7382 PRI_7382 PRI CT wild

PRI 7385 PRI_7385 PRI CT wild

PRI 8644 PRI_8644 PRI CT wild

PRI 8658 PRI_8658 PRI CT wild

PRI 8873 PRI_8873 PRI CT wild

PRI 8885 PRI_8885 PRI CT wild

PRI 8886 PRI_8886 PRI CT wild

PRI 8889 PRI_8889 PRI CT wild

PRI 8892 PRI_8892 PRI CT wild

PRI 8893 PRI_8893 PRI CT wild

PRI 8914 PRI_8914 PRI CT wild

PRI 8974 PRI_8974 PRI CT wild

PRI 9328 PRI_9328 PRI CT wild



PRI 9332 PRI_9332 PRI CT wild

PRI 9340 PRI_9340 PRI CT wild

PRI 9361 PRI_9361 PRI CT wild

SNC H22-170 SNC_H22-170 PRI CT wild

SNC H23-077 SNC_H23-077 PRI CT wild

SNC H23-285 SNC_H23-285 PRI CT wild

TPM M1656 TPM_M1656 PRI CT wild

TPM M1889 TPM_M1889 PRI CT wild

TPM M3958 TPM_M3958 PRI CT wild

TPM M529 TPM_M529 PRI CT wild

TPM M659 TPM_M659 PRI CT wild

AMNH MO-11090 AMNH_MO-11090 MorphoSource wildM. leonina

NMNH 241022 NMNH_241022 Smithsonian 3D collection wild

DKY 1682 DKY_1682 PRI CT unknown

HMCZ 26475 HMCZ_26475 MorphoSource doi:10.17602/M2/M3052 wild

KAS 41 KAS_0041 KAS CT captive

PRI 218 PRI_218 PRI CT captive

PRI 2200 PRI_2200 PRI CT unknown

PRI 223 PRI_223 PRI CT captive

PRI 224 PRI_224 PRI CT captive

M. mulatta

PRI 242 PRI_242 PRI CT captive



PRI 3523 PRI_3523 PRI CT unknown

PRI 4408 PRI_4408 PRI CT captive

PRI 580 PRI_580 PRI CT captive

DKY 2110 DKY_2110 PRI CT unknown

NMNH 123144 NMNH_123144 Smithsonian 3D collection wild

NMNH 154367 NMNH_154367 Smithsonian 3D collection wild

PRI 1849 PRI_1849 PRI CT unknown

PRI 2299 PRI_2299 PRI CT captive

PRI 2454 PRI_2454 KAS CT unknown

PRI 3055 PRI_3055 KAS CT unknown

M. nemestrina

PRI 4225 PRI_4225 PRI CT captive

JMC 1483 JMC_1483 KAS CT captive

PRI 3052 PRI_3052 PRI CT unknown

PRI 6079 PRI_6079 PRI CT captive

PRI 6684 PRI_6684 PRI CT captive

PRI 6685 PRI_6685 PRI CT captive

PRI 6686 PRI_6686 PRI CT captive

PRI 7140 PRI_7140 PRI CT captive

M. radiata

PRI 9532 PRI_9532 PRI CT captive

NMNH 546835 NMNH_546835 Smithsonian 3D collection wildM. siberu

PRI 1324 PRI_1324 PRI CT wild



PRI 1338 PRI_1338 PRI CT wild

PRI 1344 PRI_1344 PRI CT wild

PRI 1347 PRI_1347 PRI CT wild

PRI 5072 PRI_5072 PRI CT wild

PRI 5079 PRI_5079 PRI CT wild

PRI 5080 PRI_5080 PRI CT wild

PRI 5095 PRI_5095 PRI CT wild

JMC 2488 JMC_2488 PRI CT captive

JMC 4864 JMC_4864 PRI CT captive

JMC 5740 JMC_5740 PRI CT captive

M. silenus

NMNH 574135 NMNH_574135 Smithsonian 3D collection wild

NMNH 15259 NMNH_15259 Smithsonian 3D collection wildM. sinica

PRI 1886 PRI_1886 PRI CT wild

JMC 1392 JMC_1392 PRI CT captive

JMC 4798 JMC_4798 KAS CT captive

JMC 5644 JMC_5644 KAS CT captive

JMC 6330 JMC_6330 PRI CT captive

M. sylvanus

NMNH 255979 NMNH_255979 Smithsonian 3D collection wild

AMNH M-84472 AMNH_M-84472 MorphoSource wild

JMC 5722 JMC_5722 PRI CT captive

M. thibetana

KPM NF1001819 KPM_NF1001819 PRI CT unknown



NMNH 241163 NMNH_241163 Smithsonian 3D collection wild

PRI 4230 PRI_4230 KAS CT unknown

Unknown (M. 

cf. robusta)

CNUM 2ㅜㄷ-12-216 CNUM_2-12-2169 CNU CT wild

a CNUM, the Chungbuk National University Museum, Chungcheongbuk-do, Korea; PRI, the Primate Research Institute, Kyoto 

University, Inuyama, Japan; JMC, the Japan Monkey Centre, Inuyama, Japan; KPM, the Kanagawa Prefectural Museum of Natural 

History, Odawara, Japan; DKY, the Department of Anatomy (Macro), Dokkyo Medical University, Mibu, Japan; KAS, the Laboratory 

of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan; AMNH, the American Museum of Natural 

History, New York, USA; NMNH, the National Museum of Natural History, Washington DC, USA; HMCZ, the Harvard Museum of 

Comparative Zoology, Cambridge, USA. 

b PRI CT, the data scanned at the Primate Research Institute, Kyoto University, Inuyama, Japan; KAS CT, the data scanned at the the 

Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan; CNU CT, the data scanned at the 

Chungbuk National University, Chungcheongbuk-do, Korea; the data downloaded from Smithsonian 3D collection 

(http://humanorigins.si.edu/evidence/3d-collection/primate); the data downloaded from MorphoSource (http://morphosource.org).



Table S3 Test for the differences in zygomaxillary shape among the different origins of specimens. 

Response variable Explanatory variable R2 SS Df F P

All (wild, captive, and unknown-origin specimens)

Origin 0.009 0.001 2 0.59 0.556

Species 0.488 0.138 14 8.92 < 0.001

bgPC1 of raw shape data

Residuals 0.145 131 

Origin 0.007 0.001 2 0.47 0.628 

Species 0.626 0.136 14 15.69 < 0.001

bgPC2 of raw shape data

Residuals 0.081 131 

Origin 0.044 0.005 2 3.02 0.052 

Species 0.303 0.045 14 4.07 < 0.001

bgPC1 of size-adjusted shape data

Residuals 0.103 131 

Origin 0.039 0.002 2 2.63 0.076 

Species 0.670 0.124 14 18.96 < 0.001

bgPC2 of size-adjusted shape data

Residuals 0.061 131 

Origin 0.015 0.019 2 1.95 < 0.001

Species 0.335 0.422 14 6.13 < 0.001

Procrustes coordinates of raw shape data

Residuals 0.644 131 

Origin 0.021 0.021 2 2.44 < 0.001

Species 0.304 0.314 14 5.15 < 0.001

Procrustes coordinates of size-adjusted shape data

Residuals 0.571 131 



Subset (wild and captive specimens)

Origin 0.001 0.000 1 0.11 0.739

Species 0.579 0.125 14 9.81 < 0.001

bgPC1 of raw shape data

Residuals 0.091 100 

Origin 0.001 0.000 1 0.08 0.778 

Species 0.712 0.125 14 17.68 < 0.001

bgPC2 of raw shape data

Residuals 0.051 100 

Origin 0.046 0.003 1 4.83 0.030 

Species 0.377 0.038 14 4.31 < 0.001

bgPC1 of size-adjusted shape data

Residuals 0.063 100 

Origin 0.025 0.001 1 2.59 0.111 

Species 0.732 0.116 14 19.49 < 0.001

bgPC2 of size-adjusted shape data

Residuals 0.043 100 

Origin 0.013 0.012 1 2.763 < 0.001

Species 0.398 0.382 14 6.184 < 0.001

Procrustes coordinates of raw shape data

Residuals 0.441 100 

Origin 0.017 0.013 1 3.344 < 0.001

Species 0.360 0.280 14 5.037 < 0.001

Procrustes coordinates of size-adjusted shape data

Residuals 0.397 100 



ANOVA (Type II) was performed for the bgPC scores and Procrustes coordinates, wherein origin of specimen (captive, wild, and 

unknown) and species were used as explanatory variables. This was done for all sample and for the subset of sample (wild and 

captive). For these analyses, "procD.lm" function of "geomorph" package and "etasq" function of "heplots" package in R were used.  



Table S4 Landmarks used in this study.

Abbreviation Definition

Anatomically-defined landmarks

wpa Point corresponding to largest width of piriform aperture.

ns Nasospinale.

aif Antero-sperior point of incisive foramen.

pif Posterior-most point of incisive foramen.

lif Lateral-most point of incisive foramen.

pr Prosthion.

bia Postero-labial point of lateral incisor alveolus.

lia Postero-lingual point of lateral incisor alveolus.

bca Antero-labial point of canine alveolus.

lca Antero-lingual point of canine alveolus.

bp3 Labial P3: most mesial point on P3 alveolus, projected labially onto alveolar margin.

lp3 Lingual P3: most mesial point on P3 alveolus, projected lingually onto alveolar margin.

bp4 Labial P4: most mesial point on P4 alveolus, projected labially onto alveolar margin.

lp4 Lingual P4: most mesial point on P4 alveolus, projected lingually onto alveolar margin.

bm1 Labial M1: contact point between P4 and M1, projected labially onto alveolar margin.

lm1 Lingual M1: contact point between P4 and M1, projected lingually onto alveolar margin.

bm2 Labial M2: contact point between M1 and M2, projected labially onto alveolar margin.

lm2 Lingual M2: contact point between M1 and M2, projected lingually onto alveolar margin.



bm3 Labial M3: contact point between M2 and M3, projected labially onto alveolar margin.

lm3 Lingual M3: contact point between M2 and M3, projected lingually onto alveolar margin.

dm3 Distal M3: most posterior point on M3 alveolus, projected labially onto alveolar margin.

gpf Most posterior point on the margin of greater palatine foramen.

Semi-landmarks on curves

Eight points on the superior midline of nasal bone.

Six points on the superior midline of premaxilla, which is between ns and pr.

Seven points on the inferior midline of maxilla, which is from pif to approximately the meeting point of maxilla and 

palatine.

Five points on the lateral margin of nasal aperture, which is between wpa and ns.

Ten points on the inferior margin of orbital opening.

Seven points on the inferior margin of zygomatic process.

Semi-landmarks on surface

One-hundred and thirty-two points on the lateral side of zygomaxilla.

Some of these definitions are in accordance with Cardini et al. (2007) and Ito and Nishimura (2016).
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 1 
Figure S1. Most likely phylogenetic tree from the BEAST2 analysis for macaques and outgroup 2 
taxa using mtDNA and nuclear sequences. Blue horizontal bars represent the posterior 95% CI for the node 3 
ages.  4 

  5 



 

2 
 

 6 

Figure S2. Shape changes along PC axes in the phylomorphospace. (a) PC1 and (b) PC2 based on 7 
the raw shape data. (c) PC1 and (d) PC2 based on the size-adjusted shape data. For more details, see the 8 
legend of Figure 6 in the main text. 9 
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