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SUMMARY

Cerebellar dysfunction relates to various psychiatric
disorders, including autism spectrum and depressive
disorders. However, the physiological aspect is less
advanced. Here, we investigate the immune-triggered
hyperexcitability in the cerebellum on a wider scope.
Activated microglia via exposure to bacterial endo-
toxin lipopolysaccharide or heat-killedGram-negative
bacteria induce a potentiation of the intrinsic excit-
ability in Purkinje neurons, which is suppressed by
microglia-activity inhibitor and microglia depletion.
An inflammatory cytokine, tumor necrosis factor
alpha (TNF-a), released from microglia via toll-like re-
ceptor 4, triggers this plasticity. Our two-photon FRET
ATP imaging shows an increase in ATP concentration
following endotoxin exposure. Both TNF-a and ATP
secretion facilitate synaptic transmission. Region-
specific inflammation in the cerebellum in vivo shows
depression- and autistic-like behaviors. Furthermore,
both TNF-a inhibition and microglia depletion revert
such behavioral abnormality. Resting-state functional
MRI reveals overconnectivity between the inflamed
cerebellum and the prefrontal neocortical regions.
Thus, immune activity in the cerebellum induces
neuronal hyperexcitability and disruption of psycho-
motor behaviors in animals.
INTRODUCTION

Excessive activation of microglia—the resident immune cells of

the CNS—causes neuroinflammatory responses following im-

mune challenges in the brain. Although accumulating evidence

supports a notion that microglia are associated not only with

inflammation, consisting of ‘‘tumor, rubor, calor, et dolor (tumor,
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blush, heat, and pain)’’ because of microbial pathogens, but also

with emotional or mood-related psychiatric diseases, accompa-

nied by psychological stress or morbidity, the full physiological

effects of immune-related responses on the CNS remain unclear

(Saijo and Glass, 2011; Aguzzi et al., 2013; Yirmiya et al., 2015;

Xanthos and Sandk€uhler, 2014; Chung et al., 2015; Tay et al.,

2017; Paolicelli et al., 2011; Parkhurst et al., 2013; Prinz and Pril-

ler, 2017).

Previous reports showed that transient exposure of hippo-

campal slices to theGram-negative bacterial endotoxin lipopoly-

saccharide (LPS) activates microglia, and it increases in the pre-

synaptic release of excitatory transmitter (Pascual et al., 2012).

Exposure to LPS also depresses the postsynaptic efficacy of

glutamate receptors under conditions of low oxygenation (Zhang

et al., 2014). In these studies, activated microglia release ATP

and reactive oxygen species, resulting in the induction of synap-

tic plasticity. Inflammatory cytokines are also known tomodulate

synaptic transmission (Beattie et al., 2002; Pribiag and Stellwa-

gen, 2013; Santello et al., 2011; Habbas et al., 2015). In contrast,

CNS neurons exhibit a form of non-synaptic plasticity that en-

ables them to modify intrinsic membrane properties in response

to external activity. In addition, neurons change the firing pattern

and the membrane excitability of dendrites over the long term.

Independent from synaptic plasticity, changes in the intrinsic

excitability of neurons may provide a second type of plasticity,

which relates to learning and memory engrams (Marder et al.,

1996; Hansel et al., 2001; Daoudal and Debanne, 2003). A hy-

pothesis has suggested that synaptic plasticity primarily estab-

lishes connectivity patterns among neurons through structural

changes in synapses, whereas plasticity of intrinsic excitability

provides the main mechanism for integrating neurons into active

engrams. It may establish functional connectivity between brain

regions and may modulate animal behavior (Titley et al., 2017).

Several reports showed that activated microglia alter non-syn-

aptic membrane excitability in neurons and synaptic transmis-

sion via tumor necrosis factor (TNF) alpha in the neocortex or

hippocampus (Gao et al., 2014; Klapal et al., 2016; Kato et al.,

2016; Tzour et al., 2017); however, direct evidence regarding
s 28, 2923–2938, September 10, 2019 ª 2019 The Author(s). 2923
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the long-term plasticity of intrinsic excitability via microglia, the

mechanisms at the cellular level, and the relevance to animal dis-

eases is lacking. Thus, whether microglia drive the activity

pattern of neurons in which neuroinflammation occurs in a brain

is not well understood.

In the cerebellum, Purkinje cells are the principal output neu-

rons and have primary dendrites with highly arborized

branches. A characteristic response pattern of spike firing

without glutamatergic-fiber projections (i.e., parallel fiber and

climbing fiber) is determined by the intrinsic membrane proper-

ties derived from various active ion channels (Raman and Bean,

1999), including Ca2+-activated potassium (K+) channels (Wo-

mack and Khodakhah, 2002, 2004). Purkinje cells show an ac-

tivity-dependent increase in spike firing through of the modula-

tion of intrinsic membrane properties (Belmeguenai et al., 2010;

Ohtsuki et al., 2012; Grasselli et al., 2016; Ohtsuki and Hansel,

2018). This long-lasting form of excitability changes is called

intrinsic plasticity. Intrinsic plasticity is induced via both the

phosphatase-dependent signaling and the downregulation of

small conductance Ca2+-activated K+ channels (SK channels),

associated with the increase in the excitability of dendrites.

Voltage-gated K+ channel (Kv)-, SK-, and large-conductance

Ca2+-activated K+ channel BK-type K+ channels are known to

actively dampen back-propagation of somatic sodium spikes

in dendrites (Martina et al., 2003; Rancz and Häusser, 2006;

Ohtsuki et al., 2012). Hyperpolarization of membrane potential

of Purkinje cells improves the propagation of action potential

through the axon with high fidelity, up to �260 Hz (Monsivais

et al., 2005). The output firing pattern of Purkinje cells is trans-

lated into intense inhibition to the cerebellar nuclei (CbN) as

rebound potentials followed by spike bursting (Zheng and

Raman, 2010). Spike bursting in the CbNs is correlated to

ongoing locomotion in vivo (Sarnaik and Raman, 2018). There-

fore, changes in the firing pattern of cortical Purkinje cells

(e.g., via intrinsic plasticity) plausibly modulate animal behavior

(Schonewille et al., 2010). However, the projected regions from

cerebellar cortex into the CbNs are specifically distinguished

among dentate, fastigial, and interposed nuclei (Bagnall et al.,

2009). Among these regions, the fastigial nuclei are assumed

to be involved with autonomic disturbance and related behav-

iors. For example, the electrical stimulation of the rostral fasti-

gial nuclei elicits hypertension and offensive behaviors of ani-

mals (Reis et al., 1973). Given that microglia activation in the

cerebellar cortex induces hyperexcitability of output neurons

through intrinsic plasticity, it is assumed that the cerebellar re-

gion-specific inflammation can modulate animal behaviors,

relating to the corresponding projection region in the CbNs.

Invasion of bacterial product into brain disturbs its function

through excessive immune responses (Yirmiya et al., 2015). In

the present study, we investigated whether microglia, activated

by exposure to bacterial endotoxin or heat-killed bacteria,

modulate cerebellar neuronal excitability. In addition, we aimed

to elucidate the induction mechanism of excitability plasticity.

Furthermore, we examined the effect of aberrant neuronal excit-

ability on animal behavior and functional connectivity during the

acute state of cerebellar inflammation in individual regions, and

we challenged whether the symptoms of acute cerebellitis could

be rescued.
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RESULTS

Microglia Modulate the Intrinsic Excitability of
Cerebellar Purkinje Neurons
To investigate the nature of immune-neuron interactions,

we examined the neuronal excitability of Purkinje cells under

slice preparation following exposure to the endotoxin LPS

(10–12 mg/mL), an outer membrane component of Gram-nega-

tive bacteria, which activate microglia. LPS was applied to cere-

bellar slices in a bath chamber. After that, we examined the firing

properties of Purkinje neurons by whole-cell patch-clamp

recording and under current clamp (Figures 1A and 1B). The

firing frequency of neurons in response to depolarization with

different current pulses was significantly higher after LPS appli-

cation than under control conditions. To investigate the time

course of firing changes, we subjected slices to transient LPS

exposure; then, we continuously monitored subsequent firing

properties for more than 30 min. Firing frequency was signifi-

cantly higher relative to baseline following LPS exposure

compared with control (*p < 0.001) (Figures 1C and 1D). The ten-

dency toward a correlation between original excitability and

change in excitability was not prominent (pairwise correlation

coefficient = 0.176, n = 8), implying that firing changes are not

biased toward the original state of the neurons. The duration of

this plasticity was more than 70 min (*p < 0.05) (Figure S1A).

Following our series studies (Belmeguenai et al., 2010), wemoni-

tored the firing property under suppression of g-aminobutyric

acid A (GABAA) receptor activity, using 100 mM picrotoxin

throughout the study, except for as shown in Figure S1A.

We next applied heat-killed Gram-negative bacteria (Fig-

ure 1E). Because the LPS is the extract of Gram-negative bacte-

ria, it is necessary to clarify whether the invasion of the Gram-

negative bacteria may modulate the neural excitability. After

treatment with heat-killed Escherichia coli (E. coli) 0111:B4

(HKEB) or heat-killed Pseudomonas aeruginosa (HKPA) (107

cells/mL), treated neurons exhibited significantly higher firing fre-

quencies than control neurons. However, exposure to Gram-

positive bacteria (heat-killed Streptococcus pneumoniae

[HKSP]), which have no LPS, did not lead to significant increases

in firing of Purkinje neurons. Results from long-term recordings

indicated an increase in firing frequency following exposure to

heat-killed Gram-negative bacteria (Figures 1F and 1G) (HKEB

and HKPA, *p < 0.03), but not Gram-positive bacteria (HKSP,

p > 0.1). Action potential waveforms also suggested that neurons

showed enhanced excitability following endotoxin exposure

(Table S1). Another major cell-wall component derived from

E. coli, peptidoglycan, did not significantly alter the waveforms

(Table S1). Experiments with 2,3-dioxo-6-nitro-1,2,3,4-tetrahy-

drobenzo[f]quinoxaline-7-sulfonamide (NBQX) suggested that

this firing plasticity was induced without the involvement of

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid recep-

tor (AMPA) receptors (*p < 0.05) (Figure S1B). Therefore, our find-

ings suggest that exposure to endotoxin substantially altered the

intrinsic membrane excitability of Purkinje neurons.

Previously, Belmeguenai et al. (2010) demonstrated that

Purkinje cells exhibit intrinsic plasticity, which is defined as an

increase in firing frequency lasting more than 30 min. Simulta-

neous somato-dendritic recordings demonstrated enhancement
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Figure 1. Exposure to Bacterial Endotoxin

Alters Excitability in Cerebellar Neurons

(A) Representative action potential (AP) firings of

control neurons and Purkinje neurons treated with

lipopolysaccharide (LPS) (10–12 mg/mL) in

response to depolarization pulses.

(B) Firing frequency in response to depolarization

pulses. Data suggest an increase in firing frequency

following bath application of LPS.

(C and D) Representative AP firing before (i) and

after (ii) LPS exposure, and time courses of the

normalized frequency. Representative AP traces in

(C) were obtained from the corresponding time

points in (D). Averaged firing frequency of each

Purkinje cell before and after the LPS exposure

(magenta) is plotted in the right graph with control

(gray), suggesting the possibility of frequency in-

crease in a broad range.

(E) Bath application of heat-killed Gram-negative

bacteria (107 cells/mL, HKEB [heat-killed Escher-

ichia coli 0111:B4] and HKPA [heat-killed Pseudo-

monas aeruginosa]), but not Gram-positive bacteria

(HKSP [heat-killed Streptococcus pneumoniae]),

increases firing frequency. The firing frequency in

response to depolarization pulses is shown (HKEB,

orange; HKPA, red; HKSP, blue).

(F and G) Representative firing (F) and normalized

time courses (G) of long-lasting recordings of

HKEB, HKPA, and HKSP application.

(H) Representative AP firings from soma (black) and

dendrite (red). The distance of dendrite patching (X)

is shown below each trace.

(I) Distance-voltage plot of back-propagated APs

(control, black; LPS, magenta; apamin, orange).

*p < 0.05, two-tailed Mann-Whitney U test. bAP

voltage exponentially attenuates through approxi-

mate curves along the length of the dendrite pro-

cess (Ohtsuki et al., 2012).

Data are represented as mean ± SEM. Time cour-

ses of the change in firing frequency were normal-

ized between�5 and�1min in (D) and (G). Reagent

application began at 0 min and continued for

10 min. Scales: 40 mV and 200 ms (A, C, and F) and

5mV (bar scales) and (right-angle scales) 40mV and

100 ms (H). See also Figure S1 and Table S1.
of dendritic excitability accompanied by intrinsic plasticity (Oht-

suki et al., 2012; Ohtsuki and Hansel, 2018). These increases

in firing frequency and dendritic excitability are induced by

transient depolarization of the neuronal membrane via both

phosphatase-dependent signaling and downregulation of SK

channels. Findings from Purkinje cell-specific conditional

knockout mice for protein phosphatase (PP) 2B suggest that in-

duction of intrinsic plasticity occurs through PP2B molecules

(Schonewille et al., 2010). Here, we monitored intrinsic plasticity

induction by 5-Hz somatic depolarization after exposure to LPS

(Figure S1C), and we found that intrinsic plasticity was occluded

in such a condition. LPS exposure before 5-Hz depolarization

conditioning prevented the induction of intrinsic plasticity. We

also monitored the firing pattern in response to LPS exposure

under blockade of the SK channels by apamin (Figure S1D);

here, the LPS-triggered firing increase was impaired. Results

of both occlusion of intrinsic plasticity induction by pre-exposed

LPS (Figure S1C) and impairment of LPS-triggered intrinsic plas-
ticity induction under SK-channel blockade (Figure S1D) suggest

that the firing increase following endotoxin exposure was

induced by the same molecular signaling for intrinsic plasticity

(Belmeguenai et al., 2010). The suppression of intraneuronal

Ca2+ and PPs PP1, PP2A, and PP2B impaired the induction of

plasticity (Figures S1E–S1G). These results suggest that the

firing-increased plasticity by LPS is mediated by intraneuronal

Ca2+ and PPs.

We next investigated changes in action potentials on both

soma and dendrites after LPS application (Figures 1H and 1I).

The amplitude of the back-propagated action potentials (bAPs)

in Purkinje cell dendrites was increased and accompanied by

intrinsic plasticity induction (Ohtsuki et al., 2012; Ohtsuki and

Hansel, 2018). Here, we applied somatic depolarization pulses

under control conditions, in the presence of the SK-channel

blocker, and after LPS exposure. bAP voltage on dendrites

was significantly increased following LPS administration

(*p < 0.04), relative to those under SK-channel blockade
Cell Reports 28, 2923–2938, September 10, 2019 2925
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Figure 2. Depletion of Microglia Abolished the Excitability Plasticity

in Purkinje Neurons in Mice

(A) Depletion of microglia by Ki20227 administration for a week in C57BL/6J

mice. Different concentrations of Ki20227 were given. o.a., oral administration.

(B) Density of microglia of control and Ki20227-administered cerebella. *p <

0.05, Kruskal-Wallis test. Results of 100 and 250 mg/mL and of 20 mg/mL of

Ki20227 administration and control are shown.

(C) Suppression of the increase in firing frequency by exposure to lipopoly-

saccharide (LPS) and HKGn (heat-killed Gram-negative bacteria mixture:

HKEB+HKPA). The firing frequency in response to depolarization pulses is

shown. n.s., not significant; p > 0.05, two-tailed Mann-Whitney U test.

(D and E) Impairment of the excitability increase by exposure to LPS and HKGn

in the microglia-depleted cerebella. Representative firing (D) and normalized

time courses (E) of long-lasting recordings are shown. Intrinsic plasticity was

induced by 5-Hz depolarization (at 0 min) of Purkinje neurons in microglia-

depleted cerebella (dMG+5Hz Depl.).

Data are represented as mean ± SEM. Time courses of the change in firing

frequencywere normalized between�5 and�1min in (E). Reagent application

began at 0 min and continued for 10 min. Scales: 40 mV and 200 ms (D). See

also Figure S2 and Table S2.
(*p < 0.002), in a distance-dependent manner along the

soma-dendrite axis (Figure 1I). The extent of the bAP increase

by exposure to LPS and apamin was similar, which suggests
2926 Cell Reports 28, 2923–2938, September 10, 2019
that microglia activation enhances excitability at dendrites via

downregulation of SK2 channels.

Given that microglia were the trigger for the excitability in-

crease, elimination of microglia may block this plasticity. To

deplete microglia in living animals, we administered the col-

ony-stimulating factor 1 receptor (CSF1R) kinase inhibitor

Ki20227 (Elmore et al., 2014; Ohno et al., 2006; see also Na-

kayama et al., 2018). Following continuous oral administration

of Ki20227 or with drink in three concentrations, the number of

microglia in the immunostained cerebellar cortex was reduced

to 14%atmaximum (*p < 0.00001,multiple comparison) (Figures

2A, 2B, and S2A–S2F). Therefore, our Ki20227 administration

depleted almost all microglia in the cerebellum. Then, we exam-

ined the neuronal excitability in the microglia-depleted cerebella

and found no increase in firing against exposure to both LPS and

heat-killed Gram-negative bacteria mixture (HKEB+HKPA) (Fig-

ure 2C). Long-term recordings also showed that exposure to

LPS and heat-killed Gram-negative bacteria no longer increased

frequency (LPS, *p < 0.05 of reduction; heat-killed Gram-nega-

tive bacteria, p > 0.3), whereas innate firing frequency increased

after 5-Hz conditioning for intrinsic plasticity (*p < 0.05) (Figures

2D and 2E). These results indicate that microglia are involved in

increasing the excitability of cerebellar neurons, which is sup-

ported by results of co-application with minocycline, an inhibitor

of microglial activity (p > 0.7) (Figures S2G and S2H).

Involvement of Inflammatory Cytokine in the Excitability
Plasticity
A possible mechanism for microglia-triggered neural hyperexcit-

ability is mediated by inflammatory cytokines, including TNF-a,

interleukin (IL)-6, and IL-1b. Among them, TNF-a is released in

the earliest phase of immune-cell stimulation. We first examined

the firing frequency of neurons treated with TNF-a. Firing fre-

quency of TNF-a-treated neurons was significantly higher than

in control or peptidoglycan-treated neurons (Figures 3A and

3B). In addition, co-application of LPS or heat-killed Gram-nega-

tive bacteria with the TNF-a inhibitor C87 (Ma et al., 2014) abol-

ished the increase in firing frequency (both p > 0.5) (Figure 3C).

To confirm the effect of TNF-a, neurons were subjected to

bath application of TNF-a, and the TNF-a treatment increased

firing frequency similar to that observed following LPS adminis-

tration (*p < 0.03) (TNF-a, Figure 3D). Pre-exposure to TNF-a

prevented the firing increase in response to LPS application (p

> 0.5) (LPS after TNF-a, Figure 3D), implying that TNF-a release

and excitability plasticity resulted from LPS application.

Although our results suggest that TNF-a directs Purkinje neurons

to enhance excitability, the mechanisms underlying this process

remain unclear. A series of studies in hippocampal neurons pre-

viously demonstrated that TNF-a activates phosphatase

signaling via TNF receptor 1 in CA1 pyramidal neurons (Beattie

et al., 2002; Pribiag and Stellwagen, 2013). Then, we subjected

Purkinje neurons to bath application of TNF-a under suppression

of phosphatase activity by intraneuronal okadaic acid, but there

were no increases in firing frequency (p > 0.3) (Figure 3E), sug-

gesting the TNF-a-mediated firing plasticity occurred through

phosphatase activity.

We also monitored action potential firing in the presence of

protein-synthesis inhibitors anisomycin and cycloheximide,
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Figure 3. Involvement of Microglial Mediators in the Increase of Neuronal Excitability

(A) Firing frequency of Purkinje neurons exposed to TNF-a (100 ng/mL) and peptidoglycan (PGN) (10 mg/mL) against depolarization pulses. *p < 0.03. Mean firing

frequencies of neurons exposed to lipopolysaccharide (LPS) and control neurons are merged for comparison.

(B) PGN exposure. Representative firing, before (i) and after (ii) exposure, and time courses are shown. Reagent application began at 0 min and continued for 7–

10 min.

(C) Suppression of firing plasticity induced by LPS- and heat-killed Gram-negative bacteria mixture (HKGn) by TNF-a inhibitor C87 (40 mM).

(D) TNF-a bath application increased the firing frequency and occluded the effect of LPS.

(E) TNF-a-induced firing frequency increase was abolished by intraneuronal okadaic acid (150 nM).

(F and G) Action potential firing following LPS exposure under treatment with anisomycin (30 mM, F) and cycloheximide (30 mM, G). Although the data suggested

that the firing increase by exposure to LPS was induced under suppression of protein translation, a minor and insignificant reduction of the extent of increase in

firing frequency was noticed compared with LPS-conditioned experiments shown in Figure 1B.

(H) Western blotting of TNF, IL-6, and IL-1b protein in supernatant following LPS exposure for 0, 20, and 60 min.

(I) Fold change in TNF level normalized by at 0 min.

(J) FRET imaging with the ATP probe GO-ATeam2 shows the increase in ATP in cerebellar slices of GO-ATeam2 transgenic mice (J–M).

(K) Time courses of changes in ATP concentration in the molecular layer (ML) and granule cell layer (GL). See also Figure S3.

(legend continued on next page)
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which did not prevent LPS-induced firing increases (*p < 0.03 for

both) (Figures 3F and 3G). Western blotting confirmed the in-

crease in the amount of TNF-a, but not IL-6 or IL-1b (Figures

3H and 3I), by transient exposure to LPS, indicating that TNF-a

release mediates signaling between microglia and Purkinje neu-

rons. These findings suggest that endotoxin exposure may stim-

ulate TNF-a secretion frommicroglia in a protein-synthesis-inde-

pendent manner and that diffusible TNF-a triggered the increase

in neuronal excitability.

It is also possible that bacterial endotoxin triggers excitability

plasticity via ATP release from tissues including microglia

(Aguzzi et al., 2013; Yirmiya et al., 2015; Pascual et al., 2012;

Kettenmann et al., 2011). Hence, we investigated ATP synthe-

sis and release in the whole cerebellum in knockin mice with

the ATeam probe GO-ATeam2 (see STAR Methods) and

applied them in a new way. Two-photon fluorescence or För-

ster resonance energy transfer (FRET) imaging suggested

that continuous exposure to both LPS and heat-killed Gram-

negative bacteria increases ATP concentration prominently in

the cerebellar molecular layer (Figures 3J, 3K, and S3A). Cell-

level images also suggest that the increase in ATP does not

occur in interneurons in the molecular layer, Purkinje cell

bodies and dendrites, granule cells, interneurons in the granule

cell layer, or bundles in the white matter (Figures S3B–S3G).

We estimated the changes in ATP concentration from the

FRET ratio changes against endotoxin exposure (see STAR

Methods), and the extent of ATP increase reached 140 mM in

the molecular layer (Figure 3K). Increase in ATP was prevented

under TNF-a inhibition by C87 (Figures 3L and 3M), suggesting

the ATP synthesis follows TNF-a secretion. Next, we tested

whether bath application of ATP with various concentrations

(10–100 mM) modulates the excitability of Purkinje neurons

(Figures 3N–3P). The firing frequency did not increase upon

exposure to ATP (20–60 mM, p > 0.1) (Figures 3N and 3P). Neu-

rons in the CNS respond to ATP via a broad subfamily of puri-

nergic type 2 receptors (P2Rs). Tzour et al. (2017) reported that

the activation of astrocytic P2Y1 receptors is important for the

increase in excitability of pyramidal neurons during LPS expo-

sure in the hippocampal slices. Here, we monitored the firing

frequency in the cerebellar Purkinje cells under the P2R inhib-

itor PPADS and more specific inhibitor of P2Y1 receptors

MRS2179, but both firing frequencies increased upon expo-

sure to LPS (PPADS, *p < 0.05; MRS2179, *p < 0.002) (Fig-

ure 3Q and 3R). Finally, we monitored LPS-triggered firing

plasticity under suppression of astrocytes using gliotoxin L-2-

aminoadipic acid (L-AAA), but the firing increases were not

impaired (*p < 0.003) (Figure 3S), suggesting astrocytes were

not involved in the firing increase.
(L andM) FRET ATP imaging under TNF-a blocker C87 (40 mM). The FRET images

concentration in ML and GL are shown. The ATP increase in the molecular layer

(N) 20–60 mM ATP exposure.

(O) Firing changes after exposure to ATP in various concentrations. Each dot indic

exposure to a high ATP concentration (>60 mM, n = 3, triangles).

(P) Firing frequencyafterATPadministration (20–60mM). The firing frequency in respo

(Q and R) LPS exposure in the presence of PPADS (50 mM, Q) and MRS2179 (3

receptor inhibitors, respectively.

(S) LPS exposure under suppression of astrocyte activity. Recordings were done

Data are represented as mean ± SEM. All right-angle scales: 40 mV and 200 ms

2928 Cell Reports 28, 2923–2938, September 10, 2019
Facilitation of Synaptic Transmission following
Microglial Activation
Regarding the effect of endotoxin exposure in synapses, we first

examined whether LPS administration alters spontaneous excit-

atory postsynaptic currents (sEPSCs). Results suggested less

change in sEPSC amplitude in Purkinje neurons, except for a mi-

nor reduction in the PPADS+LPS group (Figures 4A–4D). Mean-

while, administration of LPS, TNF-a, heat-killed Gram-negative

bacteria, and ATP produced a significant increase in sEPSC fre-

quency (Figures 4E and 4F). Our findings suggest that activated

microglia promoted vesicular release from presynaptic neurons,

depending on both TNF-a and ATP. Extracellular ATP may

increase in vesicular release via purinergic receptors on presyn-

aptic neurons. In microglia-depleted cerebella, there were no

significant differences among microglia-depleted control, LPS,

and heat-killed Gram-negative bacteria exposure groups in

amplitude or in frequency, indicating the involvement of certain

mediators from microglia (Figures 4G–4I). However, the analysis

of sEPSCs includes changes in the activity of presynaptic neu-

rons. To avoid such an effect, we monitored miniature excitatory

postsynaptic currents (mEPSCs) under suppression of neuronal

activity by tetrodotoxin (TTX). Results of the analysis showed

increases in both mEPSC amplitude (Figures 4J–4M) and

mEPSC frequency (Figures 4N and 4O) after administration of

LPS, TNF-a, heat-killed Gram-negative bacteria, and ATP.

These results suggest potentiation of both postsynaptic respon-

siveness and presynaptic release after exposure to endotoxin

and microglial activation, at least through purinergic receptors.

Endotoxin-TLR4-TNF-a Signal Involvement in
Hyperexcitability
Next, we investigated whether the endotoxin receptors are

involved in microglia-associated signaling. LPS is classically

known to bind complement receptor 3 in immune cells (Ketten-

mann et al., 2011; Pandey et al., 2014). Zhang et al. (2014) re-

vealed that application of LPS under hypoxic conditions resulted

in the release of superoxide anion via complement receptor and

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase

activity. Here, we applied LPS in the presence of apocynin, an

NADPH oxidase inhibitor. However, we observed no suppres-

sion of firing increases (*p < 0.03) (Figure 5A), implying that

neither the superoxide nor the complement receptor pathway

is involved in the induction of this excitability plasticity.

The Toll-like receptor (TLR) family comprises pattern recogni-

tion receptors that are abundantly expressed on the surface of

immune cells. The extracellular domain of leucine-rich repeats

of TLR4 specifically recognizes LPS (Park et al., 2009), and its di-

merized complex is thought to trigger the intracellular signaling
under inhibition of TNF-a (L) and normalized time courses (M) of changes in ATP

by endotoxin LPS and HKGn was abolished by TNF-a inhibition.

ates the mean firing change after 25 to 30 min. Purkinje cells ceased firing with

nse todepolarizationpulses is shown. *p<0.05, two-tailedMann-WhitneyU test.

0 mM, R), suggesting that firing increase was not abolished by P2X and P2Y

in the cerebellar slices incubated with L-AAA (1 mM, 1–2 h) beforehand.

. Bar scales: 50 mm (J and L). See also Table S1.
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Figure 4. Increase in the Release of Excitatory Synaptic Transmissions following Microglia Activation in Both a TNF-a- and an ATP-

Dependent Manner

(A) Spontaneous excitatory postsynaptic currents (sEPSCs) of rats in control, lipopolysaccharide (LPS), peptidoglycan (PGN), TNF-a, heat-killed Escherichia coli

0111:B4 (HKEB), heat-killed Pseudomonas aeruginosa (HKPA), heat-killed Streptococcus pneumoniae (HKSP), minocycline+LPS, ATP, and PPADS+LPS. Scale:

10 pA and 100 ms.

(B) Averaged representative sEPSCs. Scale: 2 pA and 10 ms.

(legend continued on next page)
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cascade. We examined microglia signaling using pharmacology

and transgenic animals. Under the inhibition of TLR4 by C34

(Neal et al., 2013), LPS exposure did not cause a change in firing

frequency (p > 0.1) (Figure 5B). Exposure of TLR4-knockout

cerebellar slices to LPS and heat-killed Gram-negative bacteria

abolished the induction of the firing increase (Figures 5C and

5D), whereas Purkinje neurons in TLR2-knockout mice showed

an increase in firing sustainably (Figure 5E), suggesting that

TLR4, but not TLR2, is essential for the observed responses (Fig-

ures S4A and S4B).We next aimed to determine the downstream

of TLR4 using knockout mice for myeloid differentiation primary

response gene 88 (MyD88) and Toll/IL-1 receptor (TIR) domain-

containing, adaptor-inducing interferon-b (TRIF). MyD88 is a TIR

domain-containing adaptor common in TLR signaling pathways,

and TRIF mediates the MyD88-independent pathway down-

stream of TLR3 and TLR4 (Pandey et al., 2014). Both are involved

with the release of inflammatory cytokine in macrophages and

microglia. In MyD88- and TRIF-knockout mice, no significant

difference was observed in firing frequency between LPS-

treated and untreated neurons (Figures S4C and S4D) or in firing

properties (Table S2). In addition, LPS exposure did not produce

long-lasting firing increases (both, p > 0.7) (Figures 5F and 5G),

suggesting that both pathways in microglia are necessary for

the induction of excitability plasticity. In microglia, the precise

machinery underlying the exocytosis of inflammatory cytokines

remains obscure; however, a certain molecule downstream of

both signals may prime the secretion of soluble TNF-a, as illus-

trated in a summary cascade of the endotoxin-induced excit-

ability plasticity in the cerebellum (Figures 5H–5J and S4E).

Depressive Behaviors of Animals with Cerebellar
Inflammation
To reveal the physiological significance of excess immune activ-

ity in the cerebellum in living animals, we observed animals’

behavior after bacterial endotoxin infusion in anterior lobes of

the cerebellar vermis. Unexpectedly, we found that the spatial

exploratory behavior of freely moving rats in an open field was

significantly reduced by administration of LPS (1 mg/mL) and

heat-killed Gram-negative bacteria (HKEB+HKPA, 109 cells/mL

for each) (Figures 6A and 6B; Video S1). In a social interaction

test, LPS- and heat-killed Gram-negative bacteria-injected rats

exhibited considerably less interest in siblings (Figure 6C).
(C–F) Bar graphs (mean ± SEM) and cumulative probability graphs of amplitu

respectively. A total of 35, 13, 12, 15, 16, 13, 16, 14, 15, and 18 cells were observe

Wallis test) against the control condition, and a dagger indicates a decrease.

Suppression of the increase in sEPSC frequency by PPADS suggests the involve

(G) Representative sEPSC traces of microglia-depleted mice. Scale: 10 pA and 1

(H and I) Bar graphs of amplitude (H) and frequency (I) of sEPSC in different expe

recorded in themicroglia-depleted (dMG) control, dMG+LPS, and heat-killed Gram

C57BL/6J mice were used in the experiments (G–I). No significant differences (n

multiple comparison), as well as rise time, half-width, and decay time (data not s

(J) Miniature excitatory postsynaptic currents (mEPSCs) of rats in control, LPS, T

10 pA and 100 ms.

(K) Averaged representative mEPSCs. Scale: 2 pA and 10 ms.

(L–O) Bar graphs (mean ± SEM) and cumulative probability graphs of amplitu

respectively. A total of 13, 16, 13, 16, 13, 12, 14, 14, and 13 cells were observed

control. LPS, Gram-negative bacteria, TNF-a, and ATP increased in both amplitud

suggests the involvement of P2 receptors.
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Immobility time during a forced swim test became significantly

elongated compared with that in control PBS-injected animals

(Figure 6D). These results suggest that animals with cerebellar

injection of inflammatory substances exhibit depression-like or

abulic behavior, in contrast to autistic behaviors in animals

with less excitable Purkinje neurons (Tsai et al., 2012; Stoodley

et al., 2017). To examine the extent of repetitive movements,

we conducted a marble-burying test and found that rats with

cerebellar bacterial endotoxin infusion showed less burying

behavior (Figures 6E and 6F). Animals with cerebellar injection

did not show significant motor discoordination or ataxia (Figures

S5A and S5B), even with a high density of LPS (20 mg/mL,

0.30 mL, n = 5, data not shown). These results of the behavior

battery test suggest depression-like phenotypes of the acute

inflammation of the anterior lobes.

Then, we estimated the extent of the inflammation in space

and time. How much cerebellar space does the acute inflamma-

tion fill, over how much area does the reagent spread, and how

long does the hyperexcitability continue? To image the region of

inflammation in vivo, we used a fluid attenuation inversion recov-

ery (FLAIR) sequence of magnetic resonance (MR) imaging. MR

FLAIR images clearly showed inflammation at the restricted

position of the heat-killed Gram-negative bacteria injection (Fig-

ure 6G) (see STARMethods). Postinjection histology clarified the

localized spread of the reagent (Figure S5G). Purkinje neuron ac-

tivity following the drug injection showed a significant increase in

the firing frequency of neurons ex vivo from LPS- and heat-killed

Gram-negative bacteria-injected cerebella for�6 h (Figures S5C

and S5D). The behavioral modulation and high excitability of

neurons lasted only until the following day (Figure S5E and

S5F). Altogether, transient hyperexcitability in the cerebellum

through region-specific inflammation caused a reduction of psy-

chomotor activity.

Recovery of Behavioral Disturbances by Immune
Suppression
Provided that activated microglia secrete molecules during

inflammation in vivo, microinfusion of such molecules may suf-

fice to modulate animal behavior. We next applied TNF-a

(20 mg/mL) and ATP (20 mM) in the cerebellar anterior lobes

and found that TNF-a, but not ATP, reduced behaviors (Figures

S6A–S6F). This result indicates that suppression of TNF-a
de (C and D) and frequency (E and F) of sEPSCs in different experiments,

d. Asterisks indicate a significance increase (multiple comparison with Kruskal-

LPS, Gram-negative bacteria, TNF-a, and ATP increased sEPSC frequency.

ment of P2 receptors.

00 ms.

riments (mean ± SEM) are shown. Total numbers of 18, 15, and 21 cells were

-negative bacteria mixture (HKGn) exposure, respectively. Microglia-depleted

.s.) were observed among all pairs for both amplitude and frequency (p > 0.3,

hown).

NF-a, HKEB, HKPA, HKSP, minocycline+LPS, ATP, and PPADS+LPS. Scale:

de (L and M) and frequency (N and O) of mEPSC in different experiments,

. Asterisks indicate a significance increase (multiple comparison) against the

e and frequency. Suppression of the increase in mEPSC frequency by PPADS
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Figure 5. Endotoxin-TLR4-TNF-a Signal Involvement of Excitability-Increased Plasticity by Microglia Activation

(A) Firing increase by lipopolysaccharide (LPS) under a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin (100 mM).

(B) LPS-induced firing increase plasticity was abolished by Toll-like receptor 4 (TLR4) blocker C34 (40 mM).

(C–E) Impairment of the excitability plasticity in TLR4-knockout (KO) mice (C and D), but not in TLR2-KOmice (E). The LPS (C and E) or heat-killed Gram-negative

bacteria mixture (HKGn) (D) was exposed.

(F and G) Impairment of the excitability plasticity in transgenic mice lacking the TLR4 downstream proteins MyD88 (F) and TRIF (G). Reagent application began at

0 min and continued for 10 min. Data are represented as mean ± SEM. Scales: 40 mV and 200 ms.

(H) Summary of the signaling cascade.

(I and J) Summary of the extent of excitability changes. Firing frequency changes after the application of various reagents or conditioning for intrinsic plasticity in

rat neurons (I) andmouse neurons (J). All data from long-term recordings in this study were summarized asmean ±SEM (redmark) with a boxplot. Averaged firing

(legend continued on next page)
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should help reduce the animals’ depression-like behaviors.

Co-injections of heat-killed Gram-negative bacteria with C87

(2–4mM) into the anterior lobes of the cerebellar vermis showed

recovery from the impairment of psychomotor behaviors (Fig-

ures 6A–6F and Video S1, HKGn+C87; Figures S6G–S6K, con-

trols of C87), as well as inflammation (Figure 6G, HKGn+C87)

and neuronal excitability (Figures S5C and S5D, HKGn+C87).

We speculated that the microglia depletion may also cancel

the psychomotor depressiveness by endotoxin, and the results

obtained in Ki20227-administered animals proved that this

was the case (Figures 6A–6F, dMG+LPS; Figures S6G–S6K,

controls of microglia depletion). Altogether, these striking

effects of endotoxin infusion were substantially rescued by

both co-injection with TNF-a inhibitor and microglia depletion

(Figure S6L).

However, the causality between abnormal behaviors and

cerebellar hyperexcitability resulting from acute inflammation

is elusive. Next, we conducted functional MR imaging (fMRI)

of resting-state animals to investigate which regions of brain

activity are related to the activity of cerebellar anterior lobes

(see STAR Methods). The resting-state (rs) fMRI showed

distinct enhancement of correlated signals among the heat-

killed Gram-negative bacteria-infused cerebellar anterior ver-

mis and frontal neocortical areas, including the medial prefron-

tal cortex (mPf), cingulate cortex (Cg), and primarymotor cortex

(M1) (Figures 6H–6J and S7). In addition, TNF-a inhibitions

rescued the functional overconnectivity caused by cerebellar

inflammation (i.e., hyperexcitation in the cerebellar cortex) (Fig-

ures 6H and 6I, HKGn+C87), suggesting that modulation

of long-range connectivity between the cerebellar vermis

and the prefrontal areas may relate to the animals’ behavioral

modulations.

Region-Specific Inflammation Modulates Animal
Behavior in Distinct Manners
In autistic-model animals in previous studies, activity in the sim-

ple lobule, including crus II, was shown to relate behavioral ab-

normality (Stoodley et al., 2017; Tsai et al., 2018). Therefore,

we investigated the regional dependence of behavioral modula-

tion in our cerebellar inflammation model. In addition, we in-

jected LPS into different regions of the cerebellum (Figure 7).

Although infusion into the posterior vermis did not show signifi-

cant changes in animals’ behaviors, infusion into the right hemi-

sphere induced obsessive behaviors, which increased in

marble-burying and same-corner-preference scores (Figures

7D and 7F). Results from the sniffing test also suggest inflamma-

tion in the anterior vermis and hemisphere depressed animal be-

haviors (Figure 7G). A summary table of behavior modulation

against acute inflammation in the distinct cerebellar regions sug-

gests the different phenotypes as depression- and autistic-like

behaviors (Figure 7H).
changes at 25 to 30 min or at 65 to 70 min were collected. Asterisks indicate s

Kruskal-Wallis test). A dagger indicates a significant decrease (yp < 0.05).

(K and L) Input resistance (K) and its normalized values (L) of the experiments o

endotoxin, reagents, and conditioning. The change in input resistance was norm

(M and N) Membrane voltage (M) and its normalized values (N) of the experimen

See also Figure S4 and Table S2.
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DISCUSSION

The results of the present study indicate that activated microglia

elicit the induction of long-term potentiation (LTP) of intrinsic

excitability, facilitate synaptic transmission in cerebellar Purkinje

neurons, and modulate psychomotor behaviors. The excitability

plasticity of the cerebellar Purkinje neurons is considered medi-

ated by M1 microglia. Macrophages secrete TNF-a rapidly upon

their activation through a non-constitutive pathway (Murray

et al., 2005). Thus, the mediator release in a relatively rapid time-

scale from activated microglia may explain the time course of

increased firing against exposure to LPS or heat-killed Gram-

negative bacteria (Figures 1D and 1G) and the translation inde-

pendency of plasticity induction (Figures 3F and 3G). Our results

of the increase in TNF-a release, at least within 20min of western

blotting, support this notion (Figures 3H and 3I). On the other

hand, previous studies have shown that glial TNF-a signaling in-

duces trafficking of ionotropic receptors at synapses (Beattie

et al., 2002; Pribiag and Stellwagen, 2013). These trafficking

mechanisms of ion-channel receptors underlie PP activity. Our

results of cerebellar microglia-neuron interaction via TNF-a

also suggest the involvement of phosphatase activation for

SK-channel downregulation following TNF receptors in neurons

(Figure 3E), although there is a possibility of the involvement of

multiple ion channels: BK, A-type voltage-gated K+ channels,

and hyperpolarization-activated cyclic nucleotide-gated (HCN)

channels. TNF-a does not solely target the neuronal membrane;

secreted TNF-a is also known tomodulate presynaptic transmis-

sion via TNF receptors on astrocytes (Santello et al., 2011;

Habbas et al., 2015). Bergmann glia, a type of astrocyte in the

cerebellum, may promote presynaptic release following TNF-a

stimulation. Our finding regarding the increase in s/mEPSC

frequency (Figures 4E and 4N, TNF-a) is consistent with this

scenario, but it is beyond our scope to address it further.

ATP is a gliotransmitter released from neocortical and hippo-

campal astrocytes upon their Ca2+ activity (Zhang et al., 2007;

Lalo et al., 2014). Astrocytic ATP in themPfmediates antidepres-

sant effects through P2X receptors (Cao et al., 2013). Although

several types of cells are located in the cerebellum, no precisely

imaged data regarding the ATP source had been presented. Our

imaging with the new ATP probe (Figures 3J–3M) visualized that

the ATP concentration was increased during exposure to endo-

toxin in the molecular layer of the cerebellar cortex, but not in the

granule cell layer, suggesting the distinct source of ATP in the

cerebellum. Cell-level images with high resolution also suggest

that the ATP increase occurs insubstantially in neurons in both

layers and bundles in the white matter (Figures S3B–S3G). In

addition, pharmacological TNF inhibition substantially prevented

such ATP increase, which suggests TNF-a secretion frommicro-

glia is a trigger for ATP synthesis or its amplification in themolec-

ular layer (Figures 3L and 3M). Altogether, the major ATP source
ignificant increases against the baseline (*p < 0.05, multiple comparison with

f intrinsic plasticity. An arrow at 0 min indicates the start of the application of

alized between �5 and �1 min. All color codes follow those in (I) and (J).

ts.
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in response to immunotriggering is suggested to be Bergman

glia or other cells in the molecular layer.

In response to LPS administration, ATP has been shown to

facilitate presynaptic release through P2Y receptors in the hip-

pocampal slices (Pascual et al., 2012) without TNF-a involve-

ment, which is in agreement with our result of the increase in

s/mEPSC frequency by sole ATP administration (Figures 4E,

4F, 4N, and 4O, ATP). Meanwhile, in the cerebellum, ATP acts

as a diffusible trigger of Ca2+ waves through P2Rs in Bergman

glial processes (Hoogland et al., 2009). It was shown that such

Bergmann glial Ca2+ activity does not modulate presynaptic

release from the glutamatergic excitatory terminals, at least on

a short timescale (Beierlein and Regehr, 2006). Therefore, ATP-

induced Ca2+ activity in Bergmann glia and following astrocytic

Ca2+-dependent messengers may not relate to the increase in

s/mEPSC, although the exact mechanism remains unsolved

(Figures 4F and 4O, PPADS+LPS).

Activated microglia release not only TNF-a and purines (ATP

and guanosine triphosphate [GTP]) but also other inflammatory

cytokines (IL-1b and IL-6), trophic factors (brain-derived neuro-

trophic factor), and reactive oxygen species (ROS) (e.g., super-

oxide and nitric oxide) (Parkhurst et al., 2013; Prinz and Priller,

2017; Pascual et al., 2012; Zhang et al., 2014; Kettenmann

et al., 2011). Our electrophysiological experiments suggest that

ATP and ROSwere not involved in the induction of intrinsic excit-

ability increase (Figures 3N and 5A). Rather, considering the

reduction of firing frequency at high ATP concentrations, cere-

bellar microglia could regulate neuronal excitability in a bimodal

direction through TNF-a and ATP (Yirmiya et al., 2015) in a local

region. Other inflammatory cytokines are possibly involved; IL-

1b has been shown to prevent LTP induction of population

spikes in the hippocampal CA1 (Bellinger et al., 1993), although

inhibition of IL-1b prevents its maintenance (Schneider et al.,

1998). Microglia-specific transcriptomic data suggest changes

in the gene profile after lesion (Tay et al., 2017); thus, modulation

of neuronal activity might be up to the history of tissue microglia.

The relevance of this phenomenon to the late phase of intrinsic

plasticity has not yet been investigated, but our western blotting

suggests that the protein level of both IL-1b and IL-6 was scarce
Figure 6. Induction and Rescue of Psychomotor Depressiveness Attrib

(A) Representative trajectories of exploration behavior of drug-infused rats in th

bacteria mixture (HKGn), HKGn+C87, LPS to microglia-depleted animals (dMG+L

vermis.

(B) Boxplots of the total distance, resting time, moving time, and mean speed. Wh

mean ± SEM. *p < 0.05, multiple comparison. Co-injection of TNF-a inhibitor C8

(C) Social interaction.

(D) Forced swim test.

(E) Marble-burying score.

(F) Pictures of marble-burying behavior before and after 20min of monitoring of dr

injected into the cerebellar vermis. Rats with LPS and HKGn injection hid fewer m

(G) FLAIR magnetic resonance images indicate inflammation in HKGn, but not i

Magenta arrows indicate the locations of injection.

(H) Resting-state functional magnetic resonance imaging (rs-fMRI) of control and

cerebellar vermis. Color coding indicates the functional connectivity obtained fro

(I) Seed-seed correlation maps shownwith Z score. Seeds were applied in the righ

lobe of the cerebellar vermis (CblVm) and centro-medial thalamus (cmThl). The co

motor cortex + cingulate cortex + medial prefrontal cortex). Abbreviations of bra

(J) Schematic drawing of activated regions during cerebellar inflammation.

See also Figures S5–S7.
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to detect in response to acute exposure to LPS in the cerebellum

(Figure 3I). Otherwise, TNF-a can have consequences on en-

zymes other than okadaic acid-sensitive phosphatases, which

in turn likely have more substrates than only SK channels.

The cerebellum is the principal regulator of motor coordina-

tion, timing, and adaptation (Ito, 2008; De Zeeuw and Ten Brinke,

2015; Boyden et al., 2004; Inoshita and Hirano, 2018). The

vestibular cerebellum had been linked to eye movements and

reflections, whereas the anterior vermis of the cerebellum had

been thought to relate to autonomic nervous system (Reis

et al., 1973; Supple and Kapp, 1993). Although our acute inflam-

mation model did not show severe motor deficits (Figures S5A

and S5B), 20-mM apamin-injected rats showed ataxia (4 rats of

5 tested animals, data not shown), suggesting the inflammatory

effects do not achieve full suppression of SK channels in the in-

jected region during inflammation. We do not intend to claim the

cerebellum is no longer involved in motor control and coordina-

tion but is potentially involved in psychomotor behaviors. Results

of hyperexcitability of the Purkinje cells and increases in synaptic

transmission in the anterior lobesmay suppress the activity in the

fastigial nucleus transiently and produce behavioral depressive-

ness (Figures 6A–6F). In Brown andRaman (2018), optogenetical

activation of the Purkinje neurons in crus I/II and the resultant

suppression in the dentate CbNs decreased the instant whisker

movements. These resultsmay suggest a difference of biological

significance for distinct behaviors among CbN. Researchers

have started targeting its cognitive functions, and clinical studies

have been suggesting involvement of the cerebellum in psychiat-

ric disorders, potentially via dysmetria of thought, manifested by

autism spectrum disorders, dyslexia, and schizophrenia

(Schmahmann, 2004; Tsai et al., 2012, 2018; Piochon et al.,

2014; Koziol et al., 2014; Witter and De Zeeuw, 2015; Stoodley

et al., 2017). Akinetic mutism or abulia are also frequently

observed after surgical operation of cerebellar astrocytoma or

medulloblastoma (Robertson et al., 2006), implying the disrup-

tion of connections in regions responsible to speech andmotiva-

tion through the cerebellar vermis during postoperative inflam-

mation. Histological studies have proved anatomical

connection between the cerebellum and the neocortex (Kelly
uted from Cerebello-frontal Functional Overconnectivity

e open field arena. PBS, lipopolysaccharide (LPS), heat-killed Gram-negative

PS), or nothing (non-conditioned [NC]) was injected into the anterior cerebellar

iskers of boxes show the entire range of data. Overlapping redmarks represent

7 and microglia deletion significantly reduced the sluggishness of animals.

ug-infused rats. PBS, LPS, HKGn, HKGn+C87, dMG+LPS, or nothing (NC) was

arbles compared with those with NC, PBS, HKGn+C87, and dMG+LPS.

n HKGn+C87. In FLAIR images, the high signal intensity is depicted in white.

HKGn- and HKGn+C87-infused rats. A seed was given in the anterior lobe of

m the blood-oxygen-level-dependent (BOLD) signal.

t and left hemispheres, marked by R and L, respectively, except for the anterior

rrelation is enhanced in HKGn between CblVm and M1+Cg+mPf (i.e., primary

in regions are described in STAR Methods.
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Figure 7. Region-Specific Inflammation

Modulates Animal Behavior in Distinct

Ways

(A) Boxplots of total distance, resting time, moving

time, and mean speed of exploration behavior of

drug-infused rats in the open field arena.Whiskers

of boxes show the entire range of data. Over-

lapping red marks represent mean ± SEM. Lipo-

polysaccharide (LPS) was injected into the ante-

rior cerebellar vermis (Ant.), posterior cerebellar

vermis (Post.), or right hemisphere (Hemis.).

(B) Social interaction.

(C) Forced swim test.

(D) Marble-burying score. Results of NC (non-

conditioned), PBS, and LPS in the anterior vermis

of Figures 6B–6E are for comparison. Overlapping

red marks represent mean ± SEM. *p < 0.05,

multiple comparison. * between Ant. LPS and Ant.

PBS or NC were omitted because of redundancy.

(E) Posture retention test on a balance beam.

Results of PBS and LPS injected into the anterior

vermis of Figure S5A are for comparison.

(F) Time spent in the corner the rats preferred

previously. Red marks represent mean ± SEM.

Boxplots with all data points are overlaid. Animals

with LPS injection into the right hemisphere show

strong obsession, while those injected to the left

hemisphere did not (data not shown). *p < 0.05,

multiple comparison (versus PBS).

(G) Sniffing time. *p < 0.05, multiple comparison

(versus PBS).

(H) Summary of behavioral changes. Arrows indi-

cate the direction of behavioral changes with

significant differences by multiple comparison.

OF, open field test; MB, marble-burying test; SC,

sociability test; FS, forced swim test; PSC, pref-

erence of the same corner; SN, sniffing test; BR,

retention test on balance bar.
and Strick, 2003; Suzuki et al., 2012). Such connections may

contribute to a range of cognitive functions (e.g., dyslexia, stut-

tering disfluency, and depressiveness). Here, our results clarify

not only the mechanism of microglia-induced hyperexcitability

in the cerebellar circuit but also the psychomotor depressive-

ness resulting from functional overconnectivity in cerebello-fron-

tal projections (Figures 6I and 6J). Given that Purkinje cells are

inhibitory and tend to suppress the activity of the CbN, it does

not follow that increases in Purkinje cell activity would lead to

an increase in signal in cerebellar target areas. Although disinhi-

bitory scenarios can be invoked to rationalize such a result, no

evidence is provided. Otherwise, strong inhibition at nuclei

may evoke postinhibitory rebound and provide time-rocked

excitation (Person and Raman, 2011) to subsequent areas,
although our data lack in vivo electrical activity in multiple

regions.

Finally, TNF-a secretion from activated microglia appears to

be a potential target for suppressing symptoms associatedwith

high cytokine conditions in the inflamed cerebellum that can

cause dysfunctional communication (Figure S6L). It was quite

discernible that animals with inflammation in the anterior lobes

or in the right hemisphere showed the depression- or autistic-

like phenotype, respectively (Figure 7H). Differences in the

behavioral abnormality among the regions of acute inflamma-

tion should come from projected nuclei after hyperexcitability

of the Purkinje neurons. Therefore, our results provide basic in-

formation on the effect of inflammation in distinct cerebellar re-

gions and following long-range projections.
Cell Reports 28, 2923–2938, September 10, 2019 2935



STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Rat

B Mouse

B Rat macrophage culture

B Generation of GO-ATeam2 knock-in mouse

d METHOD DETAILS

B Patch-clamp recordings

B Electrophysiological data analysis

B CSF1R inhibitor treatment

B Immunohistochemistry

B Western blotting

B ATP imaging

B Drug injection

B Behavior test battery

d QUANTIFICATION AND STATISTICAL ANALYSIS

d DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2019.07.078.

ACKNOWLEDGMENTS

We thank C. Hansel, M. Mitsuyama, P. Hemant, K. Fujita, T. Inoshita, and T.

Hirano for comments on the manuscript and discussions, the Hakubi-center

members for discussions, and H. Tanaka for laboratory support. We thank

T. Matsui and T. Matsuda for comments and suggestions regarding rs-fMRI

analyses and experiments. We thank T. Yamashita for suggestions regarding

microglia depletion. We thank M. Taguchi for assistance with experiments and

analyses. We thank Biorbyt Ltd. for offering the CSF1R inhibitor for research

purposes. fMRI was performed at the Medical Research Support Center,

Graduate School of Medicine, Kyoto University, which was supported by the

Platform for Drug Discovery, Informatics, and Structural Life Science from

the Ministry of Education, Culture, Sports, Science and Technology, Japan.

This work was supported by grants from the Kowa Life Science Foundation,

the Japanese Society for Promotion of Science (JSPS-KAKENHI, Grant-in-

Aid for Young Scientists (A) 26710002), the Brain Science Foundation, the To-

kyo Biochemical Research Foundation, the Naito Foundation, and the Hakubi

project grant (Kyoto University) (all to G.O.). We received support from

PRESTO (JPMJPR14MF to M.Y.), JSPS-KAKENHI (JP17K08786 to M.K.),

and the Takeda Science Foundation (to M.K.).

AUTHOR CONTRIBUTIONS

G.O. designed all experiments. G.O. (electrophysiology, immunostaining,

western blotting, and animal behavior), M.Y. (ATP imaging and transgenic

mice generation), M.K. (western blotting and immunostaining), H.I. (fMRI),

and Y.I. (animal behavior) performed the experiments. G.O. (electrophysi-

ology, ATP imaging, immunostaining, animal behavior, and fMRI), M.Y. (ATP

imaging), and H.I. (fMRI) analyzed the data. G.O., M.Y., M.K., and H.I. wrote

the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.
2936 Cell Reports 28, 2923–2938, September 10, 2019
Received: October 24, 2018

Revised: April 20, 2019

Accepted: July 23, 2019

Published: September 10, 2019

SUPPORTING CITATIONS

The following reference appears in the Supplemental Information: Tikka et al.

(2001).

REFERENCES

Aguzzi, A., Barres, B.A., and Bennett, M.L. (2013). Microglia: scapegoat, sabo-

teur, or something else? Science 339, 156–161.

Arancillo, M., White, J.J., Lin, T., Stay, T.L., and Sillitoe, R.V. (2015). In vivo

analysis of Purkinje cell firing properties during postnatal mouse development.

J. Neurophysiol. 113, 578–591.

Bagnall, M.W., Zingg, B., Sakatos, A., Moghadam, S.H., Zeilhofer, H.U., and

du Lac, S. (2009). Glycinergic projection neurons of the cerebellum.

J. Neurosci. 29, 10104–10110.

Beattie, E.C., Stellwagen, D., Morishita, W., Bresnahan, J.C., Ha, B.K., Von

Zastrow, M., Beattie, M.S., and Malenka, R.C. (2002). Control of synaptic

strength by glial TNFalpha. Science 295, 2282–2285.

Beckmann, C.F., and Smith, S.M. (2005). Tensorial extensions of independent

component analysis for multisubject FMRI analysis. Neuroimage 25, 294–311.

Beierlein, M., and Regehr, W.G. (2006). Brief bursts of parallel fiber activity

trigger calcium signals in bergmann glia. J. Neurosci. 26, 6958–6967.

Bellinger, F.P., Madamba, S., and Siggins, G.R. (1993). Interleukin 1 beta in-

hibits synaptic strength and long-term potentiation in the rat CA1 hippocam-

pus. Brain Res. 628, 227–234.

Belmeguenai, A., Hosy, E., Bengtsson, F., Pedroarena, C.M., Piochon, C.,

Teuling, E., He, Q., Ohtsuki, G., De Jeu, M.T., Elgersma, Y., et al. (2010).

Intrinsic plasticity complements long-term potentiation in parallel fiber input

gain control in cerebellar Purkinje cells. J. Neurosci. 30, 13630–13643.

Biswal, B., Yetkin, F.Z., Haughton, V.M., and Hyde, J.S. (1995). Functional

connectivity in the motor cortex of resting human brain using echo-planar

MRI. Magn. Reson. Med. 34, 537–541.

Boyden, E.S., Katoh, A., and Raymond, J.L. (2004). Cerebellum-dependent

learning: the role of multiple plasticity mechanisms. Annu. Rev. Neurosci. 27,

581–609.

Brown, S.T., and Raman, I.M. (2018). Sensorimotor integration and amplifica-

tion of reflexive whisking by well-timed spiking in the cerebellar corticonuclear

circuit. Neuron 99, 564–575.e2.

Cao, X., Li, L.P., Wang, Q., Wu, Q., Hu, H.H., Zhang, M., Fang, Y.Y., Zhang, J.,

Li, S.J., Xiong, W.C., et al. (2013). Astrocyte-derived ATP modulates depres-

sive-like behaviors. Nat. Med. 19, 773–777.

Chung, W.S., Welsh, C.A., Barres, B.A., and Stevens, B. (2015). Do glia drive

synaptic and cognitive impairment in disease? Nat. Neurosci. 18, 1539–1545.

Daoudal, G., and Debanne, D. (2003). Long-term plasticity of intrinsic excit-

ability: learning rules and mechanisms. Learn. Mem. 10, 456–465.

De Zeeuw, C.I., and Ten Brinke, M.M. (2015). Motor learning and the cere-

bellum. Cold Spring Harb. Perspect. Biol. 7, a021683.

DeNardo, D.G., Brennan, D.J., Rexhepaj, E., Ruffell, B., Shiao, S.L., Madden,

S.F., Gallagher, W.M., Wadhwani, N., Keil, S.D., Junaid, S.A., et al. (2011).

Leukocyte complexity predicts breast cancer survival and functionally regu-

lates response to chemotherapy. Cancer Discov. 1, 54–67.

Elmore, M.R., Najafi, A.R., Koike, M.A., Dagher, N.N., Spangenberg, E.E.,

Rice, R.A., Kitazawa, M., Matusow, B., Nguyen, H., West, B.L., and Green,

K.N. (2014). Colony-stimulating factor 1 receptor signaling is necessary for mi-

croglia viability, unmasking a microglia progenitor cell in the adult brain.

Neuron 82, 380–397.

Gao, F., Liu, Z., Ren, W., and Jiang, W. (2014). Acute lipopolysaccharide expo-

sure facilitates epileptiform activity via enhanced excitatory synaptic

https://doi.org/10.1016/j.celrep.2019.07.078
https://doi.org/10.1016/j.celrep.2019.07.078
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref1
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref1
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref2
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref2
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref2
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref3
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref3
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref3
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref4
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref4
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref4
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref5
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref5
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref6
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref6
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref7
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref7
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref7
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref8
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref8
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref8
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref8
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref9
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref9
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref9
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref10
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref10
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref10
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref11
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref11
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref11
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref12
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref12
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref12
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref13
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref13
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref14
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref14
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref15
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref15
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref16
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref16
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref16
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref16
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref17
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref17
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref17
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref17
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref17
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref18
http://refhub.elsevier.com/S2211-1247(19)30982-9/sref18


transmission and neuronal excitability in vitro. Neuropsychiatr. Dis. Treat. 10,

1489–1495.

Grasselli, G., He, Q., Wan, V., Adelman, J.P., Ohtsuki, G., and Hansel, C.

(2016). Activity-dependent plasticity of spike pauses in cerebellar Purkinje

cells. Cell Rep. 14, 2546–2553.

Habbas, S., Santello, M., Becker, D., Stubbe, H., Zappia, G., Liaudet, N.,

Klaus, F.R., Kollias, G., Fontana, A., Pryce, C.R., et al. (2015). Neuroinflamma-

tory TNFa impairs memory via astrocyte signaling. Cell 163, 1730–1741.

Hansel, C., Linden, D.J., and D’Angelo, E. (2001). Beyond parallel fiber LTD:

the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat.

Neurosci. 4, 467–475.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Rat
Male Sprague-Dawley rats were used for the experiments. Postnatal (P)22–28 days old rats were used for patch-clamp recordings

and western blotting. Microglia depletion experiment started at P19–20 days. Behavior battery tests and MR imaging were conduct-

ed at P22–26 days.

Mouse
Male C57BL/6J, GO-ATeam2 (Related study is in preparation for submission), TLR2�/�, TLR4�/�, MyD88�/� (Hoshino et al., 1999),

and TRIF�/� (Yamamoto et al., 2002) mice (Oriental Bioservice, Inc., Japan) were used for the experiments. P2-month-old mice were

used for patch-clamp recordings, ATP-imaging and immunohistochemistry. Microglia depletion experiment were started at P5- to

P6-week.

Animals were housed (5 animals at maximum in each cage) and maintained under a 12-h light: 12-h dark cycle, at a constant tem-

perature and humidity (20–24�C, 35%–55%), with food and water available ad libitum. All procedures were performed in accordance

with the guidelines of the Animal Care and Use Committees of the Kyoto University and were approved by the Ethical Committee of

the Kyoto University. All animal handling and reporting comply with ARRIVE guidelines.

Rat macrophage culture
NR8383 [AgC11x3A, NR8383.1] (ATCC) was used for the control of the cytokine release (western blotting) in response to LPS admin-

istration (data not shown). F-12K medium was used for the culture medium.

Generation of GO-ATeam2 knock-in mouse
An ATP probe (GO-ATeam2) was developed for use in conjunction with green and orange fluorescent proteins as a fluorescence/För-

ster resonance energy transfer (FRET) pair (Nakano et al., 2011). We newly generated GO-ATeam2 transgenic mice to monitor the

ATP concentration in living animals. Briefly, we employed a knock-in strategy targeting the Rosa26 locus and the CAG promoter

to regulate transcription. We used the GeneArt Seamless Recombination System (Thermo Fisher Scientific) to create GO-ATeam2

knock-in mice. The targeting vector was induced into G4 ES cells with electroporation. The constructs harbored by the ES clones

underwent homologous recombination, which was confirmed by Southern blot analysis using appropriate probes (provided by K.

Hoshino and T. Kaisho, Osaka University), PCR, and qPCR. Male chimeras derived from each ES cell line were bred with C57BL/

6J females, yielding heterozygous F1 offspring (C57BL/6J 3 129 background).

METHOD DETAILS

Patch-clamp recordings
In vitro patch-clamp recordings were obtained as described previously (Belmeguenai et al., 2010; Ohtsuki et al., 2012). Sagittal slices

of the cerebellar vermis (250 mm) were prepared from Sprague-Dawley rats (postnatal (P)22–28 days old) after isoflurane anesthesia

and decapitation (Figures 1, 3A–3G, 3N–3S, 4A–4F, 4J–4O, 5, S1, S2G, S2H, S5C, S5D, and S5F). In some experiments, C57BL/6J,

TLR2�/�, TLR4�/�, MyD88�/�, and TRIF�/� mice (P2-month-old) were used (Figures 2C–2E, 4G–4I, 5C–5G, and S4A–S4D). Slices

were cut on a vibratome (Dosaka EM, Japan) using ceramic blades. Subsequently, slices were kept in artificial cerebrospinal fluid
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(ACSF) containing the following (in mM): 124 NaCl, 5 KCl, 1.25 Na2HPO4, 2 MgSO4, 2 CaCl2, 26 NaHCO3, and 10 D-glucose, bubbled

with 95% O2 and 5% CO2. During cutting, supplemental ingredients (5 mM Na-ascorbate, 2 mM thiourea, and 3 mM Na-pyruvate)

were added to the ACSF. After at least 1-h, slices were transferred to a recording chamber superfused with ACSF at near-physio-

logical temperature (32–34�C). The ACSFwas supplementedwith 100 mMpicrotoxin to blockGABAA receptors. Patch-clamp record-

ings were performed under a 3 40 water immersion objective lens equipped with a DIC system (DS-Qi2; Nikon) mounted on a mi-

croscope (ECLIPSE FN1, Nikon). Recordings were performed in voltage-clamp or current-clamp mode using an EPC-10 amplifier

(HEKA Elektronik, Germany). Membrane voltage and current were filtered at 2.9 kHz, digitized at 10 kHz, and acquired using Patch-

master software (HEKA Elektronik). Patch pipettes (borosilicate glass) were filled with a solution containing (in mM): 9 KCl, 10 KOH,

120 K-gluconate, 3.48 MgCl2, 10 HEPES, 4 NaCl, 4 Na2ATP, 0.4 Na3GTP, and 17.5 sucrose (pH 7.25 titrated with 1 M KOH). Mem-

brane voltagewas offset for liquid junction potentials (11.7mV). Somatic patch electrodes had electrode resistances of 2–4MU, while

dendritic patch electrodes had electrode resistances of 7–8 MU (Ohtsuki et al., 2012). Hyperpolarizing bias currents (100–400 pA)

were injected to stabilize the somatic membrane potential at approximately �75 to �80 mV and to prevent spontaneous spike ac-

tivity. To obtain the firing frequency in response to different levels of depolarization (Figures 1B, 1E, 2C, 3A, 3P, S4A–S4D, S5C, S5D,

and S5F), we applied 500-ms pulses ranging from 0 to 550 pA every 2 or 3 s, whichwere increased by 50 pA per step, and counted the

number of simple spike-shaped action potentials. Action potential on dendrites were recorded by simultaneous patch-clamping from

soma and dendrite (Figures 1H and 1I). Data were collected at distances of 80–120 mm apart from the soma at secondary and tertiary

branches. Due to the lack of voltage-sensitive Na+ channels, the amplitude of bAPs attenuates in a distance-dependent manner.

Approximate curves were obtained from entire recordings including somatic APs, by fitting to the single exponential function, are

superimposed to the plotting of control (black line), apamin (orange line) and LPS (magenta line) experiments in Figure 1I. To examine

the excitability of Purkinje cells from drug-injected cerebella, slices were prepared within 1 h following injection, and recordings were

obtained for 1–5 h. In the other ex vivo experiments, we tested the excitability at 24–32 hours after injection. Rheobase from the basal

potential and the slope of the gain function against depolarization pulses from 50 to 250 pA were also measured (Tables S1 and S2).

For long-term recording (Figures 1C, 1D, 1F, 1G, 2D, 2E, 3B–3G, 3N, 3Q–3S, 5A–5G, S1, S2G, and S2H), depolarizing current steps

(100–400 pA/500 ms) were applied every 20 s to the soma to evoke action potentials. In some experiments, for the conditioning of

intrinsic plasticity induction, depolarizing pulses (300–550 pA/100 ms) were applied at 5 Hz for 4 s. We compared firing frequency

normalized by 5-min average before 0 min (i.e., �5 – �1 min) to that of 25 to 30 min later. Input resistance was monitored by admin-

istering 50-pA hyperpolarizing pulses (50-ms duration) following the depolarization (Figures 5K and 5L). Data were discarded when

the input resistance had changedmore than 20%.Membrane potential was kept at approximately�75 to�80mVwithin 5%changes

throughout each experiment (Figures 5M and 5N). All drugs were applied to the bath chamber via the circulation system. Heat-killed

bacteria (HKEB, E.coli 0111:B4; HKPA, P. aeruginosa; HKSP, S. pneumoniae) and peptidoglycan (PGN, peptidoglycan from E. coli

0111:B4) were purchased from InvivoGen, and 1010 freeze-dried cells were diluted to 107 cells/mL in sterile, endotoxin-free water, for

in vitro application. Heat-killed Gram-negative bacteriamixture (HKGn; HKEB+HKPA) was applied in vitro at the concentration of 107

cells/mL for each. For the recording of spontaneous EPSC (sEPSC) and miniature EPSC (mEPSC) events (Figure 4), membrane cur-

rent was held at �71.7 mV or at �81.7 mV only if the membrane current was jittered, and current was recorded for 1.5 s trials, for at

least 180 s in total. mEPSC was monitored under suppression of the neuronal activity by TTX citrate (0.5 mM).

Electrophysiological data analysis
Data were analyzed using a custom program written in MATLAB (Mathworks). For the analysis of action-potential waveforms, we

measured the first action potential evoked by administration of a 200–400-pA depolarizing pulses. Action potential analysis was per-

formed as described previously (Belmeguenai et al., 2010) (Tables S1 and S2). For the analysis of sEPSC andmEPSC events, periods

of fluctuation were omitted and supplemented by other trials. Then, a Savitzky-Golay filter (sgolayfilt) was applied to the recorded

currents. The event detection threshold for s/mEPSCs was set at 4.5 pA. Events were defined as those exceeding four standard de-

viations during the 10 ms pre-period. We then applied the fminsearch function to obtain decay time by a single exponential. If the

current trace at the decay period (limited to 19ms) was poorly fit, the data were excluded. Detected cell numbers and event numbers

of sEPSC are 35 (46058), 13 (30718), 12 (30229), 15 (39107), 16 (36699), 13 (30588), 16 (22960), 14 (25040), 15 (36889), 18 (25826) in

control, LPS, PGN, TNF-a, HKEB, HKPA, HKSP, minocycline+LPS, ATP, and PPADS+LPS conditions, respectively. Event numbers

are in the parentheses. Those of mEPSC are 13 (4123), 16 (32017), 13 (29652), 16 (34876), 13 (24808), 12 (10240), 14 (10321), 14

(36756), 13 (16773) in control, LPS, TNF-a, HKEB, HKPA, HKSP, minocycline+LPS, ATP, and PPADS+LPS conditions, respectively.

Rise time was regarded as the period spanning 10%–90% of the change from peak to basement values. Rise time, half-width, and

decay time of s/mEPSCs were not significantly different against control except for ATP (data not shown). Representative sEPSC/

mEPSC traces in Figures 4B and 4K are the average from 1571/255, 946/454, 1264, 1330/904, 1132/477, 1079/393, 663/358,

276/611, 1634/296, and 619/438 events of control, LPS, PGN, TNF-a, HKEB, HKPA, HKSP, minocycline+LPS, ATP, and

PPADS+LPS conditions, respectively. For the cumulative probability in Figures 4D, 4F, 4M, and 4O, a maximum of 400 sEPSC

and 800 mEPSC amplitude and frequency events were collected from each cell for each experiment.

CSF1R inhibitor treatment
For the sake of pharmacological microglia-depletion, the CSF1R inhibitor Ki20227 (Ohno et al., 2006; Elmore et al., 2014) (Biorbyt

Ltd., UK) was given to P5- to P6-week C57BL/6 mice via the drinking water (100 or 250 mg/L, including 2.5% sucrose) or by oral
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administration 0.2 mL/day (20 mg/mL dissolved to 10% DMSO and 90% corn oil) for 6–7 days (Figures 2A, 2B, and S2A–S2F).

Ki20227 (IC50 = 2 nM to M-CSF receptor; 451 nM to c-Kit) (Ohno et al., 2006) is a more potent and specific inhibitor to CSF1R

than PLX3397 (IC50 = 20 nM to M-CSF receptor; 10 nM to c-Kit) (DeNardo et al., 2011). A few mice were given the inhibitor for

11–12 days for electrophysiological experiments. In some experiments, we gave Ki20227 0.2 mL/day (oral administration of

20 mg/mL with 10% DMSO and 90% corn oil) to male juvenile Sprague-Dawley rats (38-62 g body weight) from P19–20 for

5 days. Following reagent administration under specific pathogen free (SPF)-environment, we sacrificed animals for electrophysio-

logical and immunohistochemical experiments, and we conducted behavior tests with rats. No obvious behavioral or health prob-

lems were observed during the Ki20227 treatment, except for a reduction of weight in a few rats with vulnerability whose data

were excluded.

Immunohistochemistry
Immunostaining was performed as described (Belmeguenai et al., 2010), with some modifications. After perfusion fixation of the

control and Ki20227-treated mice with 4% paraformaldehyde (PFA), brains were kept in PFA for 2 days at 4�C. After submersion

in phosphate buffered saline (PBS) containing 30% sucrose for 2–4 days, 50-mm cryosections were collected in water. Sections

were heated in HistoVT (Nacalai Tesque, Japan) to 80�C for 30min, rinsed in TBS, and incubated in blocking solution (TBS containing

10% normal goat serum (NGS) and 0.5% Triton) for 1 h at 20–24�C. Sections were then incubated with fluorescently conjugated-pri-

mary antibodies against Iba1 (rabbit anti-Iba1:red fluorescent probe 635, 1:200 [2.5 mg/mL]; Wako) and Calbindin (rabbit anti-Calbin-

din:Alexa Fluor� 488, 1:100 [5 mg/mL]; Abcam) at 4�C for 48 h. Subsequently, sections were rinsed three times in PBS for 5 min

each and were mounted on glass slides and coverslipped. Fluorescence images were obtained using a Zeiss LSM 780, Olympus

FV1000 or Olympus FV 3000 confocal laser-scanning microscope equipped with Plan-Apochromat 20 3 /0.8 and 10 3 /0.4 lenses.

Emission wavelength for imaging was 488 and 639 nm, and the fluorescence was filtered using 640-nm low-pass and 490–555-nm

band-pass filters. Individual images were taken under a fluorescence microscope (FV 3000), and the merged-images are shown as

whole cerebellar images in Figure S2. For counting the number of microglia in Figure 2B, arbitral parts of the cerebellumwere imaged

(489.53 489.5 mm) with z stacks of 24–30 images at every 1 mm, and the density of microglia were calculated from 43–54 regions of

interest (ROIs) (from 2 mice per group), excluding white matter.

Western blotting
Cerebellar slices from Sprague-Dawley rats (P24–25 days old) were prepared as described above. After recovery, brain slices were

incubated in normal ACSF or LPS-containing ACSF for 0, 20, or 60 min at near-physiological temperature. Supernatants were

concentrated with Amicon Ultra-15 Centrifugal Filter Units (EMD Millipore) and subjected to immunoblotting analysis using anti-

rat TNF-a (BMS175; eBioscience), anti-rat IL-6 (AF506; R&D) and anti-rat IL-1b (AF-501-NA; R&D). Intensity was quantified using

Multi Gauge ver.3.2 (Fujifilm). For a control experiment, we used rat macrophage culture (NR8383 [AgC11x3A, NR8383.1], ATCC)

(data not shown).

ATP imaging
For FRET imaging with the ATP probe in the cerebellum, P2–3 weeks GO-ATeam2 mice were decapitated after inhalation of 2% iso-

flurane, following which whole brains were isolated. The cerebellum was placed in cooled ACSF solution as described for the elec-

trophysiological experiments. Air stones (#180; Ibuki) were used for aeration (95%O2 and 5%CO2). Sagittal sliceswere cut to a thick-

ness of 300 mm using a vibratome (VT 1000S; Leica), following which they were maintained for at least 30 min at room temperature in

ACSF solution. FRET imaging was performed on a two-photon microscope (TCS SP8; Leica). The imaging chamber was set on the

stage of the microscope with flowing ACSF solution bubbled with 95% O2 and 5% CO2. LPS (final concentration 12 mg/mL) or a

mixture of HKEB and HKPA (final 107 cells/mL, for each) were added to the ACSF. Exciting light (920 nm, 25 W under objective

lens) was applied, and the molecular layer (ML) and granule cell layer (GL) of the cerebellum were scanned every 2 min. Images

were obtained from individual locations (scanned area size, 550 3 550 mm). We used BP525/50 filters for emission, and DM560

and D585/40 filters for excitation fluorescence separation. IMD images and quantifying images were developed from the fluores-

cence images using MetaMorph software (Roper Scientific, Trenton, NJ). FRET signals at the chosen ROI (whose shape depended

on the target area, Figure S3H) in the ML and GL were averaged, and the obtained ratio was applied to the following equation: FRET

ratio = 1.523 [ATP]̂ 1.7 / ([ATP]̂ 1.7 + 2.22) + 0.44, and then, ATP concentration was calculated. The coefficients were carefully deter-

mined based on twomethods. First, mouse embryonic fibroblasts were obtained fromGO-ATeam2mice. After piercing the fibroblast

membrane, we applied different concentrations of ATP, monitored the FRET ratio, and determined coefficients based on the function

for fitting ATP concentration to the FRET ratio. Second, we performed a luciferase assay of ATP concentration (Tissue ATP assay kit;

TOYO B-NET) in fertilized eggs from GO-ATeam2 mice. Mice were injected with ATP synthetase inhibitors (2DG plus antimycin A),

and the time course of the FRET ratio was monitored. Coefficients obtained by the two methods were substantially identical, indi-

cating that they were appropriate for use in the present study. Our ATP imaging with transgenic mice expressing ATP probes moni-

tored the ATP concentration in the cytosol, insomuch as no specific promoters were tied to the transgene construct. Control fluo-

rescence images were obtained prior to drug exposure (n = 9 in ML, and n = 10 in GL) and used for subtraction of the

background signal. Following endotoxin exposure, remnants on the tubing and chamber were cleaned with 80% ethanol for at least

5 min. To visualize the time courses of DATP, baseline ATP was set to zero (�6 to �2 min).
e4 Cell Reports 28, 2923–2938.e1–e8, September 10, 2019



Drug injection
Rats received an injection of 0.20–0.30 mL of PBS, LPS (1 mg/mL), a mixture of heat-killed Gram-negative bacteria (HKEB and HKPA,

109 cells/mL for each), a TNF-a inhibitor (C87, 2–4mM), TNF-a (20 mg/mL) and ATP (20mM) into the vermis or right hemisphere of the

cerebellum. Drugs were injected under anesthesia with 0.9% ketamine (Daiichi Sankyo Co., Ltd.) and 0.2% xylazine (Bayer AG) (i.p.,

5.3 ± 0.5 mL/g of body weight, as mean ± std.). We started surgery after animals’ breath and pulse were stabilized and the extent of

anesthesia was enough, without corneal reflection, touch, and pinch responses. For vermal injection into cerebella, rats were fixed to

the stereotaxic apparatus and a small hole (300 mm radius) was drilled in the skull (2.5 mm posterior to lambda), following which a

microsyringe was inserted forward to the anterior lobule (3.0–3.3 mm depth at 86�, lobule II–IV) or to the posterior lobule

(6.3–6.5 mm depth at 65�, lobule VIII–IX) (Ifuku et al., 2014). To clarify the localized spread of the reagent, we did the post-injection

histology, and we confirmed the dextran-conjugated CF�555 dye (0.30ul, 0.5%; Biotium, CF�555 Dextran 10,000 MW) was

restricted in the targeted anterior lobes through the depth of 3.4 mm to 0.4 mm from the pial surface, in two animals. Representative

vermal section is shown in Figure S5G. For injection into the right and left hemispheres, a hole was made at 3.0–3.5 mm posterior to

the lambda and around 1.5 mm lateral, putting forward to 4.0 mm with an angle of 60–65�. The wound was sealed with Spongel

(Astellas Pharma Inc.), after which the animal was allowed to rest in a clean cage. A heat-plate was used to maintain body temper-

ature, if necessary. Rats woke up approximately 40 min after injection of the ketamine/xylazine. We handled animals very carefully

and treated them with as little discomfort as possible. After at least 2 h of recovery, we confirmed that the effects of the anesthesia

had dissipated and that no paralysis or seizures had occurred, following which the behavior test battery (open field test, social inter-

action test, forced swim test, marble burying test, retention test on balance beam, and gait analysis) was initiated. Forced swim test

was conducted last in the battery, to avoid the effect of fear conditioning itself. Gait analysis and retention test on balance bar after

recovery revealed no obvious ataxia and motor discoordination (Figures 7E, S5A, S5B, S6F, and S6K).

Behavior test battery
Open field test

Wemonitored the spatial exploratory behavior of Sprague-Dawley rats (P22–26 days) weighing 52–86 g and microglia-depleted rats

(P24–25 days). After habituation in the experimental room (1 h), rats were individually placed on the center of the Plexiglas open field

arena (723 72 cm2, 30 cm high white walls with black floor), following the operation. Wemonitored the behavior of freely moving rats

for 30 min using a video camera. The distance traveled, resting period, moving period, and mean speed were compared among the

groups. The arena and surrounding walls were cleaned and deodorized with H2O and 70% EtOH before each session. Exploration

behavior was quantified using Smart 3.0 software (Panlab Harvard Apparatus). The resting state was defined at that during which

moving speed fell below the threshold of 2.5 cm/s. A total of 13, 11, 11, 11, 12, 15, 12, 16, 14, 12,15 and 13 animals was included

in the non-conditioned (NC), PBS, LPS, heat-killed Gram-negative bacteria mixture (HKGn; HKEB+HKPA), HKGn+C87, TNF-a, ATP,

microglia-depleted (dMG)+LPS, LPS to hemisphere, LPS to posterior lobes, dMG and C87 conditions, respectively. A total of 15, 14,

17 and 10 animals was included in the PBS, LPS, heat-killed Gram-negative bacteria mixture (HKGn) and HKGn+C87 conditions on

the following day, respectively (Figure S5E).

Social interaction

The sociability of rats was tested in a Plexiglas open-field arena (72 3 72 cm2, 30 cm high) with small circular wire cages (15 cm in

diameter, 20 cm high) in two corners. First, animals were allowed to explore the arena for 3 min to determine the baseline of explor-

atory behavior against the novel subjects without social targets. All movements were recorded with video-tracking. We defined a

preferred corner area as one area (30 3 36 cm2 square around a wire cage) where the animal spent more time during the baseline

period. Next, a sibling rat was placed into one cage that was less preferred during the baseline period, and movements were moni-

tored for another threeminutes. In this social approachmodel, time spent in the interaction and overall locomotion were compared by

an examiner in a blinded experimental condition. Sociability index was calculated by dividing the time difference between time spent

in the interaction zone and in other areas with and without a sibling by total time, as following;

Sociability index =
��
Tatest-- Tatest

�� �
Tabaseline-- Tabaseline

�� �
Ttotal;

where T as the resident time (sec), Tatest as time spent in the area where the sibling caged in the test period, Tatest as time spent out of

the area where the sibling is caged, and Ttotal as 180 s. Tabaseline and Tabaseline are those in the baseline period. In Figure 6C, abbre-

viations are given in the equation of sociability index. A total of 15, 15, 12, 13, 16, 13, 16, 14, 14, 17 and 13 animals was included in the

PBS, LPS, HKGn, HKGn+C87, TNF-a, ATP, dMG+LPS, LPS to hemisphere, LPS to posterior lobes, dMG and C87 conditions,

respectively.

Same corner preference

We tested the preference of the placewhere animals continue to locate in the platform of the social interaction test. First, we defined a

preferred corner area (53 5 cm2 square: SW, SE, NWandNE) as a corner where the animal spent more than 1min during the baseline

period. In the next session, with a sibling rat in one wire cage, we measured the time when rats spent in the same corner where they

preferred, and we scored the time in second as the index. When one has no preferred corner in the first session, the sore is zero. A

total of 15, 15, 12, 13, 16, 13, 16, 14, 14, 17, and 13 animals was included in the PBS, LPS, HKGn, HKGn+C87, TNF-a, ATP,

dMG+LPS, LPS to hemisphere, LPS to posterior lobes, dMG and C87 conditions, respectively.
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Sniffing

Wemeasured the time in second when rats spent around the wire cage with a sibling animal in the second session of the social inter-

action test. We included the time when rats interacted to and sniffed the sibling, and we excluded the time during grooming or

scratching. A total of 15, 14, 11, 13, 16, 13, 16, 14, 14, 17, and 13 animals was included in the PBS, LPS, HKGn, HKGn+C87,

TNF-a, ATP, dMG+LPS, LPS to hemisphere, LPS to posterior lobes, dMG and C87 conditions, respectively.

Forced swim

FS test were conducted in a 5 L plastic beaker filled with 4.3 L of water (16.5 cm in diameter, 20-cm-depth, 24.1 ± 0.2�C). Rats were

tested swimming for 8 min and video-recorded. Total duration of immobility, each of which is more than 1 s, in the last 4 min was

measured in a blinded condition. A total of 15, 15, 16, 14, 16, 13, 16, 10, 13, 17, and 13 animals was included in the PBS, LPS,

HKGn, HKGn+C87, TNF-a, ATP, dMG+LPS, LPS to hemisphere, LPS to posterior lobes, dMG and C87 conditions, respectively.

Marble burying

Marble burying (MB) is a test for stereotyped repetitive behaviors in rodents analogous to those observed in autistic phenotypes (Sil-

verman et al., 2010). MB tests were conducted in a testing cage (26 3 18.2 cm2, 13-cm-high). Bedding tips as wood shavings were

covered to a depth of 3 cm. 20 glassmarbles (17mm in diameter) were aligned equidistantly in four rows of fivemarbles each. Spaces

(4–5 cm width) were made for placing animals. At the end of the 20-min test period, rats were carefully removed from the cages. The

marble burying score was defined as the following: 1 for marbles covered > 50% with bedding, 0.5 for marbles covered �50% with

bedding, and 0 for marbles less covered. A total of 24, 16, 15, 16, 13, 15, 13, 14, 19, 13, 17 and 13 animals was included in the NC,

PBS, LPS, HKGn, HKGn+C87, TNF-a, ATP, dMG+LPS, LPS to hemisphere, LPS to posterior lobes, dMG and C87 conditions,

respectively.

Retention test on balance beam

Time in seconds was measured while rats remained on a wooden balance beam with 25 mm diameter placed at a height of�11 cm.

Measurement time is 5minutes after animals became calm on the beam. Trials in which animals escapedwere not analyzed. A total of

12, 10, 12, 10, 16, 11, 13, 13, 12, 13 and 13 animals was included in the PBS, LPS, HKGn, HKGn+C87, TNF-a, ATP, dMG+LPS, LPS to

hemisphere, LPS to posterior lobes, dMG and C87 conditions, respectively (Figures 7E, S5A, S5B, S6F, and S6K).

Gait analysis

Animals were placed at the end of one directional passageway (8.5 cm inwidth and 30 cm in length) with a transparent floor at a height

of 13 cm, and they were allowed to walk straight forward while being recorded with a micro video camera from below. Each animal

was tested three times for walking. Centers of paw positions (forepaws and hind paws) were measured, and three or four strides

lengths for each trial were collected and averaged from 6, 6, 6, 7, 7, and 7 rats of PBS, LPS, HKGn, HKGn+C87, dMG+LPS, and

LPS to hemispheres conditions (Figures S5B).

MR imaging and data analyses

We used anaesthetized Sprague-Dawley rats as described in the open field test, with three experimental groups of non-conditioned

(NC, n = 13 animals), HKGn-injected (HKGn, n = 12 animals), and HKGn+C87-injected (HKGn+C87, n = 14 animals) rats. After a 2-h

recovery period from the ketamine and xylazine anesthesia as described above, rats inhaled isoflurane (2% for induction: 1% for MR

imaging (MRI)) in a mixture of 66% air and 34% oxygen at 1.5 L/min with ventilation, were stabilized by head-holding in a plastic tube,

and were monitored for respiratory rate (52–109 breaths/min) and body temperature (30–34�C). Rats were scanned with a 7.0 T MRI

scanner (Bruker BioSpin) with a quadrature transmit-receive volume coil (35 mm inner diameter). To make the main magnetic field

more homogeneous, shimming was performed in a 203 153 10mm3 region bymean of a local MapShim protocol using a previously

acquired fieldmap. Resting-state fMRI is useful to study the functional network in the brain. This network has been shown to be spon-

taneously activated without stimulation. Spontaneous low frequency fluctuations (< 0.1 Hz) in the blood-oxygen-level dependent

(BOLD) signals of some regions are known to synchronize with each other. Such correlation of the BOLD signals is considered as

a manifestation of functional connectivity of the brain (Biswal et al., 1995). BOLD rs-fMRI time series were obtained with a single-

shot gradient-echo planar imaging (EPI) sequence (repetition time [TR]/echo time [TE] = 1.0 s/9 ms; flip angle, 60�; matrix size,

80 3 64; field of view [FOV], 2.5 3 2.0 cm2; 12 coronal slices from top to bottom; slice thickness, 1 mm; slice gap 0 mm) for

6–8 min with a total 360–480 volumes. Following the EPI sequence twice, high-resolution anatomical images for each experimental

animal were obtained using a 2D multi-slice T2-weighted (T2W) fast-spin echo sequence (RARE) (TR/TE = 3.0 s/36 ms; matrix size,

240 3 192; FOV, 2.5 3 2.0 cm2; 24 coronal slices; slice thickness, 0.50 mm; slice gap 0 mm; with fat suppression by frequency se-

lective pre-saturation) under 2.0% isoflurane inhalation. To image the region of inflammation, we used a fluid attenuation inversion

recovery (FLAIR) sequence, which suppresses cerebrospinal fluid effects on the image (inversion time [TI] = 2.5 s; TR/TE = 10 s/

36 ms; matrix size, 2403 192; FOV, 2.53 2.0 cm2; 24 coronal slices; slice thickness, 0.50 mm; slice gap 0 mm; with fat suppression

by frequency selective pre-saturation). FLAIR is an MRI sequence in which the signals of cerebrospinal fluid is virtually zeroed by

elongating the inversion time, TI. With the combination of this sequence and fat suppression, it is more useful to discern infarction,

hemorrhages, encephalitis, cerebellitis, and meningitis from the images than the T2-weighted sequences, in clinical applications and

even in the animal disease models. In general, an infection of the bacteria and the resultant destruction of tissues would increase the

vascular permeability beneath the lesion. The released exudate produces a localized edema (inflammatory edema), which includes

the abundant liquid, generating high T2-signal. In FLAIR images, the high signal intensity is depicted by white.

Image data from three experiments of NC, HKGn-injected and HKGn+C87-injected were analyzed with SPM12 (http://www.fil.ion.

ucl.ac.uk/spm), FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL), and in-house software written with MATLAB (MathWorks).
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Wepre-processed imaging data as described previously (Zhan et al., 2014;Matsui et al., 2011). First, the EPIs were realigned and co-

registered to a template brain using anatomical images. Owing to the lack in open-source anatomical brain images in young adult

rats, we used a representative T2W anatomical image (P22) as a template brain. Co-registered functional EPIs were normalized

to the template and transformed to a 151 3 91 3 81 matrix (with spatial resolution of 0.20 3 0.20 3 0.20 mm3) and smoothed

with a Gaussian kernel (full width at half maximum [FWHM], 0.7 mm). We manually omitted data with motion artifacts (26 scans in

total). Imaging data were temporally zero-phase band-pass filtered to retain low-frequency components (0.01–0.10 Hz) by using

the filtfilt MATLAB function. For a given time series, seed ROIs (0.8 3 0.8 3 0.6 mm3) in the anterior lobe of the cerebellar vermis

(CblVm), cerebellar hemispheres (CblHs), cerebellar dentate nuclei (CblNc), dorsal hippocampi (Hpc), primary visual cortices (V1),

sensory cortices (S1), motor cortices (M1), cingulate cortices (Cg), medial prefrontal cortices (mPf), centro-medial thalamus (cmThl),

and posterior thalami (pThl) were selected, and the signals in the seed were averaged. For CblHs, CblNc, Hpc, V1, S1, M1, Cg, mPf,

and pThl, seeds were applied in both right and left hemispheres. Individual correlation maps (r map at the zeroth lag) were computed

by cross-correlation against the mean seed-signal to signals of all the other voxels. Then, correlation maps were transformed to nor-

mally distributed z scores by Fisher’s r-to-z transformation. Z-transformation was used to reflect the strength of spontaneous cor-

relations more linearly at high r values. The resulting group maps were thresholded at jrj > 0.1, followed by a cluster-level multiple

comparison correction at a significance level of p < 0.001 of one-sample t test with Ka > 29 voxels (Figure 6H). Seed-seed correlation

matrices were calculated from all pairs among brain regions for each subject. The correlation matrix was z-transformed. One-sample

t test matrix across experiments were thresholded at p < 0.05 and were corrected by Benjamini-Hochberg (BH) procedure to avoid

the incorrect rejection of a true null hypothesis (a type I error) with a false discovery rate at q = 0.05. Mean seed-seed correlation

z-matrix was filtered by the T-matrix from BH procedure and variance corrected color maps were shown (Figure 6I).

For the group independent component analysis (ICA) (Figure S7), we used the MELODIC toolbox in the FSL platform (Beckmann

and Smith, 2005; Zerbi et al., 2015). Group ICA was done on the experimental groups (NC, HKGn, and HKGn+C87) to estimate a

common set of components for all three cohorts, usingmulti-session temporal concatenation, andwe then extracted 40 components

from the pre-processed data described above. We used the set of spatial maps from the three-cohort-average analysis to generate

subject-specific versions of the spatial maps, using dual regression.We then generated average-spatial maps for each group by one-

sample t test using the randomize function of FSL (Winkler et al., 2014). The resulting maps were corrected for multiple comparisons

using threshold-free cluster enhancement (Smith and Nichols, 2009). These representative maps are color-coded as a value of 1-p

with a threshold of p < 0.01.

The extent of anesthesia is quite important for the functional connectivity. We carefully applied adequate concentration of isoflur-

ane with inhalation at the level of 1%, which is conventionally used. However, as reported in Arancillo et al. (2015), 0.15 – 0.25% of

isoflurane concentration halves both simple and complex spike of mouse Purkinje cells in vivo, while the firing rate does not become

silent. Although we did not apply electrophysiological recording of the Purkinje cells in vivo, we consider that the reduction of Purkinje

cell firing under anesthesia did exist. Maybe, that’s why the functional connectivity in the control rats (NC)were not obvious, relative to

rats with inflammation (Figures 6H–6J). Meanwhile, in rats injected the heat-killed Gram-negative bacteria, the functional connectivity

between cerebellar vermis and prefrontal cortex was quite prominent. Therefore, our data suggested that, even under the suppres-

sion of Purkinje cell firing with isoflurane anesthesia, the inflammation of the anterior lobes enhanced the correlation of cerebello-

cortical activity. In addition, isoflurane is known as an activator of GABAergic receptors which increases the tonic inhibition, while

the exact mechanism of the action has not been clearly understood in the cerebellum. Please note that there remains a possibility

of the involvement of the modulation of GABAergic synaptic activity by inflammation.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data are presented as mean ± SEM. SEM indicates standard error of measurement within a group. Details regarding each statis-

tical test, biological sample size (n), p value and statics can be found in the corresponding figure legends or in Table S3.

The ‘‘n’’ in figures represents the number of animals, cells, or experimental replication. Detail values and representation of the data

number are as following: in Figure 1, all ‘‘n’’ indicate cells from more than 3 animals for each experiment; in Figure 2B, ‘‘n’’ indicate

sampled images from 2 animals for each experiment (Control, 100 mg/ml, 250 mg/ml, 20 mg/ml of Ki20227 administration); in Figures

2C–2E, ‘‘n’’ indicate cells from more than 4 animals for each experiment; in

Figures 3A–3G and 3N–3S, ‘‘n’’ indicate cells from more than 3 animals for each experiment; in Figure 3I, ‘‘n’’ indicate sampled

cerebella; in Figures 3K and 3M, ‘‘n’’ indicate sampled regions from 2 to 3 animals for each experiment; in Figure 4, all ‘‘n’’ indicate

cells frommore than 3 animals for each experiment; in Figure 5, all ‘‘n’’ indicate cells frommore than 3 animals for each experiment; in

Figure 6, all ‘‘n’’ indicate animals for each experiment. Please note that in the OF experiments, all parameters were obtained from

identical animals, and that in the behavior battery test (MB, SC, FS, PSC, SN and BR) many of data were obtained from identical

animals; in Figure 7, all ‘‘n’’ indicate animals for each experiment.

Data were collected and processed side by side in randomized order for all experiments; most analyses were routinely performed

blind to the conditions of the experiments. Two-sided Mann-Whitney U-tests were used to compare data between two independent

groups, except for the following: in Figure 2B, 6B–6E, 7, S5A, S5B, S5E, and S6B–S6K, we used the multiple comparison with Krus-

kal-Wallis test, with Bonferroni method or Fisher’s least significant difference procedure. In Figures 2E and 5C–5G, we used the Wil-

coxon signed-rank test between the mean normalized firing frequency at�1 to�5 min and at +25 to +30 min. In Figures 3K and 3M,
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we used the Wilcoxon signed-rank test between the mean DATP at�6 to�2 min and at +20 to +28 min. In Figures S5D and S5F, we

used the unpaired Student’s t test (two-tailed, unequal distribution). p < 0.05was considered statistically significant, unless otherwise

stated. All boxplot graphs show interquartile range with centered bars as median, minima and maxima of all of the individual data.

Overlapping red marks on boxes represent mean ± SEM. Other thresholds are provided for each relevant comparison. Outliers in

experiments of open field test, with the number of zero to three in each group, were excluded under assumption of normality by

Grubb’s test. All statistical analyses were preformed using MATLAB.

DATA AND CODE AVAILABILITY

Source Data that support the findings of this study are available from the Lead Contact upon reasonable request. Custom MATLAB

code for analyses of the spike counting, s/mEPSC event and rs-fMRI are available from the Lead Contact upon individual request.
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