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Abstract—This paper addresses a distributed formation control
problem of multiple mobile agents using relative positions and
local bearings. First, a formation control method via distributed
pattern matching is proposed, which is executed over each clique
(i.e. complete induced subgraph) of a network. It is shown that
this method achieves the best control performance for a given
desired formation and network topology in the following sense:
the closest formation to the desired one is achieved among all
formations achievable by distributed and relative control over
the network. Next, a necessary and sufficient network condition
is derived under which the desired formation can be obtained. It
turns out that a new concept of connectivity, called clique-rigidity,
plays a crucial role. Finally, the effectiveness of the proposed
method is illustrated through simulations in both two and three-
dimensional spaces.

Index Terms—Multi-agent systems, distributed control, forma-
tion control, relative measurements.

I. INTRODUCTION

MULTI-AGENT systems have attracted a lot of attention
in the field of the control engineering [1]. A multi-

agent system consists of a large number of components, called
agents, which interact with each other through communication
and/or sensing [2]. To reduce computational and sensing bur-
dens on agents, distributed control based on limited informa-
tion is important [3]. Actually, various problems of multi-agent
systems have been investigated based on distributed control,
e.g. consensus [4], [5], flocking [6], [7], coverage [8], pursuit
[9], [10] and attitude synchronization [11], [12]. Formation
control of multiple mobile agents [13], [14], [15], [16], [17],
[18], [19], [20] is one of the most fundamental problems
since it can be applied to various missions, e.g. monitoring
and surveillance by multiple unmanned aerial vehicles (UAVs)
[21], ocean sampling and mapping by multiple autonomous
underwater vehicles (AUVs) [22], and so forth.

This paper particularly focuses on distributed formation
control of mobile agents using relative positions and local
bearings. With this approach, agents can avoid using sensors
for absolute measurements, e.g. global positioning systems
(GPSs). Let xi(t) ∈ Rd be the current position of agent
i ∈ {1, 2, . . . , n} in the global frame, and x∗i ∈ Rd be its
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Fig. 1. Multi-agent coordination: (a) desired positions, (b) desired positions
with rotation and translation (squares) and agent positions (circles).

position in a desired formation. Then, the control objective is
described as follows:

lim
t→∞

(xi(t)− (R(t)x∗i + τ(t))) = 0 (1)

for all i with some rotation matrix R(t) ∈ Rd×d and transla-
tion vector τ(t) ∈ Rd from the global frame. The parameters
R(t) and τ(t) have to be determined by agents in a distributed
manner under the situation that only relative positions and
local bearings are measurable. Fig. 1 illustrates this problem:
in (a), the squares denote the desired positions x∗i and the
edges do mutual observations between agents; in (b), the
squares represent the desired positions x̂∗i(t) = R(t)x∗i+τ(t)
with some rotation and translation and the circles denote the
agent positions xi(t), expected to converge to x̂∗i(t).

There are several possible approaches to this problem. One
way is to apply attitude synchronization [11], [12] to obtain
R(t) and τ(t) in (1) by consensus of agent-dependent rotations
Ri(t) and translations τi(t) from the global frame. However,
this approach requires exchanging information on Ri(t) and
τi(t) between agents, not based on relative positions or local
bearings. Another way would be to employ distance-based
formation control [16], [17], [18], [19], formulated as

lim
t→∞

∥xi(t)− xj(t)∥ = ∥x∗i − x∗j∥ (2)

for any i, j connected over the observation network. Thanks to
the expression with the relative distance in (2), this approach
uses only relative positions and local bearings. However, this
problem is just a relaxed version of (1); even if (2) is achieved,
the original problem (1) is not necessarily solved. Actually, an
unexpected formation can be obtained as illustrated in Fig. 2,
where the desired formation in (a) looks fairly different from
the possible resultant formation in (b) because of the reflection
of agent 3 though (2) is satisfied.
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Fig. 2. Distance-based formation: (a) desired positions, (b) possible resultant
positions (squares) and agent positions (circles).

Hence, we try to solve the formation control problem
(1) directly. For this approach, pattern matching of image
data [23] is promising. Actually, (1) can be regarded as
an optimization problem to find a rotation matrix R(t) and
translation vector τ(t) to best match the desired positions x∗i
to the current agent positions xi(t). Since pattern matching
algorithms suppress the reflections of matching data, we can
expect to avoid unexpected formations due to the reflections of
agents. This approach however involves a serious issue when
applied to formation control: these algorithms are executed in
a centralized manner. In fact, existing papers do not resolve
this issue [24]. To the best of the authors’ knowledge, there
is no solution to this issue so far.

In this paper, we propose a formation control method using
relative positions and local bearings via distributed pattern
matching. The designed distributed controller executes the
pattern matching over each clique (i.e. complete induced
subgraph) of networks. We show that it exhibits the best
control performance for a given desired formation and network
topology in the following sense: agents attain (1) the closest
among all formations achievable by distributed control over
the network. Note that it depends on networks whether the
desired formation is achievable by distributed control or not.
Thus, next, we derive a necessary and sufficient condition
of network topologies under which the desired formation is
realizable. Here, a new concept of connectivity, called clique-
rigidity, plays a crucial role, which is different from the
conventional rigidity. Finally, the effectiveness of the proposed
method is illustrated through simulations in both two and
three-dimensional (2D and 3D) spaces.

The existing papers [25], [26], [27], [28] have addressed
this problem based on the distance-based formation control.
They imposed additional constraints such as signed angles
or volumes of formations, and guaranteed the achievement
of the desired formation under particular network topologies.
Therefore, it was not clear what is the best possible per-
formance for a given network, or what kind of condition is
essentially necessary for the network to achieve the desired
formation. Moreover, discontinuous dynamics were not inves-
tigated though they are inevitable to the formation control
problem for guaranteeing convergence. This is because there
are the positions which can be undesired equilibria under
continuous dynamics (e.g. when all agents stay at the same

point or collinear (coplaner) in R2 (R3) [29]). In contrast,
this paper investigates the convergence properties over such
dynamics via differential inclusion.

This paper is based on the author’s conference paper [30].
The update points from [30] are as follows. (i) The detailed
discussions including the proofs of all theorems and lemmas
are added. (ii) It is shown that the proposed controller uses
only relative positions and local bearings. (iii) A network
condition to achieve the desired formation is derived. (iv) The
convergence properties are investigated. (v) The simulation in
the 3D space is included.

The organization of this paper is as follows. Section II
gives preliminaries of notations and definitions. Section III
formulates the problems discussed in this paper. In Section
IV, an optimal distributed and relative controller is designed
via distributed patter matching. Section V gives simulation
results. Sections VI and VII investigate necessary network
topologies and convergence properties, respectively. Section
VIII concludes this paper.

II. PRELIMINARIES

A. Notations

Let R and R+ be the sets of all the real numbers and non-
negative real numbers, respectively. Let SO(d) ⊂ Rd×d denote
the set of all the orthogonal matrices whose determinant is 1,
and SE(d) = SO(d)×Rd be the Euclidean group of dimension
d. The notations 1n ∈ Rn and En ∈ Rn×n represent the vector
all whose components are 1 and the n-dimensional identity
matrix, respectively, and eni ∈ Rn denotes the n-dimensional
unit vector whose i-th component is 1. Let rank(·) and ave(·)
be the rank and the row-wise averages of a matrix, respectively.
Let tr(·) and det(·) denote the trace and the determinant of a
square matrix, respectively. The Frobenius norm of a matrix
is given by ∥ · ∥.

Let Mn ∈ Rn×n be the matrix

Mn = En − 1n1
⊤
n

n
,

and the following expressions hold for any X ∈ Rd×n:

1⊤
nMn = 0 (3)

X − ave(X)1⊤
n = XMn. (4)

The set Mdn ⊂ Rd×n is defined as

Mdn = {X ∈ Rd×n : rank(XMn) = min{d, n− 1}}. (5)

For a scalar function v : Rd×n → R of a variable X = [xij ] ∈
Rd×n, the gradient of v(X) is defined as

∂v

∂X
(X) =


∂v

∂x11
(X) ∂v

∂x12
(X) · · · ∂v

∂x1n
(X)

∂v
∂x21

(X) ∂v
∂x22

(X) · · · ∂v
∂x2n

(X)
...

...
. . .

...
∂v

∂xd1
(X) ∂v

∂xd2
(X) · · · ∂v

∂xdn
(X)

 .

For vector-valued functions f1, f2, . . . , fn : Rd×n →
Rd and a set I ⊂ {1, 2, . . . , n} of positive integers, let
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[fj(X)]j∈I : Rd×n → Rd×|I| be the matrix-valued function
consisting of the columns fj(X) for j ∈ I as

[fj(X)]j∈I = [fi1(X) fi2(X) · · · fi|I|(X)],

where |I| is the number of the elements of I, and the elements
i1, i2, . . . , i|I| ∈ I satisfy 1 ≤ i1 < i2 < · · · < i|I| ≤ n.
According to this notation, for the matrix X = [x1 · · · xn] ∈
Rd×n with the columns x1, x2, . . . , xn ∈ Rd, the collection of
its columns corresponding to the indexes of I is denoted as

[xj ]j∈I = [xi1 xi2 · · · xi|I| ].

The [xj ]j∈I-space is the (d × |I|)-matrix subspace of Rd×n

with the coordinate [xj ]j∈I spanned by the basis edke
⊤
nj ∈

Rd×n for k = 1, 2, . . . , d and j ∈ I.
Let PI : pow(Rd×n) → pow(Rd×|I|) be the projection of

a set onto the [xj ]j∈I-space, namely, for a set A ⊂ Rd×n

PI(A) = {Y ∈ Rd×|I| : ∃X ∈ A s.t. Y = [xj ]j∈I}, (6)

where pow(·) is the power set of a set. For a matrix X ∈ Rd×n

and a set A ⊂ Rd×n, their distance is defined as

dist(X,A) = inf
Y ∈A

∥X − Y ∥. (7)

For two sets A ⊂ Rd×n and B ⊂ Rd×n, their Hausdorff
distance is defined as

H-dist(A,B) = max

{
sup
X∈A

dist(X,B), sup
Y ∈B

dist(Y,A)

}
.

B. Some concepts of graph theory

Consider a graph G = (V, E) with a vertex set V =
{1, 2, · · · , n} and an edge set E . The elements i ∈ V and
{i, j} ∈ E are called a vertex and an edge, respectively. We
assume that G is undirected and time-invariant.

For a vertex subset C ⊂ V , let E|C ⊂ E be the edge subset
such that both vertexes of each edge in E|C are contained by
C, namely, E|C = {{i, j} ∈ E : i, j ∈ C}. Then, the graph
G|C = (C, E|C) is said to be induced by C, or an induced
subgraph of C. A vertex subset C ⊂ V is said to be a clique in
G if the induced subgraph of C is complete [31]. Clique C is
said to be maximal if there is no other clique C̄ in G such that
C ⊂ C̄. Let M-clq(G) ⊂ pow(V) be the set of all the maximal
cliques in G, and M-clqi(G) = {C ∈ M-clq(G) : i ∈ C} be
the set of all the maximal cliques to which vertex i belongs.
For clique C, the number |C| of the vertexes is called the order
of C.

Example 1: Consider the graph G = (V, E) depicted in
Fig. 3. This graph consists of three maximal cliques of orders
2, 3, 4, and the set of them is given as

M-clq(G) = {{2, 4}, {1, 2, 3}, {4, 5, 6, 7}}.
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Fig. 4. Examples of 2-interconnection graphs of maximal cliques.

The set of the maximal cliques to which vertex i ∈ V belongs
is given as follows:

M-clq1(G) = M-clq3(G) = {{1, 2, 3}},
M-clq2(G) = {{2, 4}, {1, 2, 3}},
M-clq4(G) = {{2, 4}, {4, 5, 6, 7}},
M-clq5(G) = M-clq6(G) = M-clq7(G) = {{4, 5, 6, 7}}.

Let C1, C2, . . . , C|M-clq(G)| ∈ M-clq(G) be the maximal
cliques in G. The r-intersection graph Γr(G) = (V̆, Ĕr) of the
maximal cliques in G is a graph whose vertexes correspond to
the maximal cliques in G, with an edge between two vertexes
whenever the corresponding two maximal cliques in G have
at least r vertexes in common [32], [33]. Its vertex and edge
sets are given by V̆ = {1, 2, . . . , |M-clqG|} and the following,
respectively:

Ĕr = {{ℓ,m}, ℓ,m ∈ V̆ : |Cℓ ∩ Cm| ≥ r, ℓ ̸= m}.
Example 2: Consider the graphs in Fig. 4. Graph Ga

consists of four maximal cliques: C1 = {1, 2, 3}, C2 =
{2, 3, 4}, C3 = {3, 4, 5, 6}, C4 = {5, 6, 7}, which derive the
2-intersection graph Γ2(Ga) of the maximal cliques as a line
graph. In contrast, as for graph Gb, the 2-intersection graph
Γ2(Gb) of the maximal cliques is not connected due to the
lack of the connection between vertexes 3 and 5 in Gb.

C. Discontinuous dynamics
Consider a differential equation

Ẋ(t) = F (X(t)) (8)

of a matrix variable X(t) ∈ Rd×n with a matrix-valued
function F : Rd×n → Rd×n measurable and essentially
locally bounded, but not necessarily continuous. A matrix-
valued function X(t) ∈ Rd×n is called a Filippov solution,
or simply solution, of (8) if X(t) is an absolutely continuous
function satisfying the differential inclusion

Ẋ(t) ∈ K[F ](X(t)).

Here, K[F ] : Rd×n → pow(Rd×n) is the set-valued map
defined by

K[F ](X) = co
{
Y ∈ Rd×n : ∃Xk ∈ Rd×n\S, k = 1, 2, . . .

s.t. lim
k→∞

Xk = X, lim
k→∞

F (Xk) = Y

}
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with a set S ⊂ Rd×n of measure zero, where co(·) is the
closure of the convex hull of a set. Let Z(F ) ⊂ Rd×n be the
zero set of the function F (X), defined by

Z(F ) = {X ∈ Rd×n : 0 ∈ K[F ](X)}, (9)

which is the equilibrium set of system (8). We say that a
closed, non-empty set A ⊂ Z(F ) is a locally attractive
equilibrium set of (8) if there exists an open set U ⊃ A such
that

lim
t→∞

dist(X(t),A) = 0 ∀X(0) ∈ U . (10)

Additionally, if U = Rd×n and A = Z(F ), we say that A is
the globally attractive equilibrium set of (8).

III. PROBLEM FORMULATION

A. Target system

Consider a group of n mobile agents in a d-dimensional
space, where d is a positive integer describing the dimension
of working space (e.g., d = 2, 3, but not limited to them). Let
V = {1, 2, · · · , n} be the set of the agent indexes. Each agent
can obtain information from others over a network whose con-
nectivity is described by graph G = (V, E) with the vertex set
V and an edge set E . Agents i, j can exchange information over
the network if and only if {i, j} ∈ E . The set of the neighbors
of agent i is expressed as Ni = {j ∈ V : {i, j} ∈ E}.

There are two types of frames to describe the positions of
the agents: the global frame Σ and local frames Σi(t) (i ∈ V).
The global frame Σ is fixed and common among all agents
while the local frames Σi(t) are time-varying and may be
different from each other. Let xi(t) ∈ Rd be the position of
agent i ∈ V in Σ, corresponding to the origin of Σi(t). For a
point z ∈ Rd in Σ, let z[i] ∈ Rd denote its expression in Σi(t)
according to the following relation:

z = Riz
[i] + xi(t), (11)

where Ri ∈ SO(d) is a transformation matrix associated with
the rotation of Σi(t) from Σ. Assume that Ri is constant and
unknown to anyone including agent i itself. For d = 2, for
example, Ri is determined by the angle θi ∈ [0, 2π) between
the first axes of Σ and Σi(t) as shown in Fig. 5.

Assume that the velocity of agent i can be directly con-
trolled by the control input ui(t) ∈ Rd in Σi(t). Then, the
dynamics of agent i ∈ V is described in Σ as

ẋi(t) = Riui(t) (12)

from (11). (See Appendix A for the deviation.) As for sensing,
we assume that agent i can measure the relative positions
x
[i]
j (t) ∈ Rd of the neighbors j ∈ Ni in Σi(t), expressed

as
x
[i]
j (t) = R⊤

i (xj(t)− xi(t)) (13)

by replacing z with xj(t) in (11). Then, the control input ui(t)
should be of the form

ui(t) = fi([x
[i]
j (t)]j∈Ni

) (14)

with a function fi : Rd×|Ni| → Rd. The control input of the
form (14) is said to be relative and distributed over G.

The control objective is to achieve (1) for any i ∈ V with
some (R(t), τ(t)) ∈ SE(d), where x∗i ∈ Rd (i ∈ V) is the
position of agent i in a desired formation. This objective can
be rewritten as

lim
t→∞

dist(X(t), TX∗) = 0 (15)

with the collective positions X(t) = [x1(t) x2(t) · · · xn(t)] ∈
Rd×n and the target set of X(t) defined by

TX∗ = {X ∈ Rd×n : ∃(R, τ) ∈ SE(d) s.t. X = RX∗+τ1⊤
n },
(16)

where X∗ = [x∗1 x∗2 · · · x∗n] ∈ Rd×n represents the
collective desired position.

B. Gradient-flow approach

For the control objective (15), we employ the gradient-
flow approach, which is effective in designing cooperative
controllers. Let v : Rd×n → R+ be a function evaluating the
achievement of a given task with the minimum value, zero.
When xi(t) is governed by the gradient-flow of v(X) as

ẋi(t) = − ∂v

∂xi
(X(t)) (17)

for all i ∈ V , v(X(t)) is monotonically non-increasing, and
X(t) locally converges to the zero set v−1(0), as shown in
Section VII. From Ri ∈ SO(d), the gradient-flow (17) of v(X)
is obtained in (12) by the control input

ui(t) = −R⊤
i

∂v

∂xi
(X(t)). (18)

Then, to achieve (15), we just have to find a function v(X)
satisfying

v−1(0) = TX∗ . (19)

We call a function v(X) satisfying (19) an indicator to
TX∗ , which enables the agents to know whether the desired
formation is achieved or not.

To design a relative and distributed control input (14) via
the gradient-based control input (18), let us define two classes
of functions. First, a continuous function v(X) is said to have
a relative gradient if it is differentiable almost everywhere and
for every i ∈ V there exists a function f̄i : Rd×(n−1)\S̄i → Rd

with a set S̄i of measure zero such that

∂v

∂xi
(X) = −Rif̄i([R

⊤
i (xj − xi)]j∈V\{i}) (20)
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holds for any matrix Ri ∈ SO(d). Let Fr be the set of
all the continuous functions having relative gradients. From
(13) and (20), the gradient-based control input (18) with
v(X) ∈ Fr depends only on relative positions x

[i]
j (t), but

does not on Ri. Second, a continuous function v(X) is said
to have a distributed gradient over G if it is differentiable
almost everywhere and for every i ∈ V there exists a function
f̃i : Rd × Rd×|Ni|\S̃i → Rd with a set S̃i of measure zero
satisfying

∂v

∂xi
(X) = −f̃i(xi, [xj ]j∈Ni

). (21)

Let Fd(G) be the set of all the continuous functions having
distributed gradients over G. The gradient-based control input
(18) is relative and distributed over G for all i ∈ V if and only
if v(X) ∈ Fr ∩ Fd(G).

C. Problem setting

Our goal is to design an indicator v(X) to TX∗ belonging to
Fr ∩ Fd(G). However, its existence depends on the topology
of G. Namely, if the edges in graph G are insufficient, we
probably cannot find any indicators. Taking this situation into
account, we consider the following optimization problem so
as to attain (19) as close as possible:

min
v(X)∈Fr∩Fd(G)∩F0(X∗)

H-dist(v−1(0), TX∗), (22)

where F0(X∗) is the set of all the functions v : Rd×n → R+

taking the minimum 0 at X∗. A solution v(X) of (22) is said
to be a best approximate indicator to TX∗ in Fr ∩ Fd(G) ∩
F0(X∗).

Now, the main problem in this paper is given as follows.
Problem 1: For graph G and the target set TX∗ ⊂ Rd×n

in (16), derive a best approximate indicator v(X) to TX∗ in
Fr ∩ Fd(G) ∩ F0(X∗). Moreover, from its gradient, design
the control input ui(t) in the local frame Σi(t) relative and
distributed over G.

As stated above, it depends on the topology of G whether
there exists an indicator. The next problem in this paper is to
characterize graph topologies from this viewpoint.

Problem 2: For the target set TX∗ ⊂ Rd×n in (16), find
topologies of graph G such that there exists an indicator v(X)
to TX∗ in Fr ∩ Fd(G) ∩ F0(X∗).

Remark 1: Problem 2 requires the existence of an indicator,
which satisfies (19). Nevertheless, to solve Problem 2, we just
have to check whether one best approximate indicator is an
indicator or not. If a best approximate indicator is an indicator,
there exists an indicator; otherwise, (22) guarantees that there
is no indicator over G.

Finally, we investigate local convergence of X(t) to v−1(0)
when using the gradient-flow approach. This is because for
non-smooth v(X), even local convergence is not guaranteed.
Moreover, we consider finding a condition to achieve local or
global convergence to TX∗ .

Problem 3: For v(X) and ui(t) designed in Problem 1,
confirm that v−1(0) is a locally attractive equilibrium set of
the system (12) with the control input ui(t). Moreover, find
a topology of graph G under which TX∗ is a locally or the
globally attractive equilibrium set.

IV. SOLUTION TO PROBLEM 1

A. Preliminaries for pattern matching

In this subsection, first, a conventional approach to pattern
matching is introduced. Next, to apply this approach to the
multi-agent coordination problem, three relevant results are
newly derived.

Now, we consider a rigid body placed in a d-dimensional
space. Let y1, y2, . . . , ym ∈ Rd be a sequence of m points
on the rigid body in a frame Σy , and z1, z2, . . . , zm ∈ Rd be
the corresponding sequence in a different frame Σz . For every
i ∈ {1, 2, . . . ,m}, the correspondence between these points is
given as

yi = Rzi + τ (23)

with some rotation matrix R ∈ SO(d) and translation vector
τ ∈ Rd. Pattern matching is a problem to find (R, τ) ∈ SE(d)
minimizing the sum of the square errors

∑m
i=1 ∥yi − (Rzi +

τ)∥2 in terms of (23), which is formulated as

min
(R,τ)∈SE(d)

∥Y − (RZ + τ1⊤
m)∥2 (24)

with Y = [y1 y2 · · · ym] ∈ Rd×m and Z = [z1 z2 · · · zm] ∈
Rd×m.

To solve (24), the singular value decomposition (SVD) is
used as

(Z − ave(Z)1⊤
m)(Y − ave(Y )1⊤

m)⊤ = USV ⊤, (25)

where U, V ∈ Rd×d are orthogonal matrices and S =
diag(σ1, σ2, . . . , σd) are the diagonal matrix whose entries
σ1, σ2, . . . , σd (σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0) are the singular
values of the matrix in the left-hand side of (25). Then, the
solution to (24) is given as

R = V diag(

d−1︷ ︸︸ ︷
1, . . . , 1,det(UV ))U⊤ (26)

τ = ave(Y −RZ). (27)

Note that matrices U, V in (25) are not necessarily uniquely
determined, and R satisfying (26) is not either. Let Rm :
Rd×m × Rd×m → pow(SO(d)) be the set-valued function of
Y and Z consisting of all the matrices R ∈ SO(d) given by
(26) with any orthogonal matrices U, V ∈ Rd×d satisfying
(25). Then, the conventional result for the pattern matching is
obtained as follows.

Lemma 1: [23] The solution to (24) is given by R ∈
Rm(Y, Z) and τ in (27).

We can regard (24) as a function of Y , defined by f :
Rd×m → R+ as

f(Y ) = min
(R,τ)∈SE(d)

∥Y − (RZ + τ1⊤
m)∥2. (28)

Since f(Y ) is the min function of the continuous function pa-
rameterized by R and τ , f(Y ) is continuous. Three properties
of f(Y ) are derived as follows.

First, f(Y ) is differentiable almost everywhere as follows.
Lemma 2: Assume that Z ∈ Mdm. The function f(Y ) is

differentiable almost everywhere, whose gradient is given as

∂f

∂Y
(Y ) = 2(Y − ave(Y )1⊤

m −R(Z − ave(Z)1⊤
m)) (29)
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with R ∈ Rm(Y, Z).
Proof: See Appendix B.

Next, the gradient of f(Y ) is rotationally and translationally
invariant (i.e. SE(d)-invariant [34]) with respect to Y as
follows.

Lemma 3: Assume that Z ∈ Mdm. For any (R̂, τ̂) ∈
SE(d), the gradient of f(Y ) almost everywhere satisfies

∂f

∂Y
(R̂Y + τ̂1⊤

m) = R̂
∂f

∂Y
(Y ). (30)

Proof: See Appendix C.
Finally, the zero set of f(Y ) and that of the gradient are

equivalent as follows.
Lemma 4: Assume that Z ∈ Mdm. The following holds:

f−1(0) = Z
(
∂f

∂Y

)
. (31)

Proof: See Appendix D.

B. Design of a best approximate indicator

To solve Problem 1, we first find a class of functions
v(X) belonging to Fd(G). For this purpose, cliques play a
crucial role. Actually, the authors’ work [35] gives a specific
characteristic of a function belonging to Fd(G) as follows.

Lemma 5: [35] For graph G, a continuous and differen-
tiable almost everywhere function v : Rd×n → R+ belongs to
Fd(G) if and only if v(X) can be decomposed as

v(X) =
∑

C∈M-clq(G)

vC([xj ]j∈C), (32)

where vC : Rd×|C| → R+ is continuous, differentiable
almost everywhere and depends on [xj ]j∈C for each clique
C ∈ M-clq(G).

From Lemma 5, we can design just a function vC([xj ]j∈C),
but cannot change the structure of the sum in (32). For
achieving (19), the function

vC([xj ]j∈C) =
αC

2
(dist([xj ]j∈C ,PC(TX∗)))

2 (33)

with a gain αC > 0 is the most appropriate, which evaluates
the discrepancy between X and TX∗ through the projections
on the [xj ]j∈C-space. Actually, the following result is obtained,
which is the solution to the first part of Problem 1.

Theorem 1: For graph G and the target set TX∗ ⊂ Rd×n

in (16), a best approximate indicator to TX∗ in Fr ∩Fd(G)∩
F0(X∗) is given as

v(X) =
∑

C∈M-clq(G)

αC

2
(dist([xj ]j∈C ,PC(TX∗)))

2 (34)

for any positive numbers αC (C ∈ M-clq(G)).
Proof: See Subsection IV-C.

To consider the second part of Problem 1, we calculate the
gradient of (33). From (6), the projection of TX∗ in (16) onto
the [xj ]j∈C-space is described as follows:

PC(TX∗) = {Y ∈ Rd×|C| : ∃(R, τ) ∈ SE(d)

s.t. Y = R[x∗j ]j∈C + τ1⊤
|C|}. (35)

x*1 1

2 4

3

1

2

4

1

2

3x1

2

4
3

C
a

Cb

x̂*ib =RCb
x*i +τCb

4 x4

x*2

x*3

x*4

x2

x̂*1a

x̂*2a

x̂*4a

x̂*4b x̂*3b

x̂*2b

x*ia =RCa
x*i +τCa

x3

(a) (b)

Fig. 6. Operation of the proposed method: (a) desired positions, (b) desired
positions with rotation and translation over each clique (squares) and agent
positions (circles).

From (7) and (35), (33) is reduced to

vC([xj ]j∈C) =
αC

2
inf

Y ∈PC(TX∗ )
∥[xj ]j∈C − Y ∥2

=
αC

2
min

(R,τ)∈SE(d)
∥[xj ]j∈C−(R[x∗j ]j∈C+τ1⊤

|C|)∥
2.

(36)

This is nothing but the optimization problem (24) for

Y = [xj ]j∈C , Z = [x∗j ]j∈C , m = |C| (37)

and can be solved by the technique of pattern matching as
Lemma 1. Moreover, by applying (37) in (29) of Lemma 2,
we can derive the gradient of (36). Then, the solution to the
second part of Problem 1 is obtained as follows.

Theorem 2: The gradient-based control input (18) with
v(X) in (34) is achieved as

ui(t) =
∑

C∈M-clqi(G)

αC{ave([x[i]
j (t)]j∈C)

+RC(t)(x∗i − ave([x∗j ]j∈C))} (38)

for any RC(t) ∈ R|C|([x
[i]
j (t)]j∈C , [x∗j ]j∈C) and any positive

numbers αC . The control input (38) is relative and distributed
over G.

Proof: See Subsection IV-C.
The proposed controller (38) works to achieve the de-

sired formation via distributed pattern matching. This is
explained in Fig. 6 as follows. Consider the desired positions
x∗i and the network connections in (a). The corresponding
graph consists of two maximal cliques Ca and Cb of order
3, forming triangles. Then, the matched desired positions
x̂∗ik(t) = RCk

(t)x∗i + τCk
(t) (k = a, b), illustrated by the

two triangles in (b), are calculated as (38) over each clique
Ck in a distributed way. Then, the agent positions xi(t) are
controlled toward an intermediate point between x̂∗ik(t) for
cliques Ck to which agent i belongs. Although the matched
desired positions x̂∗ia(t) and x̂∗ib(t) are separated, they will
gradually gather as continuously updated according to (38).

Remark 2: Distance-based formation control, e.g. [17], uti-
lizes objective functions consisting of distance-errors between
neighbors such as

v(X) =
∑

{i,j}∈E

αij(∥xi − xj∥2 − d2ij)
2 (39)
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for positive numbers αij , where dij = ∥x∗i − x∗j∥. Although
this function depends only on the distances, its gradient,
generating control input, depends not only on the distances but
also on the directions of neighbors. Therefore, the information
required to the distance-based formation control is the same
as the proposed controller (38).

C. Proofs of Theorems 1 and 2

Proof of Theorem 1: As a preliminary, we first consider a
relaxed problem of (22) as

min
v(X)∈Fd(G)∩F0(TX∗ )

H-dist(v−1(0), TX∗), (40)

where F0(TX∗) is the set of all the continuous functions v :
Rd×n → R+ taking the minimum 0 on TX∗ . From X∗ ∈ TX∗ ,

F0(TX∗) ⊂ F0(X∗) (41)

holds. Moreover, the following relation is obtained.
Lemma 6: The following inclusion holds:

Fr ∩ F0(X∗) ⊂ F0(TX∗). (42)

Proof: See Appendix E.
Now, (i) we derive a solution of the relaxed problem (40),

and (ii) show that this solution belongs to the feasible set of
the original problem (22). From (42), the feasible region of
(40) contains that of (22). Thus, the solution of (40) is also
that of (22).

(i) The following lemma comes from the authors’ previous
work, which does not limit the set TX∗ ⊂ Rd×n to (16).

Lemma 7: [35] For graph G and a closed, non-empty set
TX∗ ⊂ Rd×n, a solution to (40) is given by (34) for any αC >
0 (C ∈ M-clq(G)) if (33) is differentiable almost everywhere
for any C ∈ M-clq(G).

For the target set (16), Lemma 2 guarantees that (33) is
differentiable almost everywhere. Thus, from Lemma 7, v(X)
in (34) is a solution to (40).

(ii) Consider v(X) in (34). By applying (37) to (30) in
Lemma 3 with R̂ = R⊤

i and τ̂ = −R⊤
i xi,

R⊤
i

∂vC
∂xi

([xj ]j∈C) =
∂vC
∂xi

(R⊤
i [xj ]j∈C −R⊤

i xi1
⊤
|C|)

=
∂vC
∂xi

([R⊤
i (xj − xi)]j∈C) (43)

is obtained. Thus, the gradient of vC([xj ]j∈C) is of the form
(20). Hence, vC([xj ]j∈C) ∈ Fr holds for any C ∈ M-clq(G),
and thus v(X) ∈ Fr is obtained from (34). This and Lemma
7 guarantee v(X) ∈ Fd(G) ∩ F0(TX∗) ∩ Fr, which leads to
v(X) ∈ Fd(G)∩F0(X∗)∩Fr from (41). Thus, v(X) in (34)
belongs to the feasible region of (22).

Proof of Theorem 2: From Lemma 2, for clique C ∈
M-clq(G), if i ∈ C,

∂vC
∂xi

([xj ]j∈C) = αC{xi − ave([xj ]j∈C)

−RC(x∗i − ave([x∗j ]j∈C))} (44)
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Fig. 7. Simulation result in R2: (a) desired positions x∗i, (b) agent positions
xi(t) at t = 0 (circles) and at t = 40 (squares).

holds with RC ∈ R|C|([xj ]j∈C , [x∗j ]j∈C); otherwise, the par-
tial derivative is zero. From (13), (43), and (44),

−R⊤
i

∂vC
∂xi

([xj ]j∈C) = −∂vC
∂xi

([R⊤
i (xj − xi)]j∈C)

= −αC{R⊤
i (xi − xi)− ave([R⊤

i (xj − xi)]j∈C)

−RC(x∗i − ave([x∗j ]j∈C))}
= αC{ave([R⊤

i (xj − xi)]j∈C)+RC(x∗i − ave([x∗j ]j∈C))}
= αC{ave([x[i]

j ]j∈C)+RC(x∗i − ave([x∗j ]j∈C))} (45)

with RC ∈ R|C|([R
⊤
i (xj−xi)]j∈C , [x∗j ]j∈C) is obtained. From

(32), the gradient-based control input (18) is reduced to

ui(t) = −R⊤
i

∂v

∂xi
(X(t)) = −

∑
C∈M-clqi(G)

R⊤
i

∂vC
∂xi

([xj(t)]j∈C),

which leads to (38) with (45).

V. NUMERICAL EXAMPLES

In this section, the effectiveness of the proposed method
is demonstrated by simulations in both R2 and R3. In all
simulations, the proposed controller (38) is employed with the
gain αC = 0.25.

First, consider the multi-agent system consisting of six
agents in R2. In Fig. 7(a), the desired positions x∗i ∈ R2

(i ∈ V) and the topology of G are described by the squares and
the edges, respectively. This graph consists of four maximal
cliques of order 3. The simulation result is depicted in Fig.
7(b), where the circles and squares represent the initial (t = 0)
and final (t = 40) positions of the agents, respectively, and
the dotted curves denote the trajectories. It is observed that
the desired formation in Fig. 7(a) is almost achieved at t = 40
with some rotation and translation. Figs. 8(a)∼(f) show the
snapshots of this simulation. The circles represent the current
positions xi(t), and each triangle composed of the squares
denotes the matched desired positions x̂∗ik(t) = RCk

(t)x∗i +
τCk

(t) for each clique Ck, derived from the proposed controller
(38). It is observed that at first the matched desired positions
are separated according to the cliques, they gradually gather
to form the desired formation as Fig. 8(f).

Next, consider seven agents in R3. In Fig. 9(a), the desired
positions x∗i ∈ R3 (i ∈ V) and the topology of G are de-
scribed by the squares and the edges, respectively. This graph
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Fig. 8. Snapshots of the simulation: agent positions xi(t) (circles) and the
matched desired positions x̂∗ik(t) of each clique Ck (squares).

consists of four maximal cliques of order 4. The simulation
results from different initial positions are depicted in Figs.
9(b)∼(d), where the circles and squares represent the initial
(t = 0) and final (t = 40) positions, and the dotted curves
denote the trajectories. It is seen that the desired positions in
Fig. 9(a) are finally achieved from any initial positions with
different rotations and translations, and that the reflections of
the formations do not occur due to the distributed pattern
matching.

We compare the proposed method to the existing method,
using the distance-based controller with (39). Simulation re-
sults with the existing method from the initial positions in
Fig. 9(c), (d) are shown in Fig. 10(c), (d), respectively. It
is observed that the final agent positions in Fig. 10(c), (d)
are different from the desired positions in Fig. 9(a) with any
rotations and translations, which is caused by reflections in
parts of the formation.

These simulation results show the effectiveness of the
proposed method in both R2 and R3. Note that a collision
avoidance operation can be combined by adding repulsive
potential functions to v(X).
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Fig. 9. Simulation results in R3 from different initial positions: (a) desired
positions x∗i, (b)∼(d) agent positions xi(t) at t = 0 (circles) and at t = 40
(squares).
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Fig. 10. Simulation results with the existing method from the initial positions
of (c), (d) in Fig. 9: agent positions xi(t) at t = 0 (circles) and at t = 40
(squares).

VI. SOLUTION TO PROBLEM 2

In this section, we find a graph condition to achieve an
indicator to TX∗ belonging to Fr ∩ Fd(G) ∩ F0(X∗). To
this end, a new concept of graph connectivity is introduced
as follows. For graph G and matrix X ∈ Rd×n, a pair
(G,X) is called a framework. For a given graph G and matrix
X∗ ∈ Rd×n, framework (G,X∗) is said to be clique-rigid if
the following holds with framework (G,X) for each matrix
X = [x1 x2 · · · xn] ∈ Rd×n:

[xj ]j∈C ∈ PC(TX∗) ∀C ∈ M-clq(G) ⇒ X ∈ TX∗ . (46)

A framework (G,X∗) is clique-rigid if it is the only frame-
work that can be constructed from the set of the frame-
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Fig. 11. Meaning of clique-rigidity of frameworks.

works (G|C , [x∗j ]j∈C) induced by the maximal cliques C ∈
M-clq(G).

Example 3: In Fig. 11, framework (G1, X∗) is clique-
rigid as verified through the following procedure: (i) List
all frameworks induced by the maximal cliques in G1. (ii)
Reconstruct a framework from the maximal cliques with some
rotations and translations so as to match the vertex indexes.
This operation corresponds to the assumption part of (46).
(iii) A reconstructed framework (G1, X) is given. Since it
is equivalent to the original framework (G1, X∗) with some
rotation and translation, the conclusion part of (46) is satisfied.
For any reconstructions, (46) is satisfied, and thus (G1, X∗)
is clique-rigid. On the other hand, (G2, X∗) is not clique-
rigid because there exists a reconstructed framework (G2, X)
different from (G2, X∗) with any rotations and translations.

The following theorem is given as a solution to Problem 2.
Theorem 3: For graph G and the target set TX∗ ⊂ Rd×n

in (16), there exists an indicator v : Rd×n → R+ to TX∗ in
Fr ∩ Fd(G) ∩ F0(X∗) if and only if (G,X∗) is clique-rigid.
One of such indicators is given by (34).

Proof: First, to show the sufficiency, assume that (G,X∗)
is clique-rigid. Consider v(X) in (34), belonging to Fr ∩
Fd(G) ∩ F0(X∗) from Theorem 1. Moreover, v(X) is an
indicator to TX∗ since (19) holds as follows:

v(X) = 0 ⇔ dist([xj ]j∈C ,PC(TX∗)) = 0 ∀C ∈ M-clq(G)

⇔ [xj ]j∈C ∈ PC(TX∗) ∀C ∈ M-clq(G) (47)
⇔ X ∈ TX∗ ,

where the first relation is from (34), the second one is from
(7) and the closedness of PC(TX∗) from (35), and the third
one is from (35) and the clique-rigidity defined by (46).

Next, to show the necessity, assume that (G,X∗) is
not clique-rigid. From (46), there exists a matrix X̃ =

[x̃1 x̃2 · · · x̃n] ∈ Rd×n such that [x̃j ]j∈C ∈ PC(TX∗) ∀C ∈
M-clq(G) and X̃ ̸∈ TX∗ . Then, v(X̃) = 0 holds for v(X) in
(34) from (47). This fact and X̃ ̸∈ TX∗ lead to v−1(0) ̸= TX∗ .
From Theorem 1, v(X) is a solution of (22), which yields

H-dist(ṽ−1(0), TX∗) ≥ H-dist(v−1(0), TX∗) > 0

for any function ṽ : Rd×n → R+ belonging to Fr ∩Fd(G) ∩
F0(X∗), where the last inequality follows from v−1(0) ̸= TX∗ .
Therefore, ṽ−1(0) ̸= TX∗ holds; thus ṽ(X) is not an indicator
to TX∗ . As a result, no function in Fr ∩Fd(G)∩F0(X∗) can
be an indicator.

For designing clique-rigid frameworks, the concept of the
intersection graph is important. Actually, the following theo-
rem gives a sufficient condition of (G,X∗) to be clique-rigid
associated with intersection graphs.

Theorem 4: For graph G = (V, E) and matrix X∗ ∈ Rd×n,
framework (G,X∗) is clique-rigid if the d-intersection graph
Γd(G) = (V̆, Ĕd) of the maximal cliques in G is connected
and

[x∗j ]j∈Cℓ∩Cm
∈ Md|Cℓ∩Cm| ∀{ℓ,m} ∈ Ĕd. (48)

Proof: Assume that Γd(G) = (V̆, Ĕd) is connected.
Consider a matrix X ∈ Rd×n satisfying the assumption
in (46). Then, for each maximal clique Cℓ ∈ M-clq(G),
[xj ]j∈Cℓ

∈ PCℓ
(TX∗) holds, which indicates

[xj ]j∈Cℓ
= Rℓ[x∗j ]j∈Cℓ

+ τℓ1
⊤
|Cℓ| (49)

with some (Rℓ, τℓ) ∈ SE(d) from (35). Consider two maximal
cliques Cℓ and Cm, namely ℓ,m ∈ V̆ , satisfying {ℓ,m} ∈
Ĕd, and then |Cℓ ∩ Cm| ≥ d holds from the definition of the
interconnection graph. From (3) and (49),

[xj ]j∈Cℓ∩Cm
M|Cℓ∩Cm| = Rℓ[x∗j ]j∈Cℓ∩Cm

M|Cℓ∩Cm|

= Rm[x∗j ]j∈Cℓ∩Cm
M|Cℓ∩Cm| (50)

is obtained. From (5), (48), and |Cℓ ∩ Cm| ≥ d,

rank([x∗j ]j∈Cℓ∩Cm
M|Cℓ∩Cm|) = min{d, |Cℓ ∩ Cm| − 1}

≥ d− 1 (51)

holds. From (50), (51), and the fact that Rℓ, Rm ∈ SO(d), we
obtain Rℓ = Rm. Then, from (49),

[xj ]j∈Cℓ∩Cm
−Rℓ[x∗j ]j∈Cℓ∩Cm

= τℓ1
⊤
|Cℓ∩Cm| = τm1⊤

|Cℓ∩Cm|

is obtained, and averaging row-wise the matrix leads to

τℓ = τm =
1

|Cℓ ∩ Cm|
ave([xj ]j∈Cℓ∩Cm

−Rℓ[x∗j ]j∈Cℓ∩Cm
).

Since Γd(G) is connected, (Rℓ, τℓ) for all the maximal cliques
Cℓ ∈ M-clq(G) agree with each other in the same way.
Since all the (Rℓ, τℓ) ∈ SE(d) are equal for ℓ ∈ V̆ , define
(R̃, τ̃) ∈ SE(d) as those common elements. Since each vertex
is contained by a maximal clique, from (49), X = R̃X∗+ τ̃1⊤

n

is obtained. Thus, X ∈ TX∗ holds from (16) and the conclu-
sion part of (46) is achieved. Therefore, (G,X∗) is clique-
rigid.

We compare the clique-rigidity with conventional connec-
tivities, such as global rigidity and rigidity, defined as follows
[36]: First, framework (G,X∗) is said to be globally rigid if
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rigid
clique-rigid

globally rigid

(G4,X*)(G2,X*)

(G3,X*)

(G1,X*)

Satisfying (54)

Fig. 12. Relations between clique-rigid, globally rigid, and rigid frameworks.
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Fig. 13. Examples of frameworks corresponding to Fig. 12.

the following holds for framework (G,X) with each matrix
X ∈ Rd×n:

∥xi − xj∥ = ∥x∗i − x∗j∥ ∀{i, j} ∈ E
⇒ ∥xi − xj∥ = ∥x∗i − x∗j∥ ∀i, j ∈ V. (52)

Next, framework (G,X∗) is said to be rigid if the following
holds for framework (G,Φ(s)) with each continuous matrix-
valued function Φ = [ϕ1 ϕ2 · · · ϕn] : [0, 1] → Rd×n

satisfying Φ(0) = X∗:

∥ϕi(s)− ϕj(s)∥ = ∥x∗i − x∗j∥ ∀{i, j} ∈ E , s ∈ [0, 1]

⇒ ∥ϕi(s)− ϕj(s)∥ = ∥x∗i − x∗j∥ ∀i, j ∈ V, s ∈ [0, 1].
(53)

Then, the following two theorems are given.
Theorem 5: For graph G and matrix X∗ ∈ Rd×n,

framework (G,X∗) is clique-rigid if (G,X∗) is globally rigid
and there exists a clique C satisfying

|C| ≥ d+ 1, [x∗j ]j∈C ∈ Md|C|. (54)

Proof: See Appendix F.
Theorem 6: For graph G and matrix X∗ ∈ Rd×n if

framework (G,X∗) is clique-rigid, (G,X∗) is rigid.
Proof: See Appendix G.

These concepts of rigidity relate to each other as shown in
Fig. 12, which indicates the following: (i) The clique-rigidity
is stronger than the rigidity. (ii) If there is a clique satisfying
(54), the clique-rigidity is weaker than the global rigidity.
Fig. 13 shows examples of frameworks in R2, corresponding
to frameworks (G1, X∗) ∼ (G4, X∗) in Fig. 12. As shown
in Fig. 13, clique-rigid framework (G2, X∗) in R2 consists
of triangles (cliques of order 3); globally rigid framework

(G3, X∗) consists of quadrangles (non-cliques) some of whose
edges connect distant vertexes.

Remark 3: In the setting of this paper, the formation
control is not necessarily achievable over just a connected
graph because the control input is restricted to a relative one
as (14). If the agents could exchange the direct information
on (Ri, τi), they just had to reach a consensus of (Ri, τi)
over a connected graph. However, (Ri, τi) ∈ SE(d) cannot be
expressed through the relative states x

[i]
j (t), defined as (13).

Actually, Theorem 3 shows that the clique-rigidity is necessary
to achieve the formation control via relative states, and the
condition of graph topologies cannot be relaxed.

VII. SOLUTION TO PROBLEM 3
In this section, we investigate the convergence properties

of the system (12) with the control input (38). This control
input is derived from the gradient-based one (18) with v(X)
in (34), which is not differentiable everywhere. To deal with
such non-smooth dynamics, the following lemma is available,
derived from the non-smooth version of LaSalle’s invariance
theorem [37], [38], [39].

Lemma 8: Let v : Rd×n → R+ be a locally Lipschitz,
regular function and X(t) = [x1(t) x2(t) · · · xn(t)] ∈ Rd×n

be a Filippov solution of (17). Then, for a compact positively
invariant set Ω ⊂ Rd×n of X(t), from any initial state X(0) ∈
Ω, v(X(t)) is non-increasing with respect to t, and (10) holds
for A = Z(∂v/∂X) ∩ Ω and U = Ω.

Proof: See Appendix H.
To apply Lemma 8 to v(X) in (34), we have to verify the

existence of a compact positively invariant set Ω. Since this
v(X) is not radially bounded, its level set is not compact.
Instead, we construct Ω by using the fact that X(t) is bounded
as shown in the following lemma.

Lemma 9: For graph G and the target set TX∗ ⊂ Rd×n

in (16), let X(t) = [x1(t) x2(t) · · · xn(t)] ∈ Rd×n be the
solution of the system (12) with the control input (38). Then,
(i) the average of xi(t) for i ∈ V belonging to each connected
component of G is constant and (ii) ∥X(t)∥ is bounded.

Proof: See Appendix I.
From Lemmas 8 and 9, we can derive the convergence

properties of the target system as follows.
Theorem 7: For graph G, the target set TX∗ ⊂ Rd×n in

(16), and the function v(X) in (34), (i) Z(∂v/∂X) is the
globally attractive equilibrium set, and (ii) v−1(0) is a locally
attractive equilibrium set of the system (12) with the control
input (38).

Proof of (i): Let X(t) be the solution of of (12) with
(38) starting from X(0) = X0 ∈ Rd×n, and Ω(X0) ⊂ Rd×n

be a compact set containing X(t) for all t ≥ 0. Such Ω(X0)
exists due to the boundedness of ∥X(t)∥ from Lemma 9 (ii).
From Theorem 2, the control input (38) is reduced to (18)
with v(X) in (34), with which (12) leads to (17). Therefore,
from Lemma 8, (10) holds for A = Z(∂v/∂X)∩Ω(X0) and
U = Ω(X0). Since this is the case for any X0 ∈ Rd×n, (10)
holds for A = Z(∂v/∂X) and U = Rd×n. Thus, Z(∂v/∂X)
is the globally attractive equilibrium set.

Proof of (ii): Since SO(d) and Rd are analytic manifolds
(i.e. manifolds with analytic transition maps), PC(TX∗) in
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(35) is an analytic manifold. Thus, the function vC([xj ]j∈C)
in (33) is analytic on an open set around v−1

C (0) [40],
[41]. Therefore, v(X) in (34) is analytic on an open set O
around

∩
C∈M-clq(G) v

−1
C (0) = v−1(0). For analytic functions,

Łojasiewicz’s inequality [42], [43] is available, and there exists
θ ∈ (0, 1) such that

(v(X))θ ≤
∥∥∥∥∂v(X)

∂X

∥∥∥∥ ∀X ∈ O. (55)

Let L(v, c) = {X ∈ Rd×n : v(X) ≤ c} be the level set
of v(X) for c > 0. Since O is open, v−1(0) is closed, and
L(v, 0) = v−1(0) ⊂ O, L(v, c0) ⊂ O holds for a sufficiently
small c0 > 0. This inclusion and (55) yield

v−1(0) ⊃ Z
(

∂v

∂X

)
∩ O ⊃ Z

(
∂v

∂X

)
∩ L(v, c0),

which leads to

dist(X, v−1(0)) ≤ dist

(
X,Z

(
∂v

∂X

)
∩ L(v, c0)

)
. (56)

Let X(t) be the solution from X(0) satisfying v(X(0)) ≤ c0.
Then, X(t) ∈ L(v, c0) holds for any t ≥ 0 since v(X(t)) is
non-increasing from Lemma 8. Therefore,

dist

(
X(t),Z

(
∂v

∂X

)
∩ L(v, c0)

)
= dist

(
X(t),Z

(
∂v

∂X

))
(57)

is achieved. From (i), (56), and (57), we obtain
limt→∞ dist(X(t), v−1(0)) = 0. Thus, (10) is satisfied
for A = v−1(0) and U = int(L(v, c0)), where int(·) is the
interior of a set. Therefore, v−1(0) is a locally attractive
equilibrium set.

Now, we can guarantee the local convergence to the target
set for clique-rigid frameworks as follows.

Theorem 8: For graph G and the target set TX∗ ⊂ Rd×n

in (16), if framework (G,X∗) is clique-rigid, TX∗ is a locally
attractive equilibrium set of the system (12) with the control
input (38).

Proof: For a clique-rigid framework (G,X∗), Theorem 3
guarantees that (34) is an indicator, satisfying (19). From (19)
and Theorem 8 (ii), TX∗ is a locally attractive equilibrium set
of the system (12) with the control input (38).

It is known that conventional methods for distance-based
formation control do not guarantee global convergence to the
desired formation even over the complete graph [17]. On the
other hand, the proposed method achieves global convergence
to TX∗ over the complete graph as follows.

Theorem 9: For graph G and the target set TX∗ ⊂ Rd×n

in (16), if G is complete, TX∗ is the globally attractive
equilibrium set of the system (12) with the control input (38).

Proof: If G is complete, M-clq(G) = {V} holds. Then,
v(X) in (34) consists of the only one term (33) for C = V , and
v−1(0) = Z(∂v/∂X) holds from Lemma 4. Moreover, (46)
always holds and (G,X∗) is clique-rigid for any X∗. Thus,
Theorem 3 guarantees that v(X) is an indicator, namely, (19)
is achieved. Then, we obtain TX∗ = v−1(0) = Z(∂v/∂X),
and thus Theorem 7 (i) guarantees that TX∗ is the globally
attractive equilibrium set.

The necessary condition to realize the global convergence
via relative and distributed gradient-based control input is the
clique-rigidity as follows.

Theorem 10: For graph G and the target set TX∗ ⊂ Rd×n

in (16), only if framework (G,X∗) is clique-rigid, there is a
function v : Rd×n → R in Fr ∩ Fd(G) ∩ F0(X∗) such that
TX∗ is the globally attractive equilibrium set of the system
(12) with the gradient-based control input (18).

Proof: Assume that framework (G,X∗) is not clique-
rigid, and Theorem 3 guarantees that there is no indica-
tor in Fr ∩ Fd(G) ∩ F0(X∗). Then, consider one function
v(X) ∈ Fr ∩ Fd(G) ∩ F0(X∗), and v(X) does satisfy
(19). Because v(X) ∈ Fr ∩ F0(X∗), v(X) ∈ F0(TX∗) is
obtained from Lemma 6, which implies that v(X) = 0 for
any X ∈ TX∗ . Therefore, TX∗ ⊂ v−1(0) holds. From this
inclusion and the fact that (19) does not hold, there exists a
matrix X0 ∈ v−1(0)\TX∗ . Because v−1(0) is an equilibrium
set, X(t) with the initial state X(0) = X0 stays at X0 ̸∈ TX∗

for all time and does not converge to TX∗ . Therefore, TX∗ is
not the globally attractive equilibrium set.

Theorems 9 and 10 give a sufficient and a necessary con-
dition, respectively, for the global convergence to TX∗ . Thus,
there exist graph topologies ensuring the global convergence
between clique-rigid frameworks and the complete graph.

VIII. CONCLUSION

This paper addressed a distributed formation control prob-
lem using relative positions and local bearings. The idea is
to regard this problem as pattern matching of image data,
which enabled us to propose a formation control method
via distributed pattern matching. In this way, the proposed
method successfully combined the techniques of the different
fields: control theory (distributed control) and computer vision
(pattern matching). Next, a strict network condition is derived
to achieve the desired formation by introducing the clique-
rigidity. A graph based on the Euclidean distance naturally
derives clique-rigid frameworks rather than globally rigid
ones. For example, the Delaunay graph always gives clique-
rigid frameworks in the two-dimensional space, known as the
Delaunay triangulation [44]. From this nature, the proposed
method is more reliable in many practical situations. Finally,
the simulations demonstrated the effectiveness of this method
regardless of the dimension of the working space. Future
work includes generalization of the concept of the relative
states from (11) to extend the class of observable outputs. We
should investigate what kind of relative states are suitable for
controller design and practical application.

APPENDIX A
DEVIATION OF (12)

From the assumption above (12), the velocity of agent i is
controlled by ui(t) in Σi(t), which means that

lim
δ→+0

x
[i]
i (t+ δ)− x

[i]
i (t)

δ
= ui(t). (58)
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Note that x
[i]
i (t) = 0 is achieved by replacing z with xi(t)

in (11). From this, by replacing z with xi(t + δ) in (11) for
δ > 0 and dividing the resultant equation by δ,

xi(t+ δ)− xi(t)

δ
= Ri

x
[i]
i (t+ δ)− x

[i]
i (t)

δ
(59)

is obtained. Take the limits of δ to zero in (59), and (12) is
achieved with (58).

APPENDIX B
PROOF OF LEMMA 2

From (4), (29) is rewritten as

∂f

∂Y
(Y ) = 2(YMm −RZMm). (60)

The rest of the proof is devoted to showing that (i) RZMm is
uniquely defined almost everywhere, and that (ii) (60) holds.

(i) If m ≥ d + 1, because the matrix in the left-hand side
of (25) has full rank almost everywhere from Z ∈ Mdm, the
SVD in (25) is uniquely determined almost everywhere, and
so is R in (26). Thus, only the case that m ≤ d has to be
considered as the following lemma.

Lemma 10: For Z ∈ Mdm and m ≤ d, R in (26) satisfies

RZMm = V1U
⊤
1 ZMm, (61)

and RZMm is unique almost everywhere in terms of Y ∈
Rd×m, where U1, V1 ∈ Rd×(m−1) are the matrices such that
the SVD in (25) is achieved with

S = diag(S1,

d−m+1︷ ︸︸ ︷
0, . . . , 0), U = [U1 U2], V = [V1 V2]. (62)

Proof: From (25) and (62),

((YMm)(U⊤
2 ZMm)⊤)⊤ = U⊤

2 ZMm(YMm)⊤ = U⊤
2 USV ⊤

= U⊤
2 [U1 U2]diag(S1, 0, . . . , 0)V

⊤

= [O Ed−m+1]diag(S1, 0, . . . , 0)V
⊤

= 0 (63)

holds, where O ∈ R(d−m+1)×(m−1) is the zero matrix.
Because YMm ∈ Rd×m and m ≤ d, rank(YMm) = m − 1
holds almost everywhere. Then, the matrix YMm ∈ Rd×m

has the kernel of one dimension spanned by 1m because
YMm1m = 0 holds from (3). Then, (63) yields

(U⊤
2 ZMm)⊤ = 1mc (64)

for some c ∈ R1×(d−m+1). By multiplying 1⊤
m/m for (64)

from the left, 0 = c is obtained from (3), which leads to
U⊤
2 ZMm = 0 from (64). From this, (26), and (62),

RZMm = (V1U
⊤
1 + V2diag(

d−m︷ ︸︸ ︷
1, . . . , 1 det(UV ))U⊤

2 )ZMm

= V1U
⊤
1 ZMm

is obtained, which yields (61). Because U1 and V1 in the
SVD (25) with the decomposition (62) are unique almost
everywhere, so is RZMm.

(ii) From Lemma 1, f(Y ) in (28) is reduced to

f(Y ) = ∥Y − ave(Y )1⊤
m −R(Z − ave(Z)1⊤

m)∥2 (65)

with R ∈ Rm(Y, Z). Let

D = diag(

d−1︷ ︸︸ ︷
1, . . . , 1,det(UV )). (66)

From (4) and (26), (65) is reduced to

f(Y ) = ∥YMm − V DU⊤ZMm∥2

= tr((YMm)⊤YMm)− 2tr((YMm)⊤V DU⊤ZMm)

+ tr((ZMm)⊤ZMm). (67)

As shown below, the gradients of the terms in (67) are
calculated as

∂tr((YMm)⊤YMm)

∂Y
= 2YMm (68)

∂tr((YMm)⊤V DU⊤ZMm)

∂Y
= RZMm, (69)

and (60) is achieved.
Since (68) is obvious, just (69) is shown. Each component

of the left-hand side of (69) is calculated as

∂tr((YMm)⊤V DU⊤ZMm)

∂yij
= tr

(
Mm

∂Y ⊤

∂yij
V DU⊤ZMm

)
+tr

(
(YMm)⊤

∂V DU⊤

∂yij
ZMm

)
(70)

for Y = [yij ], where the matrices U , V , and D depend on Y
as (25) and (66). The first term of the right-hand side of (70)
is reduced to

tr

(
Mm

∂Y ⊤

∂yij
V DU⊤ZMm

)
= tr((edie

⊤
mj)

⊤RZM2
m)

= tr(e⊤diRZMmemj) = e⊤diRZMmenj

from (26) and (66). As shown below, the second term of the
right-hand side of (70) is zero, and (69) is obtained.

The rest of this proof is devoted to showing that the second
term of the right-hand side of (70) is zero. This term is reduced
to

tr

(
(YMm)⊤

∂V DU⊤

∂yij
ZMm

)
= tr

(
ZMm(YMm)⊤

∂V DU⊤

∂yij

)
= tr

(
USV ⊤

(
∂V

∂yij
DU⊤ + V

∂D

∂yij
U⊤ + V D

∂U⊤

∂yij

))
= tr

(
V ⊤ ∂V

∂yij
DS

)
+ tr

(
S
∂D

∂yij

)
+ tr

(
SD

∂U⊤

∂yij
U

)
(71)

from (4) and (25). The partial derivative of the constraint of the
orthogonal matrix V , say V ⊤V = Ed, is derived as follows:(

V ⊤ ∂V

∂yij

)⊤

+ V ⊤ ∂V

∂yij
= 0.

Hence, V ⊤(∂V/∂yij) is skew-symmetric, and all the diagonal
entries of this matrix are zero. Then, all the diagonal entries
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of the matrix V ⊤(∂V/∂yij)DS are zero because D and S are
diagonal. Hence,

tr

(
V ⊤ ∂V

∂yij

)
= 0 (72)

tr

(
V ⊤ ∂V

∂yij
DS

)
= 0 (73)

are achieved. In the same way,

tr

(
SD

∂U⊤

∂yij
U

)
= 0 (74)

is obtained. From (72),

∂ det(V )

∂yij
= det(V )tr

(
V ⊤ ∂V

∂yij

)
= 0

is derived. Similarly, ∂ det(U)/∂yij = 0 is obtained. Then,

∂(det(UV ))

∂yij
=

∂ det(U)

∂yij
det(V ) + det(U)

∂ det(V )

∂yij

= 0 (75)

is derived. From (66) and (75), ∂D/∂yij = 0 is achieved.
From this, (73), and (74), the right-hand side of (71) is zero.

APPENDIX C
PROOF OF LEMMA 3

Let
Ȳ = R̂Y + τ̂1⊤

m (76)

and consider a matrix R̄ ∈ Rm(Ȳ , Z). Then, from Lemma 1,
there exist orthogonal matrices Ū , V̄ ∈ Rd×d satisfying

R̄ = V̄ diag(1, . . . , 1,det(Ū V̄ ))Ū⊤ (77)

(Z − ave(Z)1⊤
m)(Ȳ − ave(Ȳ )1⊤

m)⊤ = Ū S̄V̄ ⊤ (78)

and S̄ = diag(σ̄1, σ̄2, . . . , σ̄d) for the singular values
σ̄1, σ̄2, . . . , σ̄d (σ̄1 ≥ σ̄2 ≥ · · · ≥ σ̄d ≥ 0) of the matrix in
the left-hand side of (78). From (3), (4), (25), and (76),

(Z − ave(Z)1⊤
m)(Ȳ − ave(Ȳ )1⊤

m)⊤ = ZMm(Ȳ Mm)⊤

= ZMm(R̂Y Mm)⊤ = (ZMm(YMm)⊤)R̂⊤

= (USV ⊤)R̂⊤ = US(R̂V )⊤ (79)

is derived.
Assume that m ≥ d + 1, and from (78) and (79), S̄ = S

holds, and
Ū = U, V̄ = R̂V (80)

hold almost everywhere because of the uniqueness of the SVD.
Replace the matrices as (80) in (77), and

R̄ = R̂V diag(1, . . . , 1,det(UR̂V ))U⊤ = R̂R (81)

is derived for R ∈ Rm(Y, Z) from (26) and det(R̂) = 1.
From (3), (29), (76), and (81),

∂f

∂Y
(Ȳ ) = 2(Ȳ Mm − R̄ZMm) = 2(R̂Y Mm − R̂RZMm)

= R̂
∂f

∂Y
(Y ) (82)

is obtained, which yields (30).
Assume that m ≤ d, and the SVD in (25) is achieved with

the matrices in (62) for U1, V1 ∈ Rd×(m−1). In the same way,
the SVD in (78) is obtained with the matrices

S̄ = diag(S̄1,

d−m+1︷ ︸︸ ︷
0, . . . , 0), Ū = [Ū1 Ū2], V̄ = [V̄1 V̄2] (83)

for Ū1, V̄1 ∈ Rd×(m−1). From (78) and (79), S1 = S̄1 holds,
and Ū1 = U1 and V̄1 = R̂V1 hold almost everywhere. Then,
from Lemma 10, the equations

R̄ZMm = V̄1Ū
⊤
1 ZMm = R̂V1U

⊤
1 ZMm = R̂RZMm

are obtained. Hence, (82) holds also in this case, and (30) is
achieved.

APPENDIX D
PROOF OF LEMMA 4

Consider a matrix Ỹ ∈ f−1(0), then from (65), Ỹ =
ave(Ỹ )1⊤

m + R(Z − ave(Z)1⊤
m) is obtained with some R ∈

Rm(Ỹ , Z). Replace this in the gradient of f(Y ) for Y = Ỹ ,
and from Lemmas 2 and 3,

∂f

∂Y
(Ỹ ) =

∂f

∂Y
(ave(Ỹ )1⊤

m +R(Z − ave(Z)1⊤
m))

= R
∂f

∂Y
(Z)

= 2R(Z − ave(Z)1⊤
m − R̃(Z − ave(Z)1⊤

m))

holds almost everywhere with any R̃ ∈ Rm(Z,Z), which
yields 0 ∈ K[∂f/∂Y ](Ỹ ) because R̃ = Ed can be assigned
from Ed ∈ Rm(Z,Z). Thus, Ỹ ∈ Z(∂f/∂Y ) holds from (9).
The opposite relation can be verified in the same way.

APPENDIX E
PROOF OF LEMMA 6

Let ∂v : Rd×n → pow(Rd×n) be the generalized gradient
of v(X) [45], defined by

∂v(X) = K
[
∂v

∂X

]
(X). (84)

Let DF v : Rd×n → pow(R) be the set-valued derivative of v
with respect to F , defined by

DF v(X) = {a ∈ R : ∃W ∈ K[F ](X)

s.t. tr(P⊤W ) = a ∀P ∈ ∂v(X)}. (85)

Then, the following holds to system (8).
Lemma 11: [37] For a measurable and essentially locally

bounded matrix-valued function F : Rd×n → Rd×n, let
X(t) ∈ Rd×n be the solution of system (8). For a locally
Lipschitz and regular function v : Rd×n → R, the following
holds almost everywhere:

dv(X(t))

dt
∈ DF v(X(t)).

Consider a function v(X) ∈ Fr∩F0(X∗). Then, v(X) takes
the minimum zero at X = X∗, which leads to

0 ∈ ∂v(X∗) = K
[
−[f̄i([xj − xi]j∈V\{i})]i∈V

]
(X∗) (86)
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with some f̄i(·), where the equation is achieved from v(X) ∈
Fr and (84) by choosing Ri = Ed in (20). Since SE(d) is a
path-connected set, so is TX∗ from (16). Then, for any matrix
X̃ ∈ TX∗ , there exists a continuous function Φ : [0, 1] → TX∗

such that Φ(0) = X∗ and Φ(1) = X̃ . Then, (R̄, τ̄) : [0, 1] →
SE(d) is defined as the function satisfying Φ(s) = R̄(s)X∗ +
τ̄(s)1⊤

n . From v(X) ∈ Fr and (84), by choosing Ri = R̄(s)
in (20), the following is derived:

∂v(Φ(s))

= K
[
[−Rif̄i(R

⊤
i [xj − xi]j∈V\{i})]i∈V

]
(R̄(s)X∗+ τ̄(s)1⊤

n )

= K
[
[−Rif̄i(R

⊤
i [(xj − τ̄(s))− (xi − τ̄(s))]j∈V\{i})]i∈V

]
(R̄(s)X∗)

= K
[
[−Rif̄i(R

⊤
i R̄(s)[xj − xi]j∈V\{i})]i∈V

]
(X∗)

= K
[
−R̄(s)[f̄i([xj − xi]j∈V\{i})]i∈V

]
(X∗). (87)

Since R̄(s) ∈ SO(d) is non-singular, from (86) and (87),

0 ∈ ∂v(Φ(s)) ∀s ∈ [0, 1] (88)

is obtained. From Lemma 11, there exists a matrix W ∈
K[dΦ/ds](Φ(s)) such that

dv(Φ(s))

ds
= tr(P⊤W ) ∀P ∈ ∂v(Φ(s))

holds almost everywhere. Thus, dv(Φ(s))/ds is possible to
be zero almost everywhere from (88). From this and v(X) ∈
F0(X∗), namely v(X∗) = v(Φ(0)) = 0, v(Φ(s)) = 0 for
all s ∈ [0, 1] is a possible solution. Moreover, this solution is
unique, and v(X̃) = v(Φ(1)) = 0 holds. Consequently, for
all X̃ ∈ TX∗ , v(X̃) = 0 is satisfied. Thus, v(X) ∈ F0(TX∗)
holds, and (42) is derived.

APPENDIX F
PROOF OF THEOREM 5

Assume that (G,X∗) is globally rigid and that there exists
a clique C satisfying (54). Consider a matrix X ∈ Rd×n

satisfying the assumption part of (46). Then, from (35), for
each C ∈ M-clq(G), there exists (RC , τC) ∈ SE(d) such that

[xj ]j∈C = RC [x∗j ]j∈C + τC1
⊤
|C|, (89)

which yields

∥xi − xj∥ = ∥x∗i − x∗j∥ ∀i, j ∈ C. (90)

For each edge {i, j} ∈ E , there exists a maximal clique C
satisfying i, j ∈ C, where C can depend on the edges. Hence,
(90) leads to the assumption part of (52). Then, from the global
rigidity, the conclusion part of (52) holds. Thus, there exists
an orthogonal matrix R ∈ Rd×d, not necessarily belonging to
SO(d), and a vector τ ∈ Rd such that

X = RX∗ + τ1⊤
n . (91)

Consider the clique C satisfying (54). From (3), (89), and (91),
the following equations are obtained:

[xj ]j∈CM|C| = R[x∗j ]j∈CM|C| = RC [x∗j ]j∈CM|C|,

which leads to R = RC since rank([x∗j ]j∈CM|C|) = d holds
from (54). From RC ∈ SO(d), R ∈ SO(d) holds, and X ∈
TX∗ is achieved from (16) and (91). Thus, the conclusion part
of (46) is obtained, and hence (G,X∗) is clique-rigid.

APPENDIX G
PROOF OF THEOREM 6

Assume that (G,X∗) is clique-rigid. Let
Φ = [ϕ1 ϕ2 · · · ϕn] : [0, 1] → Rd×n be a continuous
function satisfying Φ(0) = X∗ and the assumption part
of (53). Consider a maximal clique C ∈ M-clq(G),
and {i, j} ∈ E holds for any i, j ∈ C. Then,
∥ϕi(s) − ϕj(s)∥ = ∥x∗i − x∗j∥ holds for any i, j ∈ C
and s ∈ [0, 1], and [ϕj(0)]j∈C = [x∗j ]j∈C holds. From
these equations, there exists a continuous function
(RC , τC) : [0, 1] → SE(d) such that ϕi(s) = RC(s)x∗i+τC(s)
holds for any i ∈ C and s ∈ [0, 1], which is reduced to
[ϕj(s)]j∈C ∈ PC(TX∗) from (35). This inclusion holds for any
C ∈ M-clq(G), and from the clique-rigidity (46), Φ(s) ∈ TX∗

holds for any s ∈ [0, 1]. Then, from (16), the conclusion part
of (53) is achieved.

APPENDIX H
PROOF OF LEMMA 8

Let X(t) ∈ Rd×n be the solution of (17), equivalently the
solution of (8) with

F (X) = − ∂v

∂X
(X). (92)

Assume that there exists an element a > 0 of DF v(X). From
(84), (85), and (92), there exists W ∈ −∂v(X) satisfying
tr(P⊤W ) = a > 0 for each P ∈ ∂v(X). This is however
not the case because tr(P⊤W ) = −tr(W⊤W ) ≤ 0 for P =
−W ∈ ∂v(X). There is no positive element in DF v(X), and

DF v(X) ⊂ (−∞, 0] (93)

is achieved. From Lemma 11 and (93), v(X(t)) is non-
increasing with respect to t. Then, the non-smooth version
of LaSalle’s invariance theorem [37] guarantees

lim
t→∞

dist (X(t),Zs(DF v) ∩ Ω) = 0, (94)

where

Zs(DF v) = {X ∈ Rd×n : 0 ∈ DF v(X)}. (95)

As shown below,

Zs(DF v) = Z
(

∂v

∂X

)
(96)

holds for (92). Equations (94) and (96) lead to (10) for A =
Z(∂v/∂X) ∩ Ω and U = Ω.

Equation (96) is shown. Consider a matrix X ∈ Z(∂v/∂X),
and 0 ∈ K[∂v/∂X](X) holds from (9). Then, 0 ∈ DF v(X) is
achieved because tr(P⊤0) = 0 holds for any P ∈ ∂v(X) from
(85). Thus, from (95), X ∈ Zs(DF v) is obtained. Conversely,
consider a matrix X ∈ Zs(DF v), then 0 ∈ DF v(X) holds
from (95), and there exists a matrix W ∈ −∂v(X) satisfying
tr(P⊤W ) = 0 for all P ∈ ∂v(X) from (85). Hence,
0 ∈ ∂v(X) is satisfied because otherwise tr(P⊤W ) < 0
holds for P = −W ∈ ∂v(X). Then, from (9) and (84),
X ∈ Z(∂v/∂X) is achieved, which yields (96).
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APPENDIX I
PROOF OF LEMMA 9

Proof of (i): Let q be the number of the connected compo-
nents of graph G, and let Gh = (Vh, Eh) for h = 1, 2, . . . , q
be the subgraphs of G representing the connected components.
For each h, from (13) and (38),∑
i∈Vh

ui(t) =
∑
i∈Vh

∑
C∈M-clqi(Gh)

αC{ave([x[i]
j (t)]j∈C)

+RC(t)(x∗i − ave([x∗j ]j∈C))}

=
∑

C∈M-clq(Gh)

αC

{
R⊤

i

∑
i∈C

(ave([xj(t)]j∈C)− xi(t))

+RC(t)
∑
i∈C

(x∗i − ave([x∗j ]j∈C))

}
= 0

is obtained. Thus, from (12), the average of ẋi(t) for i ∈ Vh

is zero, and that of xi(t) is constant.
Proof of (ii): First, we show that ∥xi(t)−xj(t)∥ is bounded

for any edge {i, j} ∈ E . From Theorem 2, xi(t) is governed
by (17) with v(X) in (34). For each {i, j} ∈ E , there exists a
clique C satisfying i, j ∈ C. Then, the following is obtained:

∥xi − xj∥ = ∥[xℓ]ℓ∈C(e|C|iC − e|C|jC )∥
= ∥[xℓ]ℓ∈CM|C|(e|C|iC − e|C|jC )∥
≤

√
2∥[xℓ]ℓ∈CM|C|∥, (97)

where iC is the order of i in C = {ℓ1, ℓ2, . . . , ℓiC = i, . . . , ℓ|C|}
such that ℓ1 < ℓ2 < · · · < ℓiC < · · · < ℓ|C|. From Lemma 1
and the triangle inequality,

dist([xℓ]ℓ∈C ,PC(TX∗)) = ∥[xℓ]ℓ∈CM|C| −RC [x∗ℓ]ℓ∈CM|C|∥
≥ ∥[xℓ]ℓ∈CM|C|∥ − ∥[x∗ℓ]ℓ∈CM|C|∥

(98)

holds with some RC ∈ R|C|([xℓ]ℓ∈C , [x∗ℓ]ℓ∈C). From (97) and
(98), for v(X) in (34),

∥xi − xj∥ ≤
√
2(dist([xℓ]ℓ∈C ,PC(TX∗))+∥[x∗ℓ]ℓ∈CM|C|∥)

≤
√
2

(√
2

αC
v(X) + ∥[x∗ℓ]ℓ∈CM|C|∥

)
(99)

is obtained. Lemma 8 guarantees that v(X(t)) is non-
increasing. From this and (99), ∥xi(t)− xj(t)∥ is bounded.

Now, we show that ∥X(t)∥ is bounded. Let Th be a
connected spanning tree of Gh, and let {ihk, jhk} for k ∈
{1, 2, . . . , |Vh| − 1} be the edges of Th. Then, the incidence
matrix of Th is defined by Bh ∈ R|Vh|×(|Vh|−1) whose (ℓ, k)
entry (Bh)ℓk is given as

(Bh)ℓk =

 1 if ℓ = ihk
−1 if ℓ = jhk
0 otherwise.

From the property of the incidence matrices of connected trees,
the following holds:

rank([Bh 1|Vh|]) = |Vh|. (100)

Consider one connected component Gh, and let χℓ ∈
R|Vh| (ℓ ∈ {1, 2, . . . , d}) be the ℓ-th column of [xj ]

⊤
j∈Vh

as
[xj ]

⊤
j∈Vh

= [χ1 χ2 · · · χd]. The following expressions hold:∥∥∥∥∥
[
[xihk

− xjhk
]k∈{1,2,...,|Vh|−1}

∑
i∈Vh

xi

]∥∥∥∥∥
2

= ∥[xj ]j∈Vh
[Bh 1|Vh|]∥

2

=
∑

ℓ∈{1,2,...,d}

∥[Bh 1|Vh|]
⊤χℓ∥2

≥
∑

ℓ∈{1,2,...,d}

(σmin([Bh 1|Vh|]))
2∥χℓ∥2

= (σmin([Bh 1|Vh|]))
2∥[xj ]j∈Vh

∥2, (101)

where σmin(·) represents the minimum singular value of a
matrix. From (100), σmin([Bh 1|Vh|]) > 0 is obtained.
From this, (i), the boundedness of ∥xi(t)−xj(t)∥, and (101),
∥[xj(t)]j∈Vh

∥2 is bounded. Then, ∥X(t)∥ is bounded since
∥X(t)∥2 =

∑q
h=1 ∥[xj(t)]j∈Vh

∥2.
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